For an incompatible patient-donor pair, kidney exchanges often forbid receipt-before-donation (the patient receives a kidney before the donor donates) and donation-before-receipt, causing a double-coincidence-of-wants problem. Our proposal, the Unpaired kidney exchange algorithm, uses “memory” as a medium of exchange to eliminate these timing constraints. In a dynamic matching model, we prove that Unpaired delivers a waiting time of patients close to optimal and substantially shorter than currently utilized state-of-the-art algorithms. Using a rich administrative dataset from France, we show that Unpaired achieves a match rate of 57 percent and an average waiting time of 440 days. The (infeasible) optimal algorithm is only slightly better (58 percent and 425 days); state-of-the-art algorithms deliver less than 34 percent and more than 695 days. We draw similar conclusions from the simulations of two large U.S. platforms. Lastly, we propose a range of solutions that can address the potential practical concerns of Unpaired.

More Research From These Scholars

BFI Working Paper Apr 19, 2020

Internal and External Effects of Social Distancing in a Pandemic

Maryam Farboodi, Gregor Jarosch, Robert Shimer
Topics:  COVID-19