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Abstract

We study a Ramsey planner who chooses a distorting tax on labor and manages
a portfolio of bonds of different maturities in the representative agent economy with
aggregate shocks. We show that covariances of holding period returns of these bonds
with the primary deficit are the key statistics that determine the optimal compo-
sition of Ramsey portfolio. We document properties of these moments in the U.S.
data and calibrate a version of a neoclassical model with Epstein-Zin preferences that
matches these moments. The optimal portfolio does not short any bond, allocates
approximately equal share of portfolio in bonds of different maturity with a slight
tilt towards longer maturities when the outstanding debt is large, and requires little
re-balancing in response to aggregate shocks. These prescriptions stand in marked
contrast with the prescriptions of standard models used in the business cycle litera-
ture. We show that the difference in the results is driven by the counterfactual asset
pricing implications of such models.

1



1 Introduction

A central insight of portfolio theory is that the composition of the optimal investment
portfolio is determined by the covariance between returns of the securities available to
the investor with her income and expenditure shocks. The optimal portfolio uses the
fluctuations in returns to hedge investor’s shocks and smooth her consumption stream.
As the choice of the maturity structure of government debt is also a portfolio problem,
the behavior of returns on debts of different maturities with shocks to government
revenues and expenditures determines the optimal maturity structure. The canonical
macroeconomic models that are used to study the optimal maturity structure are
notoriously bad at capturing the behavior of asset prices observed in the data. This
makes interpreting the normative prescriptions of such models problematic.

In this paper we re-examine the normative prescriptions for the optimal manage-
ment of the maturity of government debt in a canonical representative agent Ram-
sey model. First, we show theoretically that covariances between certain measures
of returns on debts of various maturities with the innovations to the present value
of government revenues and expenditures determine the optimal choice of maturity
structure in such an economy. We then document the key stylized facts about such
covariances in the U.S. in the post WWII period. Finally, we calibrate a version
of this economy with Epstein-Zin preferences to match these stylized facts, develop
numerical methods to computationally characterize the portfolio problem and study
the optimal maturity structure.

We find that given the observed behavior of debt returns it is impossible for the
government to fully hedge its shocks and as the result the value of outstanding debt
fluctuates with the aggregate shocks. The optimal debt portfolio is long in both long-
term and short-term debt with the optimal portfolio composition depending on the
value of the outstanding debt. In our baseline calibration with one- and five-year
bonds, the optimal share of 5 year bonds in the portfolio is about 45% when debt
to GDP ratio is about 30 percent, and it raises to 55% when debt to GDP ratio is
about 160 percent. These ratios do not change much in response to typical business-
cycle frequency shocks as the optimal portfolio requires little re-balancing between
the maturities.

These results stand in marked contrast with the prescriptions of the canonical
Ramsey models, such as Buera and Nicolini (2004) and Angeletos (2002). Those
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models predict that the optimal choice of maturities of government debt can fully
hedge government shocks, but do so by taking extremely long and short positions
in debts of different maturities. The standard prescription of such models is that
the government should issue long-term debt valued tens or even hundreds times of
GDP and take offsetting short positions in the short-term debt of similar magnitude.
The optimal portfolio is then massively re-balances after each shock, again with the
change in debt positions often of the order of tens of times of GDP. Furthermore, the
composition of the optimal portfolio is very sensitive to the available maturities.

The key reason for the difference in our results comes from the discrepancies in
the behavior of debt returns in the data and in the canonical Ramsey models. In
the data the returns on government debts are quite volatile and a substantial part of
that volatility is unrelated to the shocks in government revenues or expenditures over
business cycle frequencies. As a result, holding large positions in any given maturity
is risky for the government, and the government’s ability to hedge its revenues and
expenditures shocks is limited. To eliminate that risk, the government holds similar
positions in debts of different maturities, smoothly changing the duration of the out-
standing government debt as it accumulates or decreases the total outstanding debt.
In contrast, canonical Ramsey models assume that debt returns are determined solely
by aggregate shocks that affect government revenues and expenditures. This assump-
tion generates fluctuations in returns on government debt that are, at the same time,
small and highly correlated with these shocks. As a result, the government can fully
hedge its shocks using small fluctuation in returns by leveraging and taking huge short
and long positions in debts of different maturities. Shocks to returns that are uncor-
related with government financial needs would make holding such positions extremely
risky.

Our paper builds on a large Ramsey literature on optimal taxation and debt
management over the business cycle, going at least to the work of Barro (1979) and
Lucas and Stokey (1983). Buera and Nicolini (2004) and Angeletos (2002) are the
two benchmark specifications of those models to incomplete market settings with
debt of different maturities to which we are most closely related. Faraglia et al.
(2012) and Debortoli et al. (2016 forthcoming) extend this framework by restricting
government’s ability to re-balance its portfolio and commit respectively. Lustig et al.
(2008) allow for nominal bonds of several maturities but impose portfolio restrictions
that prevent the government from going short in any maturity. Farhi (2010) allows
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the government to hold a risky asset in a form of capital. All these papers use the
same general specification of preferences and shocks as standard Ramsey models, they
also fail to match the behavior of returns observed in the data.

Our work also builds on papers by Bohn (1990) and Bhandari et al. (2017a)
who showed how the insights from portfolio theory extend to the prescriptions about
optimal security trading by the government, and emphasized the role of covariances
of the securities available to the government and shocks. We adapt general theoretical
insights of those papers to study the optimal maturity structure of government debt.

We also build on a large empirical and theoretical literature in macro and finance
about the behavior of debt returns. That literature has documented that returns in
the data are quite volatile, not very correlated with standard macroeconomic shocks,
and features an increasing yield curve. For example Campbell and Shiller (1991),
Campbell (1995), Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009). Sev-
eral authors, such as Piazzesi and Schneider (2006), Bansal and Shaliastovich (2013),
Wachter (2006), and Albuquerque et al. (2016) proposed general equilibrium frame-
works that are consistent with these facts. We extend the findings of this literature to
study the relationship between the returns and the innovations to the present value
of government revenue and expenditure shocks, which our theoretical framework pre-
dicts to be the key measure that determines the optimal debt composition. We also
build on Albuquerque et al. (2016) in constructing a general equilibrium model that
is consistent with the empirical asset pricing patterns.

