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Abstract

This paper demonstrates that the Modigliani Miller Theorem on capital

structure does in general not apply to banks when faced with endogenous liq-

uidity risk in form of bank runs and asset illiquidity. The Modigliani Miller

Theorem states that under certain assumptions, �rms with di�erent capital

structure must have same values if they have identical return distributions

(risk class). This paper shows, under endogenous liquidity risk the bank's risk

class changes in debt ratio and coupons demanded by depositors such that the

Modigliani Miller Theorem can in general not apply when repricing of risk in

form of higher coupons is taken into account. In equilibrium, bank value is

non-monotone in capital structure. In particular, only the all equity �nanced

bank achieves the highest risk class.
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1 Motivation

We demonstrate that the Modigliani Miller Theorem (Modigliani and Miller, 1958,

1963) does in general not apply to banks which invest in illiquid assets and face

endogenous liquidity risk in form of bank runs. Our results hold with or without

deposit insurance. The Modigliani Miller Theorem states that in a su�ciently fric-

tionless market1 the capital structure of a �rm (here bank) does not a�ect the �rm's

value. The theorem plays a prominent role today in the debate on bank capital

regulation (Hellwig, 2010; Hanson et al., 2011; Admati et al., 2013; Myerson, 2014),

since according to the Theorem more equity �nancing imposed by a regulator is

socially not costly. Asset illiquidity implies costly bankruptcy. The result, that

the Modigliani Miller Theorem does not hold under costly bankruptcy is know in

the literature. Still, the connection of the theorem to the literature on endogenous

liquidity risk has to the best of our knowledge not been explored yet which is the

substance of this paper.

The original Modigliani Miller Theorem is proven via a no arbitrage argument

by selecting two �rms with distinct capital structures, but of the same risk class and

by showing that their values need to be equal, otherwise arbitrage exists. A risk

class contains �rms with perfectly correlated returns. The derivation of the result

proceeds by showing how private investors can replicate �rm capital structures by

either purchasing shares of the levered company, or by buying shares of an all equity

�nanced �rm and borrowing privately. Since return patterns of both �rms across

states are equal by assumption, di�erent values of the according replicating portfolios

would constitute an arbitrage opportunity. Consequently, in competitive, frictionless

markets �rms of same risk classes have to have same values. The concept of risk

classes is important since the no arbitrage proof of the Modigliani Miller Theorem

crucially requires that the �rms considered are members of the same class. If a

change in �rm capital structure causes a shift in risk class, returns from investment

di�er for some states such that in fact the �rm becomes more or less valuable which

alters her costs of capital.

Can the capital structure of the bank a�ect the total return distribution from

investment (risk class) if the bank stays invested in the same asset? One main take-

away from the �nancial crises 2007-2009 is that returns from investment are only

partially characterized by asset return distributions. A full characterization entails

continuation value from investment (asset returns) for buy and hold, liquidation

value under premature sales and a bankruptcy state or cut-o� state, at which the

1No corporate taxation, symmetric information, no bankruptcy, complete capital markets, in-
dividuals can borrow at the same rate as �rms.
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�rm switches from liquidation to continuation. Total state contingent return from

investment equals liquidation value of assets if the bank goes bankrupt, or equals

asset return if investment is continued. When assets are illiquid, liquidation value

in general di�ers from continuation value which results in a jump in the return

distribution at the bankruptcy state and a deadweight loss. In particular, when liq-

uidation is not at fair value (continuation value), the bank's risk class depends on the

bankruptcy state. Banks which invest in same assets but have distinct bankruptcy

states cannot have perfectly correlated returns and thus belong to di�erent risk

classes. While there exist extensions of Modigliani Miller to the case of bankruptcy,

(Stiglitz, 1969; Merton, 1977; Hellwig, 1981) these papers assume liquidation at fair

value (no bankruptcy cost). As Baxter (1967) however already points out, when

taking into account bankruptcy costs the value of the �rm becomes dependent on

capital structure since leverage alters the �rm's return distribution, see also Kraus

and Litzenberger (1973), Scott Jr (1976), Kim (1978) and Myers (1984).

This paper returns to Baxter's argument and considers bank values when as-

set liquidation is endogenous and costly. As main contribution of the paper, we

characterize bank risk classes and show that capital structure alters risk classes by

changing endogenous liquidity risk of the bank. More debt makes the bank more

prone to runs which shifts her bankruptcy state. Going one step further, by draw-

ing on the literature on endogenous liquidity risk, we show that bank risk classes

also depend on coupons paid to depositors. Interest rate payments are thus more

than just transfers since they change the bankruptcy state by altering incentives to

roll over debt. The underlying market structure determines the equilibrium change

of coupons demanded by depositors and thus the shift in bank's risk class as debt

ratio increases since market structure pins down the outside option. In the classic

Modigliani Miller setting, by competitiveness of markets, investors may freely trade

arbitrary units of debt and equity in banks by borrowing at the risk-free rate and

investors' outside option is given by investing in equity and debt of a di�erent �rm

with same return patterns but distinct capital structure. In the classic setting how-

ever all debt is risk-free such that investments in debt of di�erent �rms are perfect

substitutes and earn the same rate. In particular, investment in debt yields perfectly

correlated returns to investment in storage. Once debt becomes risky and thus pays

di�erent payo�s for some states, investor's option to not participate (storage) then

constitutes a third investment opportunity which cannot be replicated by invest-

ing in equity and debt. To concentrate on demonstrating that bank risk classes

may change in debt and coupons when accounting for endogenous liquidity risk, we

leave the competitive markets framework and consider a monopolistic bank which
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maximizes equity value where investors invest in debt but have the outside option

of storage. By this assumption, we shut down more complex outside options such

as investing in other bank's debt and equity. Under a monopolistic bank, as debt

increases we contrast the required rise in coupon to maintain depositors' investment

in bank debt to the rise in coupon necessary to keep the bank's risk class constant.

Only if the bank's risk class stays constant the Modigliani Miller Theorem can apply.

Our approach di�ers from the previous literature on the Modigliani Miller Theorem

in that we work in a game theoretic setting, in a monopolistic market, with illiquid

assets (costly bankruptcy) and endogenous liquidity risk.2

In the literature on endogenous liquidity risk in form of debt runs, it is a com-

mon result (Rochet and Vives, 2004; Morris and Shin, 2009; Eisenbach, 2017) that

a bank's short-term debt ratio impacts the critical state (bankruptcy cut-o�) below

which bank runs enforce asset liquidation while holding the asset's return risk �xed.

