We calculate the social return on algorithmic interventions (specifically their Marginal Value of Public Funds) across multiple domains of interest to economists—regulation, criminal justice, medicine, and education. Though these algorithms are different, the results are similar and striking. Each one has an MVPF of infinity: not only does it produce large benefits, it provides a “free lunch.” We do not take these numbers to mean these interventions ought to be necessarily scaled, but rather that much more R&D should be devoted to developing and carefully evaluating algorithmic solutions to policy problems.

More on this topic

BFI Working Paper·Oct 1, 2024

Fear and Dreams: Understanding the Non-Institutional Sources of Leader Strategy

Maria Angélica Bautista, Juan Sebastián Galán, James Robinson, Rafael F. Torres, and Ragnar Torvik
Topics: Uncategorized
BFI Working Paper·Sep 24, 2024

On the Identifying Power of Generalized Monotonicity for Average Treatment Effects

Yuehao Bai, Shunzhuang Huang, Sarah Moon, Azeem Shaikh, and Edward J. Vytlacil
Topics: Uncategorized
BFI Working Paper·Sep 24, 2024

Terrorist Propaganda

Travers Barclay Child, Kai Gehring, Sarah Langlotz, Austin Wright, and Rossella De Sabbata
Topics: Uncategorized