What are “deep uncertainties” and how should their presence alter prudent courses of action? To help answer these questions, we bring ideas from robust control theory into statistical decision theory. Decision theory in economics has its origins in axiomatic formulations by von Neumann and Morgenstern as well as the statisticians Wald and Savage. Since Savage’s fundamental work, economists have provided alternative axioms that formalize a notion of ambiguity aversion. Meanwhile, control theorists created another way to construct decision rules that are robust to potential model misspecifications. We reinterpret axiomatic foundations of some modern decision theories to include ambiguity about a prior to put on a family of models simultaneously with concerns about misspecifications of the corresponding likelihood functions. By building on ideas from dynamic programming, our representations have recursive structures that preserve dynamic consistency.

More on this topic

BFI Working Paper·Apr 14, 2025

Paths to the Periphery

James Robinson
Topics: Uncategorized
BFI Working Paper·Apr 7, 2025

The Conflict-of-Interest Discount in the Marketplace of Ideas

John M. Barrios, Filippo Lancieri, Joshua Levy, Shashank Singh, Tommaso Valletti, and Luigi Zingales
Topics: Uncategorized
BFI Working Paper·Feb 20, 2025

Non est Disputandum de Generalizability? A Glimpse into The External Validity Trial

John List
Topics: Uncategorized