Empirical evidence con�rms that runs are sensitive to leverage (Schroth et al., 2014).

As debt ratio increases, the critical state goes up, and runs become more likely, by

this increasing the riskiness of debt. For this increase in risk, depositors demand a

compensation in form of higher coupon payments to continue �nancing the bank.

The required increase in coupon to maintain depositors' participation is given by

their marginal rate of substitution since the monopolistic bank3 maximizes equity

value and pays coupons to maintain a utility level equal to depositors' outside option

storage. Again, by a standard result in the literature on endogenous liquidity risk

(Diamond and Dybvig, 1983; Goldstein and Pauzner, 2005; Rochet and Vives, 2004;

Morris and Shin, 2009; Eisenbach, 2017) coupon payments to depositors impact the

roll over threshold as well and thus the bank's risk class. As the long-term coupon

increases, depositors roll over more often and the bankruptcy cut-o� decreases back

towards but not necessarily exactly to the initial level. If the raise in coupon de-

manded by depositors as compensation for the increased debt ratio is such that the

cut-o� state stays at the initial level, the bank's risk class is unchanged despite costly

bankruptcy and the Modigliani Miller Theorem applies, which is in contrast to Bax-

ter (1967) and the classic trade-o� theory by Myers (1984). But this is in general not

the case. Under endogenous liquidity risk, changes in debt ratio and coupon a�ect

depositors' utility always twofold, directly via a change in payo�s and indirectly via

a change in stability (bankruptcy state) since payo�s depend on whether the bank is

2 Eisenbach (2017) shows how such game theoretic settings can be embedded in general equi-
librium frameworks.

3In particular, she sets her debt ratio. By this assumption, we leave the classic Modigliani
Miller competitive markets framework where investors can trade arbitrary amounts in both equity
and debt simultaneously. Instead, investors either invest in the debt contract or do not participate
(storage).
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liquidated or not. Higher promised coupons bene�t depositors only if the bank stays

solvent and can actually pay. Higher debt ratios decrease depositors' payo�s con-

tingent on liquidation since asset liquidation value is shared by more debt investors

who have a claim. Yet, given the bank continues investment, higher debt ratios do

not a�ect depositors' payo�s. The cut-o� state a�ects how much depositors value

higher coupons or disdain higher debt ratios. In particular, the problem of maintain-

ing depositors' participation cannot be considered independently of bank stability

(risk class) since changes in coupon and debt a�ect stability and depositors' util-

ity simultaneously and changes in stability feed back into depositors' utility. If the

bankruptcy cut-o� shifts in debt although depositors are compensated for the extra

risk in form of higher coupons, total risk is altered although risk is priced correctly

and the value of the bank changes. Two banks which invest in the same asset but

have di�erent short-term debt ratios (capital structures) may have distinct values

since the bankruptcy state can both increase or decrease in debt. When grouping

�rms according to their risk class, the Modigliani Miller Theorem only holds within,

but never across risk classes. Since the bank may transition to a di�erent risk class

as short-term debt varies, the sets of �rms of same risk classes may have only count-

ably many elements such that the Modigliani Miller Theorem in general does not

apply.

We divide our analysis into three parts. We �rst consider run-prone banks which

we de�ne as banks that face a liquidity mismatch on their balance sheet such that

debt runs may occur. We show, the critical state below which depositors enforce

asset liquidation by running increases in debt ratio, but decreases in the long-run

coupon on deposits. As the bank raises her debt ratio, the increased risk of runs

leads depositors to demand higher coupons ex ante which in return lowers the risk

of runs. In general, depositors' marginal rate of substitution of interest rate for debt

ratio is not equal to the 'risk-preserving' change in coupon which we de�ne as the

coupon which would keep the bankruptcy state constant. Thus, under a monopolis-

tic bank in equilibrium, the critical state may change in debt ratio which leads to

a shift in the bank's risk class and the Modigliani Miller Theorem does not apply.

Still, we derive a condition under which the value of the bank stays constant in

debt despite asset illiquidity, but show that the condition is generically not satis-

�ed. Otherwise, equilibrium bank value either decreases or increases in short-term

debt. Next, we consider run-proof banks which we de�ne as banks that exhibit no

liquidity mismatch. The riskiness of debt becomes independent of capital structure

and depositors demand no additional compensation in form of higher interest rates
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as debt increases. Yet, depositors withdraw for certain states since the bank's assets

are risky. In order to �nance withdrawals the bank has to liquidate assets. If asset

liquidation is ine�cient, the bank loses value the more assets she needs to liquidate

i.e. the larger her debt ratio. That is, for a run-proof bank the liquidation cut-

o�s are constant in capital but the amount the bank needs to liquidate in certain

states depends on her debt ratio. Again, the change in debt ratio alters the bank's

risk-class, thus Modigliani Miller can never apply to run-proof banks, which is ex-

actly in line with Baxter (1967). In particular, also depositors of run-proof banks

withdraw ine�ciently often such that the bank drops in her risk class. Last, under

complete deposit insurance all run-prone banks are members of the same risk class

and the Modigliani Miller Theorem applies within this particular class. The result

holds since under complete insurance no depositor withdraws and the bank never

liquidates voluntarily due to a debt overhang problem (Myers, 1977). All proceeds

would go to depositors and equity value was zero for sure since the economy lacks

a pro�table reinvestment opportunity for liquidation value, thus the insured bank

always continues investment. If the bank is run-proof but insured, depositors never

withdraw but the bank liquidates voluntarily in some states. The state below which

the bank voluntarily liquidates however undercuts the e�cient liquidation state, i.e.

the bank liquidates too seldom which is in line with Dewatripont and Tirole (1994).