To the best of our knowledge, we are the first to develop numerical methods
to study incomplete market economies with Epstein-Zin preferences. Karantounias
(2013), an early predecessor to our work, solves the Ramsey problem with Epstein-
Zin preferences when markets are complete. We build on some of his insights, but
our incomplete market economies is substantially more complicated, with several
additional state variables requiring additional computational techniques. To that
end, we extend the techniques developed in Evans (2014) and Bhandari et al. (2017b)
to use perturbation theory to sequentially approximate the optimal Ramsey plan
around the current level of government debt. In doing so we also build on insights
in Guu and Judd (2001) and Devereux and Sutherland (2011) to approximate the
dynamic portfolio problem of the Ramsey planner.

The rest of the paper is organized as follows. In Section 2 we present a simple
Ramsey framework that solves for the approximated optimal government portfolio in

4



closed form. It shows the role that covariances of debt returns play in determining
the optimal debt composition. Section 3 presents the empirical facts about those co-
variances. Section 4 presents our general framework and numerical solution methods.
Section 5 shows the results.

2 Theoretical motivation

In this section we used a simplified model to highlight the key considerations that
shape the optimal portfolio problem of a canonical Ramsey planner. Time is discrete,
and the horizon is infinite. The uncertainty in this economy stems from a exogenous
Markov process st with shocks taking values in a finite set. Let st = (s0, s1, . . . , st)

denote the finite history of shocks up until time t. The economy is populated by
a representative agent which consumes ct(st), works lt(st) hours and pays a linear
income tax rate τt(st). For the remainder of this paper we will use the notation xt to
denote the random variable xt(st). The resource constraint for this economy is given
by

ct + gt = θtlt. (1)

The representative household and the government trade K securities available in
zero net supply. Security k, when bought at time t − 1, has price qkt−1 and gives a
payoff pkt at time t. All securities are assumed to be exponentially decaying rates δk.
Let −Bk

t be the asset holdings of the government of security k at time t. We use a
convention that positive values of Bk

t corresponds to net liability for the government.
In later sections of the paper they will denote debts of different maturities. The
government budget constraint is given by

gt +
∑
k

(
pkt + (1− δk) qkt

)
Bk
t−1 = τtθtlt +

∑
k

qkt Bk
t . (2)

Denote holding period returns as Rk
t ≡

pt+(1−δk)qt
qt−1

. We use boldface letters to denote
the vector corresponding to the k securities, e.g. Rt denoting the vector of returns
R1
t ,...,RK

t .
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Households rank consumption and labor plans according to a utility function

E0

∞∑
t=0

βtηt

[
ct

1−ρ

1− ρ
− θ1−ρt

l1+φt

1 + φ

]
(3)

where ηt is the preference shock. The shock process follows
ln θt

θt−1

ln gt
θt

pt

ηt

 =


θ̄

ḡ

1

1

+ σ


εθ,t

εg,t

εp,t

εη,t

 ≡ µ+ σst,

where σ is a positive scalar, µ is a (K + 3)× 1 vector and vector st represents shocks
that are mean zero and i.i.d. over time but can be arbitrarily correlated to each other.

Our choice of preference, shocks processes and asset structure is chosen to simplify
the exposition. The analysis of any finitely lived security extends without changes but
requires more involved notion. Our insights extend to more general preference speci-
fications and shock processes, in particular like those we consider in the quantitative
section of the paper.

We study the classical Ramsey problem of choosing the optimal sequences of
taxes and debt portfolios {τt,Bt}t to finance the stochastic process {gt}t so that the
resulting competitive equilibrium maximizes (3). Since our economy is growing, it
will be convenient to renormalize several period t variables by the TFP shock θt to
make the economy stationary. Let ĉt = ct/θt, ĝt = gt/θt and B̂k

t ≡ qkt Bk
t /θt. Here B̂k

t

corresponds to the market value of government holdings of security k normalized by
θt. Then our constraints can be re-written as

ĝt + e−gθ,t
∑
k

Rk
t B̂

k
t−1 = τtlt + B̂t, (4)

B̂t =
∑
k

B̂k
t , (5)

ĉt + ĝt = lt, (6)

where gθ,t = θ̄ + σεθ,t. Finally, let the normalized primary deficit be defined as
X̂t ≡ ĝt − τtlt.
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2.1 Quasi-linear preferences

The analysis is particular straightforward if we assume quasilinear preferences, ρ = 0,
and no preference shocks, ηt = 1 for all t. In this case Rk

t follows stochastic process
that is purely determined by the stochastic process for pkt and is independent of other
variables. The intra-temporal optimality condition of the household is

lφt = 1− τt. (7)

Therefore,
{
ĉt, lt, τt, B̂t, B̂t

}
t
is a competitive equilibrium if and only if they satisfy

constraints (4) - (7). The optimal Ramsey problem can then be solved recursively as

V (B̂_) = max
ĉ,l,B̂

Ee−gθ(s)
{
l(s)− l(s)1+φ

1 + φ
+ βV (B̂(s))

}
subject to

e−gθ(s)
∑
k

B̂kRk(s) + l(s)1+φ = l(s)− ĝ(s) + B̂(s),

∑
k

B̂k = B̂_,

where we used to the feasibility constraint to substitute for ĉ.
This problem can be analyzed along the lines we developed in Bhandari et al.

(2017a). In particular we consider second order Taylor expansion of the policy func-
tions to this Bellman equation with respect to σ and assume that the discount factor
is small in a sense that 1−β is of the same order as σ. This approach yields tractable
linear approximations of policy functions that allows closed form characterization of
the optimal portfolio. Let Xτ,t = gt − θtτ l(τ) be the primarily deficit at a given tax
rate τ , PVt(Xτ ) be the present discount value of primary deficits,

PVt(Xτ ) = Et
∑
j

βjXτ,t+j,

and let P̂ V t(Xτ ) ≡ PVt(Xτ )/θt−1. We use C [R,R] to denote the unconditional
covariance matrix of the stochastic process for returns Rt and C [R, PV (Xτ )] the
vector of covariances of Rt with PVt(Xτ ).
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Proposition 1. The optimal debt portfolio Bt−1 = θt−1B̂t−1 is given by

B̂t−1 = −C [R,R]−1C
[
R, P̂ V (Xτ )

]
+

C [R,R]−1 1

1ᵀC [R,R]−1 1

(
B̂t−1 + 1ᵀC [R,R]−1C

[
R, P̂ V (Xτ )

])
+O(σ, (1−β))

(8)

where τ satisfies Bt−1 = βEt−1[PVt(Xτ )].

