This paper develops a method informed by data and models to recover information about investor beliefs. Our approach uses information embedded in forward-looking asset prices in conjunction with asset pricing models. We step back from presuming rational expectations and entertain potential belief distortions bounded by a statistical measure of discrepancy. Additionally, our method allows for the direct use of sparse survey evidence to make these bounds more informative. Within our framework, market-implied beliefs may differ from those implied by rational expectations due to behavioral/psychological biases of investors, ambiguity aversion, or omitted permanent components to valuation. Formally, we represent evidence about investor beliefs using a nonlinear expectation function deduced using model-implied moment conditions and bounds on statistical divergence. We illustrate our method with a prototypical example from macrofinance using asset market data to infer belief restrictions for macroeconomic growth rates.

More on this topic

BFI Working Paper·Nov 18, 2024

Making Art Modern: How the Impressionists Started a Permanent Revolution

David Galenson
Topics: Uncategorized
BFI Working Paper·Oct 23, 2024

Dual Reductions and the First-Order Approach for Informationally Robust Mechanism Design

Benjamin Brooks and Songzi Du
Topics: Uncategorized
BFI Working Paper·Oct 1, 2024

Fear and Dreams: Understanding the Non-Institutional Sources of Leader Strategy

Maria Angélica Bautista, Juan Sebastián Galán, James Robinson, Rafael F. Torres, and Ragnar Torvik
Topics: Uncategorized