Further, the voluntary liquidation state depends on the debt ratio and again the

bank's risk class changes in capital structure, since the bank loses value if she con-

tinues investment for states in which liquidation was e�cient. Again, the Modigliani

Miller Theorem does not apply. With or without deposit insurance, the highest at-

tainable risk class only contains the all equity �nanced bank. Since the bank's actions

are non-contractible, only under all equity �nancing the bank voluntarily liquidates

for all states below the e�cient liquidation threshold and otherwise continues in-

vestment which implies maximization of bank value. Consequently, the Modigliani

Miller Theorem in its generality fails under asset illiquidity and endogenous risk.4

Related Literature The papers contributes to the literature strand on bank runs

and endogenous liquidity risk which started with the seminal papers by Diamond and

Dybvig (1983) and Bryant (1980). Closest to our paper are Goldstein and Pauzner

(2005) who analyze optimal risk sharing under partial repayment and Eisenbach

(2017) who analyzes e�ciency of asset liquidation, both under endogenous liquidity

risk in a global game. Also closely related are Morris and Shin (2016), Rochet and

Vives (2004) and Allen et al. (2017) who analyze credit risk, respectively intervention

4The original Theorem shows equivalence in value of an all equity �nanced bank to a bank with
arbitrary leverage.
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by a lender of last resort or government guarantees under endogenous liquidity risk.

Allen et al. (2015) analyze costs of capital in a general equilibrium framework with

bankruptcy costs and show that equity is costly compared to deposits which opposes

Modigliani Miller. Compared to their setting we add endogenous liquidity risk via

bank runs. DeAngelo and Stulz (2015) show that high leverage is optimal to banks

when depositors pay a liquidity premium on safe, demandable debt and banks can

construct safe debt claims via hedging. Since debt is modeled as safe, the possibility

of runs and liquidity risk are excluded. Our paper is in spirit close to Dewatripont

and Tirole (1994) who analyze control rights and income streams of equity and debt

in an incomplete contracting framework. We however add endogenous liquidity risk

and concentrate on risk classes. Calomiris and Kahn (1991) analyze the disciplining

e�ect of short-term debt on bank managers. Our paper can be interpreted in this

context since coupons depositors demand for higher debt ratios are granted by the

bank to keep the roll over threshold low, i.e. to calm depositors and maintain

participation. Still, our main focus is on risk classes.

2 The Model

There are three dates, t0, t1 and t2 with no discounting between periods. At time

zero, a bank �nances a risky asset with equity and short-term debt via demand-

deposits. The bank acts in the best interest of and in place of her equity investors,

thus the economy has two kinds of agents, the bank and her depositors. The market

for deposits and equity are segmented. Equity investors cannot invest in deposits

and depositors cannot invest in equity. The idea is that equity investors decide about

the measure of deposits the bank accepts to maximize equity value. All agents are

risk-neutral. Let 1 − δ ∈ (0, 1) the measure of equity in place at t0 and δ ∈ (0, 1)

the measure of short-term debt the bank decides to additionally raise via demand-

deposits in order to �nance an investment of one unit. To raise deposits in t0, the

bank o�ers a demand deposit (debt) contract. For each unit invested in the contract

at time zero the bank promises a coupon of one unit if a depositor decides to liquidate

the contract prematurely at time one and a long-term coupon k > 1 if a depositor

decides to stay invested until time two. Depositors in the economy are symmetric

at time zero and each endowed with one unit thus the bank's debt is �nanced by a

continuum of measure δ of depositors [0, δ].5 The bank invests all funds in a risky

asset which requires investment of one unit at time zero (investment is scaleable).

5The assumption that each depositor controls exactly one unit in deposits is important such
that depositors are small and symmetric in size.
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The asset matures at time t2 and pays o� high return H with probability θ ∼ U [0, 1]

and zero with probability 1 − θ, where asset return θ is the state of the economy

see below. At the interim period t1, the asset generates no cash �ow but can be

liquidated. Liquidation of the asset yields liquidation value l < 1 per unit invested

due to illiquidity.

At time zero, all agents share a common prior about state θ, depositors invest and

the state realizes unobservably to all agents. At time one, each depositor i ∈ [0, δ]

observes noisy private signals

θi = θ + εi, i ∈ [0, δ] (1)

about the state (return probability) and then decides whether to roll over her

deposit or to withdraw. Depositors cannot liquidate fractions of their deposit. De-

positors' strategies are thus measurable mappings from the signal space [−ε, 1 + ε]

into the action space. Here, εi are iid random noise terms, independent of θ and dis-

tributed according to U [−ε,+ε]. By correlation, signals convey information about

the random asset return probability and about other investors' signals. In particular,

they create asymmetry in beliefs of depositors and by this achieve an equilibrium

selection (global game).6 If a depositor withdraws, she has a claim on one unit as

promised in the contract. If she rolls over, she has a claim on k units but at time two.

Besides the risky asset, there exists a storage technology. Utility debt investors infer

from the contract has to exceed one, otherwise depositors do not invest in the bank.

Similarly, equity value per invested unit has to exceed return on a direct investment

in the asset, otherwise equity investors will not �nance the leveraged bank. The

risky asset yields higher return than storage E[θ]H > 1, i.e. H > 2.

At time one the bank perfectly observes the state. Depositors observe noisy sig-

nals and decide whether to withdraw. By seniority of debt, the bank is obliged to

serve withdrawing depositors by liquidating assets. Simultaneously, the bank may

decide whether to liquidate additional assets voluntarily even though not enforced

by withdrawing depositors. The bank maximizes equity value, thus she liquidates

if equity value from liquidation is higher than equity value from continuation. We

assume that the bank's actions are not contractible. Denote by n ∈ [0, 1] the endoge-

nous, ex ante random equilibrium proportion of depositors who decide to withdraw

at date t1 (aggregate action). The bank has to pay out measure δn in cash to with-

drawing depositors. To �nance withdrawals at the interim period, the bank can

6A further requirement of the Modigliani- Miller Theorem to hold is information symmetry.
Since we will consider limit results as the noise term vanishes, there is almost surely information
symmetry among depositors at the limit. Still, the assumption of information symmetry can be
considered as violated since the asset is illiquid.
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either liquidate arbitrarily small fractions of the asset or borrow at zero net interest7

from the lender of last resort LOLR to prevent liquidating illiquid assets (Bagehot's

rule). The LOLR however only provides liquidity assistance to solvent banks, that

is, if the bank remains solvent also in absence of the intervention. Since we apply

this rule mechanically, the LOLR is no agent, i.e. makes no strategic decisions in

this game. The assumption that a LOLR exists is not crucial to the paper, but

makes results cleaner since the bank does not have to liquidate assets although no

run occurs.8 We stress this point, since the Modigliani Miller Theorem is known to

fail under debt subsidies such as taxation, here though, at the limit, LOLR never

has to intervene since the range of states at which intervention takes place is a null

set as noise vanishes, thus liquidity assistance is never paid.