The easiest way to understanding this proposition is to consider the variance
minimization problem at t− 1 given total debt Bt−1

min
B

Vart−1

[∑
k

BkRk
t + PVt(Xτ )

]

subject to

∑
k

Bk = Bt−1,

where τ satisfies Bt−1 = βPVt(Xτ ). Denote the solution to this variance minimization
problem by B∗t−1. The next proposition shows that the optimal portfolio characterized
in Proposition 1 is approximately given by B∗t−1.

Proposition 2. The optimal debt portfolio satisfies

Bt−1 = B∗t−1 +O(σ, (1− β)).

Thus, Proposition 1 shows that the optimal Ramsey portfolio is chosen so as to
minimize risk, i.e. to choose the portfolio composition to maximally offset fluctuations
in the present discounted value of primary deficits at a constant tax rate. The intuition
for this result is as follows. The government would like to minimize the fluctuations
in the deadweight loss of taxes and for this reason would like to keep the tax rate
as smooth as possible. Shocks to government revenues and expenditures, and hence
shocks to the present value of primary deficits, hinder government’s ability to satisfy
its budget constraint at constant tax rate. The optimal portfolio is chosen so as to
minimize the effect of shocks.

An important insight that emerges from equation (8) is that co-movements of
returns with the shocks to government expenditures and revenues are the critical
parameters that determines the optimal composition of the Ramsey portfolio. To
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illustrate this, we consider a simple example, which will also prove helpful in later
sections to understand the optimal portfolios that emerge in the models of Angeletos
(2002) and Buera and Nicolini (2004) and to contrast with our results. Suppose
the government has access to two assets with returns R1

t and R2
t . For simplicity of

exposition, assume R1
t = 1

β
(1 + α1P̂ V t(Xτ )) and R2

t = 1
β
(1 + α2P̂ V t(Xτ ) + εt) where

α2 < α1 ≤ 0 and εt is orthogonal to P̂ V t(Xτ ).1 From Proposition 1, the optimal
portfolio will be given by

B̂t−1 =

[
−1/α1

0

]
+

 α2
2σ

2
PV −α1α2σ2

PV +σ2
ε

(α1−α2)2σ2
PV +σ2

ε
α2
1σ

2
PV −α1α2σ2

PV

(α1−α2)2σ2
PV

 (B̂t−1 + 1/α1),

where σ2
ε is the variance of εt and σ2

PV is the variance of P̂ V t(Xτ ). Consider two
extreme cases. First, suppose that the returns are highly correlated with the shocks
to the primary surplus, in the sense that σ2

ε ≈ 0. In this case the optimal portfolio is
given by

B̂ ≈

[
α2

α1−α2
B̂_− 1

α1−α2

α1

α2−α1
B̂_− 1

α2−α1

]
.

As α2 → 0, this portfolio diverges to

[
−∞
∞

]
. This example is constructed to capture

the key mechanism behind findings of Buera and Nicolini (2004) that the optimal
government porfolio of the government issues huge amount of the long debt (tens or
even hundreds times of GDP) and take the offsetting short position in the short-term
debt. In our example securities 1 and 2 approximate the behavior of the short-term
and long-term bond in their economy. As we discuss in more details in Section
4, standard calibrations of Ramsey problems imply that bond returns are highly
correlated with government shocks (σ2

ε ≈ 0), the holding period returns on long-term
bonds decline in response to a temporary adverse shock by more than returns on
short-term bonds (α2 < α1 ≤ 0) but bond returns overall are very smooth given the
size of standard business cycle shocks (α2 is close to zero). Given such return process,
the government can hedge all of its shocks to primary deficits, but to do so requires
taking a huge positive position in long debt and a negative position in the short debt.
Such highly levered holding of the long bond amplifies its small negative co-movement
with the shocks to primary deficit and provides substantial insurance.

1This will be the case if R1
t = 1

β (1 + a1εg,t + a2εθ,t) and R2
t = 1

β (1 + α(a1εg,t + a2εθ,t) + εt).
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Alternatively, consider the case when much of the variability of assets returns is
not driven by the shocks to the primary deficit, in the sense that σ2

ε as large. As

σ2
ε → ∞, the optimal portfolio converges to

[
B̂t−1

0

]
. Fluctuations in returns that

are orthogonal to the shocks to the primary deficit makes holding such security risky
and the optimal portfolio in the economies with high σ2

ε looks very different from
those with low σ2

ε . Thus the correlations of returns with primary deficit is the critical
ingredient in determining the optimal portfolio.

2.2 Recursive Ramsey problem with isoelastic preferences

The discuss above extends to economies with risk-averse consumers. Consider now
general isoelastic preferences (3). The implementability constraint can be written as

e−gθ,t

(∑
k

ĉ−ρt ηt

[
pkt + (1− δk)qkt

βEt−1ηte−ρgθ,t ĉ−ρt
[
pkt + (1− δk)qkt

]] ĉ−ρt−1ηt−1B̂k
t−1

)
+ ηtl

1+φ
t

= ĉ−ρt ηtB̂t + ĉ1−ρt ηt.

Now substitute for Bkt = c−ρt ηtB̂
k
t , B̂t = c−ρt ηtB̂t ,Rk

t−1,t = ĉ−ρt ηt

[
pkt+(1−δk)qkt

βEt−1e
−ρgθ,tηtĉ

−ρ
t [pkt+(1−δk)qkt ]

]
c−ρt−1

and Xt = ηtl
1+φ
t − ĉ1−ρt ηt so that we can write these conditions as

e−gθ,t

(∑
k

Rk
t−1,tB̂kt+1

)
+ Xt = B̂t,∑

k

B̂kt = B̂t,

q̃kt = βEtηt+1e
−ρgθ,t+1 ĉ−ρt+1

[
pkt+1 + (1− δk)qkt+1

]
,

Rk
t−1,t =

Uc,tp
k
t + (1− δk)q̃kt
q̃kt−1

.

Let This problem is recursive in
(
B̂t−1, q̃t−1

)
, where q̃t =

{
q̃kt
}
k
. We can simplify it

further if we observe that given a tax rate τ , consumption, ĉτ (s) , and labor, lτ (s), in
any state s are pinned down by

ĉ(s) + g(s) = l(s),
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ĉ(s)−ρ (1− τ(s)) = l(s)φ.

