Research / BFI Working PaperApr 06, 2021

Universal Prediction Band via Semi-Definite Programming

We propose a computationally efficient method to construct nonparametric, heteroskedastic prediction bands for uncertainty quantification, with or without any user-specified predictive model. The data-adaptive prediction band is universally applicable with minimal distributional assumptions, with strong non-asymptotic coverage properties, and easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi-definite programming and sum-of-squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analyzed.

More Research From These Scholars

BFI Working Paper Oct 16, 2020

Estimating Certain Integral Probability Metrics (IPMs) Is as Hard as Estimating under the IPMs

Tengyuan Liang
Topics:  Technology & Innovation
BFI Working Paper Oct 16, 2020

Mehler’s Formula, Branching Process, and Compositional Kernels of Deep Neural Networks

Tengyuan Liang, Hai Tran-Bach
Topics:  Technology & Innovation
BFI Working Paper Oct 16, 2020

A Precise High-Dimensional Asymptotic Theory for Boosting and Minimum-L1-Norm Interpolated Classifiers

Tengyuan Liang, Pragya Sur
Topics:  Technology & Innovation