The event of a bank run is triggered if at date t1 the measure of short-term funds

claimed by withdrawing depositors exceeds liquidation value of the asset l, that is if

n ∈ [0, 1] realizes such that δn > l. In a run, depositors queue in front of the bank.

The bank sequentially serves one unit to her customers until she runs out of assets to

liquidate and is then shut down. Not all depositors are served. We assume that the

LOLR perfectly observes the state and can evaluate whether the bank could with-

stand the run also without her intervention. If yes, she pays liquidity assistance to

the bank before the bank starts serving depositors in t1, by this preventing the bank

from liquidating illiquid assets to serve customers. This implies, if the proportion of

withdrawing depositors realizes such that claims undercut liquidation value of the

asset, the bank can access liquidity assistance by LOLR and liquidation of assets is

avoided.

Payo�s Debt Investors In a run, since depositors withdraw simultaneously9,

the position in the queue is random. A depositor's probability to be served the

original claim of one unit in the queue before the bank runs out of assets is l
δn

since

δn depositors try to withdraw and claim one unit but only l depositors are served.

With probability 1 − l
δn

a queuing depositor is not served and obtains zero. The

payo� from withdrawing given a run is thus

l

δn
· 1 +

(
1− l

δn

)
· 0 (2)

7Adding a positive interest rate will not change results.
8 In particular, the intervention by the LOLR avoids the realization of states in which the bank

is liquid but insolvent in t1 since she excessively had to liquidate assets. A treatment of this setting
is carried out in Eisenbach (2017). Our assumption mirrors real world central bank interventions,
national central banks in Europe may pay Emergency Liquidity Assistance to illiquid but solvent
banks. The assumption of intervention of a LOLR is not crucial to our results.

9For instance electronic withdrawal.
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Depositors who roll over in a run get zero. In the absence of a run, coupons are

as in the contract if the risky asset pays high at time t2. If at t2 the asset does not

pay with likelihood 1− θ, depositors who roll over get zero.

Event/ Action withdraw roll-over

no run,

n ∈ [0, l/δ]
1

{
k, p = θ

0, p = 1− θ
run,

n ∈ [l/δ, 1]
l
δn

0

Debt investor's utility di�erence between rolling over debt to period 2 versus

withdrawing early in period 1 is given by

v(θ, n) =

{
θ k − 1 ,if n ≤ l

δ
(no run)

− l
δn

,if n > l
δ
(run)

(3)

Payo�s Equity investors At time two, the equity investors receive the residual

value of investment net of payments to debt investors. Due to limited liability, equity

value cannot become negative. If the bank does not voluntarily liquidate assets and

continues investment, equity value per unit invested equals

EV =


H−δn−δk(1−n)

1−δ , p = θ (asset pays) , no run

0 , p = 1− θ (asset does not pay) , no run

0 , run

(4)

since in case of no run, the bank does not need to liquidate assets.10 If the bank

liquidates the asset voluntarily at t1, equity value is

EV = max

(
0,
l − δn− δ(1− n)k

1− δ

)
(5)

since the bank can reinvest proceeds at t1 only in storage.

We impose existence of states which yield dominant actions (dominance regions)

to obtain an equilibrium selection, see (Morris and Shin, 2001). There are states θ

and θ such that if θ < θ, withdrawing is a dominant action whereas if θ > θ rolling

over is the dominant to debt investors. We refer to [0, θ] as the lower dominance

region and call [θ, 1] the upper dominance region. The bound θ depends on the

speci�c contract (1, k) set by the bank and is given as the realization of θ such that

10Without a LOLR, an without a run equity value was max(0, H(1− δr/l)− δ(1−n)k) since the
bank would need to liquidate fraction δr/l of the asset. Again, this assumption is not crucial but
keeps the main point of the result cleaner.
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1 = θ k, i.e.

θ =
1

k
(6)

For very high states θ ≥ θ, we impose that the asset earns return H already in

period 1 and with certainty.11 The coordination problem vanishes for state realiza-

tions in the upper or lower dominance region.12 To ensure that debt investors may

receive signals from which they can infer that the state has realized in either of the

dominance regions, we assume that noise ε is su�ciently small such that θ(r, k) > 2ε

and θ < 1− 2ε hold.

3 Equilibrium Coordination Game

Runs by depositors cause asset liquidation and thus interruption of investment.

Liquidation is ex post e�cient only if continuation value of investment exceeds liq-

uidation value. Denote by θe the cut-o� state below which liquidation is ine�cient,

θe =
l

H
(7)

At the interim period, the bank and depositors simultaneously choose actions and

decide whether or not to liquidate assets respectively enforce liquidation by with-

drawing. The bank is obliged to serve withdrawing depositors either by liquidating

assets or by borrowing from LOLR. The bank may voluntarily liquidate additional

assets. All proofs can be found in the appendix. The equilibrium concept is Bayes

Nash.

3.1 Run-prone case

In this section we consider banks which exhibit a liquidity mismatch on their balance

sheet and are therefore prone to runs at the interim period. That is, the measure of

debt that could be reclaimed at the interim period exceeds the liquidation value of the

asset δ ≥ l. To determine in what states of the world bank assets are liquidated �rst

observe that a run-prone bank has a dominant action to never voluntarily liquidate

assets: Since the bank's actions are not contractible, the bank voluntarily liquidates

if and only if equity value from liquidation is higher than value from continuation. If

11To make this assumption work, the precise return probability of the asset would need to be

p(θ) =

{
θ
θ
, θ ∈ [0, θ]

1, θ ∈ [θ, 1]
with θ ∈ [0, 1], θ ∈ (0, 1). The constant 1

θ
however does not alter incentives

and as θ → 1, all results apply and it is without loss of generality to consider p(θ) = θ, θ ∈ [0, 1].
12 When the asset pays o� return H at date one already, the bank can always repay all with-

drawing debt investors, H > 1 > δn for all n ∈ [0, 1] and debt ratios δ ∈ (0, 1).
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the bank liquidates the asset, equity value from liquidation equals liquidation value of

the asset less principal and interest payments to depositors payable at time one and

two. But liquidation value of the asset is already lower than the face value of debt

since the bank is run-prone. Also the bank has no reinvestment opportunity for the

proceeds besides storage, which does not produce additional net interest between

time one and two. Thus, if the bank is run-prone, proceeds from liquidation at

time one always undercut debt claims at time one and two combined and equity

value is zero. A run-prone bank never voluntarily liquidates assets due to a reverse

debt overhang problem (Myers, 1977), all proceeds from liquidation would go to her

creditors whereas if she continues she has the chance to earn the high asset return.