Thus, the Ramsey problem can be written recursively as

max
q̃(s),B̂(s)τ(s),B̂

V (B̂_, q̃_) = Ee[(1−ρ)gθ(s)]
{
η(s)

(
ĉτ(s)(s)

1−ρ

1− ρ
−
lτ(s)(s)

1+φ

1 + φ

)
+ βV (B̂(s), q̃(s))

}
subject to

Rk
τ(s)(s) =

[
η(s)ĉτ(s)(s)

−ρpk(s) + (1− δk)q̃k(s)
]

q̃k_
,

q̃k_ = βE
[
e−ρgθ(s)(η(s)ĉτ(s)(s)

−ρpk(s) + (1− δk)q̃k(s))
]
, (9)

∑
k

e−gθ(s)Rk
τ(s)(s)B̂k = −Xτ(s)(s) + B̂_ for s, s_, (10)

B̂_ =
∑
k

B̂k.

Using the same approximation techniques as in the previous section we obtain

Proposition 3. The optimal debt portfolio Bt−1 = θt−1B̂t−1 is given by

B̂t−1 = −C [Rτ ,Rτ ]−1C [Rτ , PV (Xτ )]

+
C [Rτ ,Rτ ]−1 1

1ᵀC [Rτ ,Rτ ]−1 1

(
B̂t−1 + 1ᵀC [Rτ ,Rτ ]−1C

[
Rτ , P̂ V (Xτ )

])
+O(σ, (1− β)) (11)

where τ satisfies Bt−1 = βEt−1(PVt(Xτ )).

Just like the optimal portfolio in the quasi-linear economy, the optimal port-
folio θt−1B̂t−1 minimizes the variance in the present value of the effective shocks,
Vart−1

[∑
k BkRk

t + PVt(Xτ )
]
subject to

∑
k Bk = Bt−1. The adjective “effective”

needs to be used (and all variables in the formula adjusted by the marginal utility of
consumption) because the marginal cost of public funds now vary with the state of
the economy. This cost of raising revenues is proportional to the marginal utility of
consumption, necessitating the adjustment. Observe, however, that the main insights
of Section 2.1 continue to hold when consumers are risk-averse: the optimal portfolio
of the government minimizes fluctuations in the present value of primary deficits and
portfolio’s composition depends critically on the covariances of securities returns with
shocks to the deficits.
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3 Bond return data

In this section we use US bond market data and document patterns of holding period
returns on bonds of several maturities. As discussed in the previous section, the
covariance properties of the returns with shocks that drive fiscal needs are key in
determining the optimal portfolio. We will use the moments documented in this
section as an input to the quantitative exercise where we numerically compute the
optimal portfolio in a calibrated economy.

Our baseline results are compiled using bond prices data from the Fama-Bliss
discount bond series in Center for Research in Security Prices (CRSP) database. This
series records prices for artificial discount bonds with one to five years to maturity at
a monthly frequency from 1952. Let qnt be the price of a bond of maturity n years at
beginning of the year t and Pt be the corresponding price level2 We define the annual
real holding period return as

Rn
t,t+1 =

(
qn−1t+1

qnt

)(
Pt
Pt+1

)
.

The holding period returns are plotted in figure I and the covariance matrix of the
returns with output-growth and expenditure/output are tabulated in Table II. We
see that (a) returns are correlated across maturities and (b) mean returns as well as
the volatility of returns are increasing in the length of maturity and (c) returns are
not correlated with output growth. These patterns are also documented and studied
in several other papers such as Campbell (1995) etc.

We next use a simple regression of returns on output growth, primary deficit/output
and inflation to measure the part of the variation in returns that is unrelated to the
fiscal needs.3

logRn
t,t+1 = α0 + αyoutput growth + αg deficits/output + απinflation + εt+1 (12)

The OLS estimates are summarized in table II. We see that across maturities R2

are in the range of 7%− 15% which shows that the orthogonal component in returns
2We use the GDP deflator series from NIPA for Pt
3We include inflation in the regression because in the current version of the paper we study real

bonds and abstract from monetary policy. In this way we hope to get a conservative estimate of how
large is the component of returns that is orthogonal to the government’s fiscal or monetary needs.
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Figure I: Time series for annualized holding period real returns on bonds using Fama-
Bliss data

Maturity mean 1 yr 2 yr 3 yr 4 yr 5 yr exp
/output

output
growth

1 yr 1.64 6.79 8.41 9.68 10.42 10.99 -0.84 0.22
2 yr 2.09 8.41 12.51 15.93 18.28 20.19 -2.08 0.21
3 yr 2.49 9.68 15.93 21.46 25.46 28.76 -3.25 0.34
4 yr 2.70 10.42 18.28 25.46 30.99 35.51 -4.09 0.20
5 yr 2.86 10.99 20.19 28.76 35.51 41.33 -5.10 0.21
exp/output 16.99 0.22 0.21 0.34 0.20 0.21 -0.43 5.32
output growth 3.14 -0.72 -0.13 0.44 1.01 1.58 0.33 -1.87

Table I: Descriptive statistics: means and covariance matrix for annualized holding
period real returns on bonds using Fama-Bliss data
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1 yr 2 yr 3 yr 4 yr 5 yr
constant 5.54 (1.96) 4.66 (2.66) 3.54 (3.43) 2.63 (4.1) 1.58 (4.61)
output growth -0.09 (0.16) -0.07 (0.22) 0.00 (0.29) 0.00 (0.34) 0.03 (0.39)
deficits/ output -0.31 (0.17) -0.09 (0.22) 0.12 (0.3) 0.30 (0.34) 0.05 (0.40)
inflation -0.20 (0.16) -0.47 (0.21) -0.71 (0.27) -0.9 (0.32) -1.11 (0.36)
R2 0.07 0.08 0.11 0.13 0.16

Table II: OLS estimates for regression (12). Standard errors are in parenthesis.

is large. The estimated coefficients on output growth are all statistically insignificant
and except for the one year maturity, the coefficients on deficits/output are also
insignificant. These results are largely consistent with predictability regressions that
appear in Fama and Bliss (1987), Cochrane and Piazzesi (2005), Ludvigson and Ng
(2009). For example, Ludvigson and Ng (2009) use sophisticated dynamic latent
factor methods and extract “macro factors” from a large data set of macro variables
and use them to predict returns. In specifications where they only use the macro
factors they find about 75-80% of the variation in returns is orthogonal to their
macro factors. We read the findings in II and related evidence as suggesting that
variations in returns are largely driven by predictable movements discount rates that
are uncorrelated to macroeconomic aggregates like output growth and deficits.

