For an incompatible patient-donor pair, kidney exchanges often forbid receipt-before-donation (the patient receives a kidney before the donor donates) and donation-before-receipt, causing a double-coincidence-of-wants problem. Our proposal, the Unpaired kidney exchange algorithm, uses “memory” as a medium of exchange to eliminate these timing constraints. In a dynamic matching model, we prove that Unpaired delivers a waiting time of patients close to optimal and substantially shorter than currently utilized state-of-the-art algorithms. Using a rich administrative dataset from France, we show that Unpaired achieves a match rate of 57 percent and an average waiting time of 440 days. The (infeasible) optimal algorithm is only slightly better (58 percent and 425 days); state-of-the-art algorithms deliver less than 34 percent and more than 695 days. We draw similar conclusions from the simulations of two large U.S. platforms. Lastly, we propose a range of solutions that can address the potential practical concerns of Unpaired.

More on this topic

BFI Working Paper·Mar 10, 2025

The Rise of Healthcare Jobs

Joshua Gottlieb, Neale Mahoney, Kevin Rinz, and Victoria Udalova
Topics: Employment & Wages, Health care
BFI Working Paper·Feb 18, 2025

Economic Shocks and Healthcare Capital Investments

Michael R. Richards, Maggie Shi, and Christopher M. Whaley
Topics: Health care
BFI Working Paper·Jan 22, 2025

Network Rewiring and Spatial Targeting: Optimal Disease Mitigation in Multilayer Social Networks

Ozan Candogan, Michael D. König, Kieran Marray, and Frank W. Takes
Topics: Health care