Lemma 3.1. The run-prone bank never voluntarily liquidates assets prematurely.

Consequently depositors have to withdraw to enforce liquidation. Note that this

result is driven by the lack of pro�table reinvestment opportunities. We next analyze

in which states it is optimal for depositors to withdraw. Debt investors take capital

structure of the bank δ and debt contract (1, k) as given.

Proposition 3.1 (Existence and Uniqueness). The game played by depositors has

a unique equilibrium. The equilibrium is in trigger strategies.

This result is due to Goldstein and Pauzner (2005). There exists a unique thresh-

old signal (trigger) θ∗ ∈ [θ−ε, θ+ε] such that depositors withdraw if they observe a

signal below θ∗ and roll over if they observe a signal above θ∗. In case they observe

the trigger directly, a depositor is indi�erent and we assume that she rolls over. The

equilibrium threshold depends on the contract coupon k and capital structure δ.

Let n(θ, θ∗) the proportion of depositors who withdraw (aggregate action) in state

θ if the trigger is θ∗.13 The equilibrium trigger signal θ∗ is given as the deposi-

tor's private signal which makes her indi�erent between rolling over her deposit and

withdrawing given her belief about the proportion of withdrawing depositors and

the payo� probability of the asset.

Lemma 3.2. As signals become precise, the equilibrium trigger is given as

lim
ε→0

θ∗ =
1− ln(n∗(δ))

k
, n∗ =

l

δ
(8)

The run-prone trigger θ∗ is monotonically increasing in debt ratio and is monotoni-

cally decreasing in coupon.

13 Since the equilibrium is a symmetric trigger equilibrium played by a continuum of debt in-
vestors, the aggregate action is a deterministic function of the random state and the equilibrium
trigger signal and the measure of depositors observing signals below the trigger is given as δn.
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Thus, the threshold at which depositors enforce liquidation depends on the bank's

debt ratio and the coupon set by the bank. These monotonicity results have been

derived before in di�erent settings (Diamond and Dybvig, 1983; Rochet and Vives,

2004; Goldstein and Pauzner, 2005; Morris and Shin, 2016; Eisenbach, 2017). Denote

by θb the critical state below which bank runs occur. For a run-prone bank, the

critical state is such that

n(θb, θ
∗) ≡ n∗ =

l

δ
(9)

For all state realizations below θb the aggregate action exceeds n∗ = l/δ and a

bank run enforces asset liquidation. As signals become precise, the trigger and the

critical state become indistinguishable14, and we say bank stability improves if the

trigger decreases and vice versa. The states for which LOLR intervenes with liquidity

assistance is given by [θb, θ
∗ + ε] since for states below θb the bank is not eligible

for assistance while for states above θ∗ + ε all depositors roll over and assistance is

not necessary. As noise vanishes, the interval becomes a set of size zero and LOLR

never intervenes. To determine whether runs of depositors improve welfare, we need

to determine the relative size of the e�cient liquidation state θe to the critical state.

Lemma 3.3. Ine�cient runs exist, θb > θ > θe.

For state realizations in the interval I = (θe, θb), continuation value of investment

is in expectation higher than liquidation value, but depositors enforce liquidation by

withdrawing. For state realizations in I the bank therefore loses value because by

asset illiquidity bankruptcy is costly. This is in contrast to Stiglitz (1969) and Hell-

wig (1981) where in case of bankruptcy, the asset's continuation value goes to debt

investors in case of default respectively continuation value equals liquidation value

since there exists no bankruptcy cost. As a consequence, welfare here is highest if

θb is as low as feasible. Function θb is however bounded from below by the bound

to the lower dominance region θ. Intuitively, the result holds for two reasons. First,

as shown in (Diamond and Dybvig, 1983) and (Goldstein and Pauzner, 2005), if

the bank is run-prone the miscoordination problem among depositors gives rise to

excessive runs due to panics so that assets are liquidated ine�ciently often. Sec-

ond however, the �xed ownership structure, which is not present in (Diamond and

Dybvig, 1983; Goldstein and Pauzner, 2005) additionally contributed to excessive

runs. This is since independently of whether the bank is run-prone or run-proof,

depositors do not participate in the upside potential of the asset. If they roll over

their deposit, they may only earn coupon k set by the bank instead of H which in

14By equation (40), we have θb = θ∗ + ε(1− 2 lδ )→ θ∗ as ε→ 0.
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combination with riskiness of bank assets additionally increases the range of ine�-

cient runs (fundamental runs). That is, not only the bank's capital structure but

also the bank's long-term interest rate policy contributes to ine�ciency. 15

We de�ne the value of the bank as the combined value of equity, debt and liquidity

assistance L. At the limit, the value of liquidity assistance vanishes and bank value

equals value of equity and debt as in the case of Modigliani and Miller (1958). Since

the bank is �nanced with δ units in short-term debt and 1 − δ units of equity, we

have

V = δE[EU ] + (1− δ)E[E] + L (10)

where E[EU ] is the value of one unit invested in the debt contract, E[E] is the
value of one unit invested in equity and L is the value of liquidity assistance which

vanishes with noise. The value of debt and equity depend on the critical state

at which asset liquidation occurs. By the accounting identity, the bank's value of

liabilities has to equal her total value of investment (assets), and we obtain

Proposition 3.2. The value of the run-prone bank equals

V (k, δ) = l θb +H

∫ 1

θb

θ dθ (11)

where θb = θb(δ, k) depends on debt ratio and coupon to depositors.

Bank value is the expected total return on bank investment which equals the

asset's liquidation value in case of a run and the asset's continuation value given no

run occurs. We immediately see, that bank value crucially depends on the size of

the critical state by Lemma 3.3 and is therefore in�uenced by debt ratio and coupon

via a shift in depositors' behavior. In particular, coupon and debt payments in the

contract not solely constitute transfers to compensate depositors for risk but alter

bank value by modifying stability θb. These results are already implied by Rochet

and Vives (2004) and Morris and Shin (2016). Having derived the total return on

bank investment, we can now analyze risk classes to discuss the connection to the

Modigliani Miller Theorem.

3.1.1 Risk-classes

Following the de�nition of Modigliani and Miller, two banks belong to the same

risk-class if and only if their random returns on investment are perfectly correlated.