4 Quantitative analysis

A common choice in RBC literature is to use separable expected utility preferences
with CRRA form. However, it is well known from the finance literature on the “equity
premium puzzle” that for reasonable parameter choices such preferences are not able
to generate high excess returns on risky assets or volatility of these returns across
time with smooth risk free rates (see, for example, Hansen and Singleton (1982);
Mehra and Prescott (1985); Hansen and Jagannathan (1991)). The induced pricing
kernel with CRRA preferences is function of aggregate consumption growth which is
relatively smooth at business cycle frequencies. As we showed in Propositions 1 and 3,
the composition of the optimal Ramsey portfolio crucially depend on the covariance
properties of bond returns. Thus, it is crucial to adopt preference specification that
implies realistic asset pricing properties.

We follow Albuquerque et al. (2016) and adopt their specification of recursive
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Epstein-Zin preferences augmented with the discount factor shocks. As Albuquerque
et al. (2016) show, such a model matches a range of empirical facts about returns on
bonds and equities such as the excess returns for the long bonds, an upward sloping
term structure, variations in the pricing kernel and bond returns that have realistic
covariances with aggregate output.4 While Albuquerque et al. (2016) consider an
endowment economy, we further extend this specification by introducing the disutility
of labor along the lines of Karantounias (2013). Specifically, we use the following
recursion to value stochastic streams of consumption and leisure:

Vt−1 = Et−1
[
W 1−γ
t

] 1
1−γ ,

Wt ≡

(
(1− β)ηt

[
c1−ρt − (1− ρ)θ1−ρt

n1+φ
t

1 + φ

]
+ βV 1−ρ

t

) 1
1−ρ

.

Here ρ measures the inverse of the intertemporal elasticity of substitution and γ

measures risk aversion. A special case of the this specification that sets ρ = γ recovers
the isoelastic form that we used in Section 2.2.

Defining U(c, l) = η
[
c1−ρ

1−ρ − θ
1−ρ n1+φ

1+φ

]
, the first order necessary conditions of the

household problem imply that

Un,t = (1− τt)θtUc,t,

and that assets are priced with by the stochastic discount factor

St+1 ≡ βm
ρ−γ
1−γ
t

Uc,t+1

Uc,t
,

where mt+1 =
V 1−γ
t+1

Et−1V
1−γ
t+1

. Following the previous sections, we construct the normalized

variables ĉt = ct
θt
, ĝt = gt

θt
, Ŵt = Wt

θt
, V̂t = Vt

θt
, B̂t = Bt

θt
, and B̂k

t =
Bkt
θt
.

We assume that the government has access to K consols that pays a riskless
coupon 1 in each period and decay with rates

{
δk
}
k
.Thus, the holding period return

4Other alternatives include Piazzesi and Schneider (2006), Bansal and Shaliastovich (2013) also
estimate models with stochastic volatility and correlated shocks to inflation and consumption growth
with Epstein and Zin (1989) preferences, Wachter (2006) who use habit-persistence as in Campbell
and Cochrane (1999). We conjecture as long as the models are calibrated to match the covariance
matrix of returns, their implications on the optimal portfolios would also be the quantitatively
similar. We plan to expand on this in future work.
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on security k is given Rk
t =

1+(1−δk)qkt
qkt−1

.
After multiplying the budget constraint by Uc,t we obtain the implementability

constraint for the planners problem as

∑
k

e−gθ,tB̂kt−1ηt(ĉ
−ρ
t + (1− δk)q̃kt )

βEt−1
[
m

ρ−γ
1−γ
t e−ρgθ,t(ĉ−ρt + (1− δk)q̃kt )

] = ηtĉ
1−ρ
t − ηtn1+φ

t + B̂t.

Here q̃kt is the marginal utilty weighted price of the geometrically decaying coupon
bond with decay rate δk, which must satisfy

q̃kt−1 = βEt−1
[
m

ρ−γ
1−γ
t e−ρgθ,t(ĉ−ρt + (1− δk)q̃kt )

]
.

The scaled planner’s problem can therefore be written recursively as follows5

V̂t−1(B̂t−1, q̃t−1, ηt) = max
Ŵt,mt,ĉt,nt,q̃t,B̂t−1

Et−1
[(
egθtŴt

)1−γ] 1
1−γ

(13)

subject to

B̂t =
∑
k

e−gθ,tB̂kt−1ηt(ĉ
−ρ
t + (1− δk)q̃kt )

βEt−1
[
m

ρ−γ
1−γ
t e−ρgθ,t(ηtĉ

−ρ
t + (1− δk)q̃kt )

] − ηtĉ1−ρt + ηtn
1+φ
t (14a)

q̃kt−1 = βEt−1
[
m

ρ−γ
1−γ
t e−ρgθ,t(ĉ−ρt + (1− δk)q̃kt )

]
(14b)

mt =

(
egθ,tŴt

)1−γ
Et−1

[(
egθ,tŴt

)1−γ] (14c)

nt = ĉt + ĝt (14d)

Ŵt =

(
(1− β)ηt

[
ĉ1−ρt − (1− ρ)

n1+φt

1 + φ

]
+ βV̂t(B̂t, q̃t, ηt+1)

1−ρ

) 1
1−ρ

(14e)

B̂t−1 =
∑
k

B̂kt−1 (14f)

log(ηt+1) = ρη log(ηt) + εη,t (14g)

5Following Albuquerque et al. (2016) we assume that the discount factor shock, ηt, is known at
time t− 1.
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In the following section we document the computational techniques we use to solve
this Ramsey planner’s problem.

4.1 Computational Method

Solving numerically problem 16 is difficult with the conventional numerical techniques
because the state space consists of K endogenous variables. To overcome this curse
of dimensionality to adopt the numerical methods developed in Evans (2014) and
Bhandari et al. (2017b). Here we briefly outline main ideas behind this approach.
Let µt, λt, νt, and ξt be the Lagrange multipliers associated with constraints (14a)-
(14d) respectively. Problem (13) is recursive in the effective debt B̂t−1, the discount
factor shock ηt, and the marginal utility weighted prices of the long maturity bonds
q̃t−1. Following Marcet and Marimon (1994), we replace the vector q̃t−1 with its
co-state λt−1 and search for solutions that are recursive in B̂t−1 , λt ηt. We begin by
the separating variables as:

• zt−1 ≡ {λt−1, ηt},

• yt ≡
{
B̂t, ηt,λt, ĉt, nt,Rt, Ŵt,mt, νt, ξt, µt, V̂t−1, V̂x,t−1, q̃t−1

}
• et ≡

{
Et−1[Rt],Et−1[Rtµt],Et−1[W 1−γ

t ],Et−1[mtνt]
}

• εt ≡ {εθ,t, εg,tεη,t}.

Here, Rk
t = m

ρ−γ
1−γ
t e−ρgθ,t(ηtĉ

−ρ
t +(1−δk)q̃kt ) are the effective payoffs for each asset. We

stack the first order conditions of the Ramsey problem are listed in Appendix A into
the functions f , g and F that satisfy

et−1 = Et−1[f(yt)]. (15a)

g(et−1) = 0. (15b)

F (B̂t−1, zt−1,yt, et−1,yt+1, B̂t−1, σεt) = 0 (15c)

In our problem f is given by the definition of et−1 above, g is given by equation
(28) which are the first order conditions with respect to

{
B̂kt−1

}
k≥2

and F is given

by the remaining equations (20a)-(27). The optimal allocation can be represented by
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functions (y,B)

yt = y(B̂t−1, zt−1, σεt|σ)

B̂t−1 = B(B̂t−1, zt−1|σ)

that solve the system of equations (15).
We approximate (y,B) around B̂t−1 = B̂_and σ = 0 using a second order Taylor

expansion of the form:

y(B̂_, z_, σε|σ) = ȳ(B̂_) + yz(B̂_)(z_− z̄) + yε(B̂_)σε+
1

2

(
yzz(B̂_)(z_− z̄)(z_− z̄)

+ 2yzε(B̂_)(z_− z̄)σε+ yεε(B̂_)σεσε+ yσσ(B̂_)σ2

)
+O(σ3)

(16)

≡ y̌(B_, z_, σεt|σ) +O(σ3)

and

B(B̂_, z_|σ) = B̄(B̂_) + Bz(B̂_)(z_− z̄) + Bσ(B̂_)σ +O(σ2)

≡ B̌(B̂_, z_|σ) +O(σ2). (17)

Here ȳ(B̂_) satisfies ȳ = y(B̂_, z̄(B̂_), 0|0), z̄(B̂_) = Izy ȳ(B̂_) where Izy is a matrix
that selects variables z from the vector y, and B̄(B̂_) = limσ→0 B(B̂_, z̄(B̂_)|σ).
The remaining coefficients are derivatives of y and B evaluated at the non-stochastic
steady state associated with B̂t−1 = B̂_and σ = 0 .

The immediate hurdle in applying a perturbation method for problem with portfo-
lio choice is that at σ = 0, all assets earn the same returns and so B̄(B̂_) is not pinned
down when solving for non stochastic steady state. Furthermore all the derivative
terms in expansion (16) and (17) are evaluated at B̂t−1 = B̂_and σ = 0 and implicitly
depend on the choice of the steady state portfolio B̄(B̂_). To see this notice that
non-stochastic steady state Ramsey plan, ȳ(B̂_), can be found by solving the system
of equations

F (B̂_, Izy ȳ, f(ȳ), ȳ, B̂, 0) = 0 (18)

for any choice of B̂, and the function g given by (15b) will be identically 0 when
σ = 0.
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In the appendix, we show that with sufficient smoothness of y and B, that B̄(B̂_)

must solve the non-linear equation

geE [fyy(yεε, yεε)] = 0, (19)

where yε implicitly depends on the choice of B̄. A special feature of (19) is that only
the first order derivatives of y are required to determine B̄. In the same spirit we
can show a corresponding result for Bz and Bσ that says that they satisfy a linear
equation which depends on only second order derivatives of y.

Using these insights we proceed along the following steps

1. Given current scaled effective debt, B̂t−1 and states zt−1, obtain ȳ and B̄ by
solving (18) and (19).

2. Use total differentiation of equations (15)around (ȳ, B̄) to solve for the remain-
ing derivatives in (16) and (17) following the Appendix.

3. Use expansions in (16) and (17) to simulate the policy rules for one period and
obtain yt.

4. Restart from 1 with a new level of effective debt B̂t and states zt.

A sample path for the optimal Ramsey allocation is then simulated by repeating steps
1-4 until a desired simulation length has been reached.

5 Quantitative analysis

5.1 Calibration

We now turn to the quantitative analysis of the optimal portfolio in a calibrated
economy. Our strategy is to choose parameters that describe preferences and shocks
so that our model economy with a tax policy τt = τ̄ produces moments that match the
patterns in returns that we outlined in the previous section along with other business
cycle facts for the US. After estimating these parameters we compute the Ramsey
allocation.6

6We have experimented with several tax rules, for example specifications where tax rates depend
on output growth, expenditures and debt levels. We estimated these specifications using observed
average marginal tax rates as in Barro and Redlick (2011). Our parameter estimates for preferences
and shocks are not too sensitive to what tax rules we use.
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The stochastic process for the shocks is parameterized as

log
θt
θt−1

= gθ,t, log
gt
θt

= ĝt

and  gθ,t

ĝt

log ηt

 = µ+ A

 gθ,t−1

ĝt−1

log ηt−1

+ Σ

εθ,tεg,t

εη,t


We restrict A so that gθ,t and ĝt are serially uncorrelated after conditioning on
{ηj}tj=0.7 We use K = 2 and set δ2 = 0.2 capturing a maturity of the 5 year bond.8

We estimate β, γ, ρ, φ along with µ,A,Σ using a simulated method of moments
procedure. Our target moments are listed in table IV. For a given choice of parameters
we simulate 10,000 samples of length 50 and compute a distance metric that weights
all the moments equally, with the caveat that deviations of means and standard
deviations from the targets are measured as percent deviation. Our model fit is
described in “Model” column of table IV. The underlying estimates are in table III.

Our estimation favors the Epstein-Zin specification with fairly persistent and large
discount rate shocks. We find a large risk aversion around 23 and IES of 3. The model
replicates excess returns on long bond and correlation patterns in returns and output
growth, expenditures.