15In the setting here, if the ownership structure was hybrid as in (Diamond and Dybvig, 1983;
Goldstein and Pauzner, 2005), then due to risk-sharing the bound to the lower dominance region
would be at 1/H, the �xed ownership structure raises the bound further to 1/k.
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In the case of run-prone banks, denote by X the random variable which describes

state contingent total return on bank investment, then

X(θ) =

{
l, θ < θb

θ H, θ ≥ θb
(12)

As debt ratio increases, by Lemma 3.2 the probability of runs and thus riskiness of

debt goes up. In equilibrium, the critical state is therefore given as

θb = θb(δ, k
∗(δ)) (13)

where we take into account the repricing of risk in form of higher coupons k∗(δ)

demanded by depositors. The demanded risk-adjustment k∗(δ) plays a crucial role

in this paper since it directly impacts the cut-o� state and thus the bank's risk-class,

again by Lemma 3.2.

De�nition 3.1 (Risk-preserving adjustment of coupons). We say that coupon ad-

justs according to the 'risk-preserving rate' if in equilibrium a marginal increase in

debt ratio leads to an increase in coupon such that the critical state (bankruptcy

state) θb(δ, k(δ)) and thus total bank risk remains constant.

Assume bank A and bank B invest in the same asset but have di�erent capital

structures δA 6= δB. Then both banks belong to the same risk class if and only if for

all states θ

XA(θ) = ρ ·XB(θ) (14)

for a constant ρ ∈ R+. But this in particular requires that in equilibrium both banks

have identical critical states

θA(δA, k
∗(δA)) = θB(δB, k

∗(δB)) (15)

despite their distinct debt ratios. If we assume without loss of generality that

ρ = 1, then for identical critical states we have

VA =

∫ 1

0

XA(θ) dθ =

∫ 1

0

XB(θ) dθ = VB (16)

and both banks have same values.16 In particular, under asset illiquidity a

bank's risk class is not solely described by the asset's return but also by the equi-

16In the classic Modigliani Miller setting, the no arbitrage argument requires that the banks
have equal returns at every state since 'no arbitrage' is a concept independent of assignments of
probabilities. Here, we need to pin down a probability distribution to derive optimal behavior
of depositors and thus the bankruptcy state (critical state). Once the trigger equilibrium and
critical state are known to all depositors, also bank value here can be analyzed independently of
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librium bankruptcy state (critical state) and liquidation value. In contrast, under

no bankruptcy costs as in Stiglitz (1969) and Hellwig (1981) the cut-o� state does

depend on debt but there is no jump in the return distribution since liquidation and

continuation value are equal. As a consequence, under no bankruptcy costs, banks

which invest in same assets have same risk classes although they may di�er in their

capital structure. Under asset illiquidity, return from investment jumps in the cut-

o�, and cut-o� state varies in both debt and coupon. Thus, under asset illiquidity

here, the debt ratio in general changes the risk class. This argument was pointed out

in (Baxter, 1967) and is crucial since the proof of the Modigliani Miller Theorem can

only be performed within risk classes and not across. Under endogenous risk how-

ever, and this is new to the previous literature on the Modigliani Miller Theorem,

the equilibrium risk adjustment of coupons (repricing of debt) also moves the cut-o�

state as does debt ratio but in opposite direction. We can therefore determine the

risk-preserving adjustment in coupon at which bank value would stay constant in

debt ratio and contrast this change with the monopoly risk-adjustment of coupon

to determine if and when they agree. Since we keep the asset �xed as we alter the

bank's capital structure, we have

Lemma 3.4. Under asset illiquidity and endogenous liquidity risk, the risk class of a

run-prone bank is invariant to changes in debt ratio (capital structure) if and only if

the equilibrium risk-compensation in form of higher coupons demanded by depositors

is such that the critical state remains constant.

This result opposes (Baxter, 1967) and the literature on trade-o� theory (Myers,

1984) according to which the value of the bank has to alter in debt under bankruptcy

costs. If in equilibrium, coupon adjusts according to the risk-preserving rate, the

Modigliani Miller Theorem holds despite asset illiquidity, the combined value of

equity and debt stays constant despite distinct debt ratios.

3.1.2 Risk-adjusted coupons (Repricing of risk)

In the monopoly case, the bank maximizes her equity value subject to depositors'

participation constraint. The debt contract needs to yield a utility level at least as

high as the return on storage. We would like to analyze the bank's risk-adjustment in

coupon due to an incremental increase in debt ratio. If depositors' participation con-

straint binds in the optimum, the risk adjustment in coupon is given by depositors'

probabilities. Assume bank A and B invest in the same asset but have distinct critical states
θA < θB . Then both bank's have same returns for all states above θB and all states below θA. But
for states between θA and θB , bank A has strictly higher returns by Lemma 3.3. Thus, bank A
must have higher value.
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marginal rate of substitution. It however turns out that depositors' participation

constraint may be slack in the optimum which implies that the risk-adjustment can

also be determined by marginal equity value. The latter may occur since for given

debt ratio, we have

Lemma 3.5. For every debt ratio, in equilibrium equity value is concave and hump-

shaped in coupon.

Intuitively, as coupon increases there exists a trade-o� from the point of view of

equity investors since the contract costs to the bank go up but stability improves.

By concavity, equity value is either monotone increasing, monotone decreasing or

hump-shaped in coupon. Further, as coupon approaches its upper bound, the return

of the asset, one can show that equity value undercuts return on a direct investment

in the asset and equity investors will not participate, see Lemma 7.1. Consequently,

if for some �xed debt ratio equity value monotonically increases in coupon, equity

investors do not participate for any coupon. On the other hand, equity value strictly

increases in coupon as coupon approaches its lower bound which together with con-

cavity implies that under voluntary participation, equity value is hump-shaped, for

given debt ratio there exists a unique interior coupon ku(δ) at which equity value is

maximized (unconstrained). If depositors' participation constraint is violated at ku,

then the constrained optimal k∗ exceeds ku and is such that depositors' constraint

binds since their utility strictly increases in coupon by Lemma 7.2. Otherwise, if

depositors' constraint is slack at ku the optimal coupon is the interior maximizer of

equity value k∗ = ku. In a nutshell, the risk-adjustment in coupon for an incremental

increase in debt is either determined by depositors' marginal rate of substitution if

their constraint binds or by the change of the unconstrained maximizer ku of equity

value. We discuss both in the sequel.