5.2 Results

In this section we describe the optimal portfolio management for the government.
There are two central findings: (a) the optimal portfolio is long in both the short
maturity asset and the long long maturity asset with about equal shares, and (b)
there is little re-balancing of the portfolio in response to shocks.

Figure IV plots the portfolio holdings in the short and the long maturity bond
respectively as a function of the debt to gdp ratio. The share of the total debt in the

7This implies that µ =

µθḡ
0

, A =

0 0 0
0 0 0
0 0 ρη

 and Σ =

 σθ 0 σηθ
0 σg σηg
σηθ σηg ση


8We chose a two bond specification as this is the most transparent model of maturity management.

5 year bonds are chosen as these are the longest bonds for which Fama-Bliss data is available. Our
numerical methods extend straightforwardly to the porfolio problems with more bonds, or with
bonds of finite maturity.
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Parameters Values
Preferences:
β 0.98
φ 2
ρ, γ 0.29, 23.22

Shocks:
ḡ, σg 0.4, 0.023
µθσθ 0.015, 0.02
ρη,ση 0.98, 0.03
σηg,σηθ 0.21,0.03

Table III: Estimated parameters

Holding period returns Data Model Macro quantities Data Model

mean 1 yr bond 1.63% 1.39% mean output growth 1.50% 1.50%
mean 5 yr bond 2.85% 2.40% std. output growth 2.31% 2.32%
std 1 year bond 2.61% 3.14% mean exp. output ratio 17.00% 16.00%
std. 5 year bond 6.42% 4.00% std govt. exp growth 4.17% 4.11%
corr 1yr, 5yr 0.66 0.80 corr output, govt. exp −0.06 0.00
corr 1/5 yr, output growth 0.04,0.02 0.02,0.03 Frisch elasticity − 0.5
corr 1/5 yr, govt. exp growth 0.11,0.15 0.09,0.13

Table IV: Targeted moments and model fit
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Figure II: Percentage of total debt held in the short maturity bond and the long
maturity bond.

long maturity bond ranges between 46% and 58% as we vary debt between 30% and
120% of output.

The key intuition for why we get such a portfolio comes from the workings of
formula 11. The returns induced by the optimal allocations retain the patterns of
returns in the data, i.e., they are volatile and uncorrelated with shocks that drive the
primary deficits. A portfolio with large holdings especially in the long maturity has
an disadvantage of exposing the governments budget constraint to large fluctuations
in returns induced by discount factor shocks. Hence it is optimal to hold moder-
ate positions. Furthermore, the returns on the long maturity bonds are negatively
correlated with marginal utility of consumption. This implies that the volatility of
effective returns is lower than the volatility of returns for the long bond and larger
for the short bond. Through the lens of effective returns, the two securities are more
alike in their variability and this feature is reflected in the approximately 50 − 50
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share that the optimal portfolio displays.
Next we turn to how the portfolios are re-balanced in response to shocks. In

figure III we plot the impulse response of total debt, share of the total debt in the
long maturity and tax rate to a one standard deviation shock to εθ, εgand εη. We see
that the portfolio is fairly stable in response to all these shocks. For example, after a
2% increase productivity growth, the government reduces debt to gdp ratio by 1.5%,
with almost no change in the portfolio structure. Secondly, for all shocks tax rates are
fairly smooth but not constant. This is because with two assets, the planner cannot
implement the complete markets allocation.

5.2.1 Comparison to conventional RBC models

The stochastic process for productivity and expenditure shocks in our model as well
as parameters of the Frisch elasticity of labor supply and the IES are very similar to
those typically used in the Ramsey models, such as Chari et al. (1994), Buera and
Nicolini (2004), Schmitt-Grohe and Uribe (2004), Farhi (2010), Faraglia et al. (2012).
The crucial difference is that in our model risk aversion is not equal to the IES, and
a substantial fluctuation in asset returns are driven by shocks orthogonal to short
run productivity and expenditure shocks. The conventional parameterizations can
be captured in our model by setting γ = ρ and ση = 0. In this section we contrast
our findings with those obtained under such calibrations. We refer to our model
specification as the “baseline calibration” and a version in which we set γ = ρ = 2 and
ση = 0 as the “RBC calibration”. This will also help to explain why our conclusions
about portfolio management differ from those in Buera and Nicolini (2004), Faraglia
et al. (2012) or Debortoli et al. (2016 forthcoming).

In figure IV, we overlay the optimal portfolio as a function of the debt to gdp ratio
for the RBC calibration on top of the graph for the baseline calibration. The optimal
portfolio now is about 10 to 20 times larger with large long positions in the 5 yr bond
and offsetting short positions in the one year bond. In figure V we plot the impulse
responses for the RBC calibration and compare them to the baseline calibration. The
top panel of figure V shows that in response to a 2% increase in productivity, the
response of total debt and tax rates is similar across both settings but the response
of the portfolio holdings are about 10 times larger in the RBC calibration.

The reason behind the dramatic differences in portfolio positions can be inferred
from table V where we compare the covariance matrix of effective returns and the
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Figure III: Impulse response functions for baseline calibration for a one standard
deviation shock to εθ, εg, εη respectively. The units on the y-axis are in percentage
points.
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Baseline Calibration short
bond

long
bond

deficits

short bond 75.01 69.59 6.58
long bond 69.59 71.07 3.49
deficits 6.58 3.49 20.12

RBC
Calibration

short
bond

long
bond

deficits

short bond 1.01 0.24 4.22
long bond 0.24 0.05 0.97
deficits 4.22 0.97 42.83

Table V: Covariance matrix of effective returns and innovations to present value of
effective primary deficits

present value of effective deficits across both calibrations. Compared to the baseline
calibration, the RBC calibration features both a lower volatility of effective returns
and a much greater correlation of effective returns with innovations to the present
value of effective deficits. This higher correlation provides the planner a much greater
ability to hedge innovations to the present value of deficits. For instance, in figure V,
the volatility of tax rates and debt is much lower in the RBC calibration relative to
the baseline calibration. Combined with low volatility of returns, the RBC planner
necessarily has to take much larger portfolio positions in order to achieve this hedging.