Case 1: Binding participation constraint Assume, depositors' participation

constraint binds in the optimum. Then, as debt ratio increases depositors demand

debt dependent risk-adjustments such that their utility level stays constant. Since

the bank's risk class stays constant only if coupon adjusts according to the risk-

preserving rate, for Modigliani Miller to hold in equilibrium, depositors' marginal

rate of substitution of coupon for debt must equal the risk-preserving adjustment of

coupon for debt. Otherwise the equilibrium critical state changes and the risk class

shifts. If the critical state increases, total risk goes up, the risk-class drops and bank

value goes down. Vice versa, if the critical state decreases.

Let us take a closer look and analyze when the bank's risk-class is invariant

to changes in debt. For run-prone banks, as short-term debt ratio increases, more
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depositors have a claim on debt in period one and riskiness of the bank increases

since the critical state goes up by Proposition 3.2. The increase in critical state

lowers the bank's risk class and value in a �rst e�ect since the critical state always

exceeds the e�cient liquidation state by Proposition 3.3, thus ine�cient liquidation

occurs more often. Further, the increased debt ratio a�ects depositors' utility from

the contract in two di�erent ways:

EU =
l

δ
θb +

∫ 1

θb

θk dθ (17)

A rise in debt ratio enters utility (17) directly since given bankruptcy, the asset's

liquidation value is shared by more depositors, l/δ decreases. Additionally, there is

an indirect feedback e�ect. Depositors' posterior belief that the bank goes bankrupt

increases since the critical state θb below which bankruptcy occurs goes up which

makes the decrease in payo� given liquidation even worse. It is due to this feedback

e�ect that the problem of maintaining depositors' utility cannot be considered in-

dependently of bank stability (risk class). To maintain participation, the bank has

to compensate depositors by increasing the coupon k∗ at a rate such that deposi-

tors' utility is kept constant. But as coupon goes up, not only depositors' utility

increases but by Proposition 3.2 also the trigger and thus critical state go down back

towards but not necessarily to exactly the original level. This is since also coupon

alterations have a twofold e�ect on depositors' utility. As a direct e�ect, it increases

the payo� from rolling over given the bank continues investment. Indirectly, the

feedback e�ect comes in again, stability improves because the critical state drops

thus the increase in coupon bene�ts depositors even more, see (17). The equilibrium

critical state stays constant as debt increases if and only if depositors' marginal rate

of substitution of coupon for debt equals the risk-preserving adjustment of coupon

for debt. Equivalently, the critical state is invariant in debt if and only if the rate

at which bank stability changes in coupon to compensate for the increase in debt is

exactly equal to the direct e�ect a change in debt has on depositors' utility when

holding stability �xed, as opposed to the direct e�ect of an increase in coupons, i.e.

if and only if

−
∂θ∗

∂δ
∂θ∗

∂k

= −
− l
δ2
θb∫ 1

θb
θ dθ

(18)

where the numerator on the right hand side is the direct change of depositors'

utility (change in payo�s) in debt when ignoring the feedback e�ect by holding sta-

bility �xed while the denominator is the direct change in utility due to a change
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in coupon again net of the feedback e�ect, see (17), and the left hand side is the

risk-preserving adjustment of coupon for debt such that the bank's risk class stays

constant. These feedback e�ects in utilities are common in games of endogenous

liquidity risk, see (Eisenbach, 2017), and here in our case lead to the possibility that

a bank's risk class may stay constant in debt despite accounting for bankruptcy and

asset illiquidity (Baxter, 1967) if the risk-adjustment in coupon demanded by depos-

itors equals the competitive risk adjustment. The next Theorem tells us when the

coupon adjustment under a monopolistic market structure equals the risk-preserving

adjustment to keep the risk class constant

Proposition 3.3 (Run-prone,binding). If the bank is run-prone and depositors'

participation constraint binds in the optimum, the risk-class is invariant to changes

in short-term debt ratio if and only if stability is at level θb = θM in point (δ, k∗(δ))

with

θM(δ) =

√
E[θ]

l
δ
+ E[θ]

(19)

For θb < θM the risk-class decreases, and for θb > θM the risk-class increases in

debt.

Here, l
δ
is the liquidation value per depositor in case of bankruptcy, while E[θ] is

the expected probability that the asset pays o�. Intuitively, if θb is high, depositors

value the increase in coupon less than if θb was low since for the coupon to be

actually paid, the state realization needs to exceed θb. Therefore, for high critical

states the coupon demanded for participation is higher than the coupon necessary

to maintain stability. For θb > θM , depositors marginal rate of substitution exceeds

the risk-preserving adjustment. Thus, in equilibrium bank stability improves in

debt by Proposition 3.2, total risk θb decreases and the risk-class of the bank and

thus her value go up, more short-term debt is socially bene�cial. Vice versa for

θb(δ, k
∗(δ)) < θM , the bank's risk class drops, total risk increases, and more short-

term debt is socially costly. First observe, that the case at which the bank's risk

class is invariant to changes in debt is not stable. State θM depends on and increases

in the bank's debt ratio. If θb hits θM , θb = θM , a marginal increase in debt ratio

leaves θb constant while θM increases and we transition to the case θb < θM in which

bank stability and thus the bank's risk class and value deteriorate in debt. Next,

see that the case θb ≤ θM is absorbing. For θb < θM , θb becomes increasing in debt,

as is θM . Even if θb catches up with θM and the case θb = θM reoccurs, by the same

reasoning as above, θb will bounce back below the bound θM . For θb > θM , bank

value increases in debt which implies that in equilibrium θb decreases and moves

towards θM which increases. There are two possible cases, either θb decreases in
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debt until it hits θM or it decreases for all debt ratios and never hits θM . If it never

hits, bank value increases in debt for all debt ratios. If it hits, θb is pushed below

θM and stays below θM . Last, θb seeks θM . θM monotonically increases in debt.

For θb > θM , θb falls in debt towards θM , for θb < θM , θb climbs in debt after θM .

Altogether, by the absorption property if the bank's risk-class decreases in debt at

some point, it also weakly decreases in debt for all higher debt ratios. Vice versa,

if the risk class strictly improves in debt it also improves in debt over all lower

debt ratios. Most importantly, the case θb = θM occurs only countably often, thus

the risk-class of the bank strictly alters in short-term debt ratio and thus capital

structure for uncountably many debt ratios.