6 Conclusion

In this paper we revisit the predictions of Ramsey models for optimal management
of government portfolios. For a range of settings, we show that the covaraince of
marginal utility adjusted or effective returns with primary deficits is a key determinant
of the portfolio structure. Using US data on bond prices, we document that holding
period returns on bonds are volatile and have low correlation with macro aggregates
like output growth, primary deficits etc. We adopt the lessons from the asset pricing
literature and use recursive preference and richer shocks processes with the goal of
studying optimal policy in a setting that is consistent with observed returns. We find
that the optimal portfolio loads evenly on short and long maturities and is fairly stable
with respect to business cycle shocks. A byproduct of our analysis is a computational
method allows for fast and reliable solutions for Ramsey models with arbitrarily rich
asset markets.

Our point of departure is a body of work that dealt with this topic in canoni-
cal Real Business Cycle type settings which feature expected utility preferences and
exogenous fluctuations in productivity or government purchases. A common pre-
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scription from these models is for the government to issue large amounts of debt in
the long maturities with offsetting positions in the shorter maturities. Furthermore,
these models also suggest that the government should actively re-balance its port-
folios. We show that the failure of RBC models to match bond returns and more
generally dynamics of risk premia is exactly what drives their implications about
portfolio management.

A natural extension to our exercise is to allow for inflation and study joint portfolio
and monetary policy in the direction of Lustig et al. (2008). We leave this for future
work.
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A First Order Conditions of The Ramsey Problem

In this appendix we document the first order conditions of the Ramsey problem.
Define U(ĉt, nt) = ηt

[
ĉt

1−ρ

1−ρ −
n1+φ
t

1+φ

]
and its respective derivatives by Ûc,t, Ûn,t, Ûcc,t,

and Ûnn,t. We begin by documenting the following derivatives of Ŵt with respect to
ĉt, nt, B̂t, and q̃t:

Ŵc,t = (1− β)ηtŴ
−ρ
t Ûc,t

Ŵn,t = −(1− β)ηtŴ
−ρ
t Ûn,t

ŴB,t = βŴ−ρ
t V̂ −ρt V̂B,t

Ŵq,t = βŴ−ρ
t V̂ −ρt V̂q,t.

After multiplying the implementability constraint of the Ramsey problem by e(1−ρ)gθ,tm
ρ−γ
1−γ
t

and defining R1
t = m

ρ−γ
1−γ
t e−ρgθ,tÛc,t and Rk

t = m
ρ−γ
1−γ
t e−ρgθ,t(Ûc,t + (1− δk)q̃kt ) for k ≥ 2

the recursive version of the Ramsey problem becomes

V̂t−1(B̂t−1, q̃t−1, ηt) = max
Ŵt,mt,ĉt,nt,q̃t,B̂t,B̂t−1

Et−1
[(
egθtŴt

)1−γ] 1
1−γ

subject to

B̂te(1−ρ)gθ,tm
ρ−γ
1−γ
t =

(B̂t−1 −
∑

k≥2 B̂kt−1)R1
t

βEt−1 [R1
t ]

+
∑
k≥2

B̂kt−1Rk
t

βEt−1
[
Rk
t

] − (ĉtÛc,t + ntÛn,t)e
(1−ρ)gθ,tm

ρ−γ
1−γ
t

(20a)

q̃kt−1 = βEt−1
[
Rk
t

]
(20b)

mt =

(
egθ,tŴt

)1−γ
Et−1

[(
egθ,tŴt

)1−γ] (20c)

nt = ĉt + ĝt (20d)

Ŵt =

(
(1− β)ηt

[
ĉ1−ρt − (1− ρ)

n1+φ
t

1 + φ

]
+ βV̂t(B̂t, q̃t, ηt+1)

1−ρ

) 1
1−ρ

(20e)

log(ηt+1) = ρη log(ηt) + εη,t (20f)
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Letting µt, λt−1, νt, and ξt be the multipliers of constraints (20a)-(20d) respec-
tively, the envolope conditions for the planner’s problem imply

V̂B,t−1 =
Et−1 [R1

tµt]

βEt−1 [R1
t ]

(21)

V̂q̃,t−1 = −λt−1. (22)

The first order conditions with respect to B̂t, ĉt, nt, q̃t, and mt are then given by

e(1−γ)gθ,tV̂ γ
t−1Ŵ

−γ
t ŴB,t −m

ρ−γ
1−γ
t e(1−ρ)gθ,tµt +

(1− γ)e(1−γ)gθ,tŴ−γ
t ŴB,t

Et−1
[(
egθ,tŴt

)1−γ] (νt − Et−1[mtνt]) = 0

(23)

e(1−γ)gθ,tV̂ γ
t−1Ŵ

−γ
t Ŵc,t +

(1− γ)e(1−γ)gθ,tŴ−γ
t Ŵc,t

Et−1
[(
egθ,tŴt

)1−γ] (νt − Et−1[mtνt])

+

(
(B̂t−1 −

∑
k≥2 B̂kt−1)R1

c,t

βEt−1 [R1
t ]

+
∑
k≥2

B̂kt−1Rk
c,t

βEt−1[Rk
t ]

)
(µt − βV̂B,t−1)

−(ĉtÛcc,t + Ûc,t)e
(1−ρ)gθ,tm

ρ−γ
1−γ
t µt + β

∑
k≥2

λkt−1Rk
c,t − ξt = 0

(24)

e(1−γ)gθ,tV̂ γ
t−1Ŵ

−γ
t Ŵn,t − (ntÛnn,t + Ûn,t)e

(1−ρ)gθ,tm
ρ−γ
1−γ
t µt + ξt = 0

(25)

e(1−γ)gθ,tV̂ γ
t−1Ŵ

−γ
t Ŵqk,t +

(1− γ)e(1−γ)gθ,tŴ−γ
t Ŵqk,t

Et−1
[(
egθ,tŴt

)1−γ] (νt − Et−1[mtνt])

+
B̂kt−1Rk

qk,t

βEt−1[Rk
t ]

(µt − βV̂B,t−1) + βλkt−1Rk
qk,t = 0

(26)

−

(
(B̂t−1 −

∑
k≥2 B̂kt−1)R1

m,t

βEt−1 [R1
t ]

+
∑
k≥2

B̂kt−1Rk
m,t

βEt−1
[
Rk
t

]) βV̂B,t−1 +
∑
k≥2

βRk
m,tλ

k
t−1 − νt = 0

(27)
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while the first order conditions with respect to the portfolio choice B̂t−1 are

Et−1
[
Rk
tµt
]

Et−1
[
Rk
t

] − Et−1 [R1
tµt]

Et−1 [R1
t ]

= 0. (28)
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