Case 2: Slack participation constraint If for given debt ratio, depositors'

participation constraint is slack at the equity value maximizing coupon ku, the equi-

librium coupon equals k∗ = ku and the equilibrium change in coupon due to an

increase in debt ratio is not given by depositors' marginal rate of substitution but

by the change of the unconstrained maximizer ku. The bank's risk class remains

constant if and only if the change in the maximizing coupon is such that the critical

state remains constant which is the case if

Proposition 3.4 (Run-prone,slack). In the run-prone case, if depositors' partici-

pation constraint is slack in the optimum, the risk-class is invariant to changes in

short-term debt ratio if and only if stability is at level θb = θb,N2 in point (δ, ku(δ))

with

θb,N2 =
H
k

( H
E[θ]
− k)

1− δ
δ

+

√√√√( H
k

( H
E[θ]
− k)

1− δ
δ

)2

+
k

( H
E[θ]
− k)

(20)

For θb < θb,N2 bank value deteriorates and the risk-class decreases, and for θb > θb,N2

the risk-class increases in debt. The barrier θb,N2 decreases in debt.

Here, 1−δ
δ

is the equity to debt ratio, H/k is the ratio of gross return on investment

(asset return) to coupon payable to depositors, while H
E[θ]
− k can be interpreted as

a risk-adjusted return calculation to equity investors since the asset earns return H

only with probability θ while coupon k needs to be paid for sure. For θb < θb,N2 bank

value deteriorates since the equilibrium adjustment of coupon due to an incremental

change in debt is such that the critical state goes up. Intuitively, for low enough

critical states, the bank feels safe. For a small increase in debt she adjusts the coupon

to depositors not su�ciently upwards to maintain bank stability at a constant level

and stability drops. The opposite is the case for critical states above θb,N2. The
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bank fears for her stability and adjusts the coupon upwards more than she would

need to maintain stability constant, thus stability improves. Further, analogous to

the case with a binding participation constraint, since θb,N2 decreases in debt, the

critical state can hit θb,N2 only countably many times. This is since for θb = θb,N2,

the critical state remains constant while θb,N2 decreases in debt. Thus, the case

θb > θb,N2 reoccurs and bank stability improves in debt.

Independently of whether the participation constraint binds, for every equilib-

rium debt ratio θb1 at which the critical state remains constant, there exist two open

intervals (θb1, θb2) and (θb0, θb1) for which the critical state is non constant and the

bank's risk class alters. How the bank's risk class alters in a speci�c debt ratio

depends on whether depositors' participation constraints binds in the optimum and

how the resulting critical state is located in relation to θM respectively θb,2. Instead

of determining for each debt ratio whether the constraint binds or not17, observe that

in either case, conditional on a binding or non-binding participation constraint, the

set of debt ratios at which the bank's risk class remains constant is countable. The

joint of both sets is countable too and constitutes and upper bound to the number

of debt ratios for which the equilibrium change in coupon is such that the bank's

risk class remains constant. Since countable sets have Lebesgue measure zero, we

have argued

Proposition 3.5. Consider the monopoly case under endogenous liquidity risk and

asset illiquidity. For run-prone banks, the set of debt ratios for which in equilibrium

an incremental increase in debt ratio leads to a coupon adjustment such that the

bank's risk class remains constant has Lebesgue measure zero.

Now consider a speci�c risk class, that is consider a set of debt ratios which

in equilibrium require coupon payments such that the resulting critical states are

identical18, then

Theorem 3.1. For run-prone banks, every bank risk class has Lebesgue measure

zero.

Every set of debt ratios which under correctly priced coupons leads to identical

bankruptcy states has only countably many elements. Thus, the Modigliani Miller

17The cross derivative of equity value in coupon and debt is in general non-monotone. One can
however show that for su�ciently high debt ratios, the cross derivative is negative if equity value
decreases in coupon. Consequently, for high debt ratios, if depositors' participation constraint binds
in the optimum (δ, kD(δ)) it also binds for all higher debt ratios, i.e. the participation constraint
cannot become slack since the unconstrained maximizer ku decreases.

18That is, we �x an image θb(δ, k
∗(δ)) where k∗(δ) is the constrained optimum of equity value

and consider the set of all debt ratios δ which are mapped at this particular image. Then, all these
debt ratios belong to one particular risk class.
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Theorem can generically not apply. The result holds since by Proposition 3.5, we can

partition the interval of run-prone debt ratios [l, 1] into countably many subintervals

where the bounds of the subintervals are determined by those debt ratios at which the

bank's risk class remains constant. For debt ratios within each of the subintervals,

the risk class of the bank strictly alters. Thus, the number of elements of each risk

class is bounded from above by the number of subintervals.

4 Run-proof Case

As the debt ratio of a run-prone bank approaches liquidation value of the asset

from above, the bank becomes run-proof. For a run-proof bank, liquidation value

of assets covers all debt claims which potentially arise at the interim period and

the occurrence of a run is excluded. Debt is risk-free at time one but remains risky

at time two due to riskiness of the asset. Consequently, the coordination problem

vanishes for run-proof banks, and depositors face a simple decision problem. In this

section, we analyze how bank value changes in debt where debt ratio alters in a way

that the bank remains run-proof

Lemma 4.1. In the run-proof case, the equilibrium trigger is given as

θ∗ =
1

k
= θ (21)

and the run-threshold of depositors is independent of debt ratio and decreases in

coupon.

For state realizations below θ all depositors withdraw, however the bank stays

liquid since she is su�ciently �nanced with equity 1 − δ. Since in the run-proof

case the asset's liquidation value exceeds the face value of deposits, at the interim

period withdrawals by depositors never enforce full liquidation and the bank needs

to decide in what states to liquidate voluntarily the remaining assets to maximize

equity value.

Lemma 4.2. The run-proof bank voluntarily liquidates for all states below the e�-

cient liquidation state θe

The reason for the result is, for states below the critical state the LOLR no longer

intervenes with liquidity assistance. Thus, if the bank decides to stay invested

she needs to liquidate assets to satisfy depositors' claims. She only liquidates if

continuation value of the remaining fraction of the asset undercuts liquidation value,

that is only for states below the e�cient liquidation state. This case does not
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occur for run-prone banks since then withdrawals by all depositors enforces complete

liquidation of assets and the bank has no choice.

Proposition 4.1. If the bank is run-proof the bank's value at the limit equals

V rp(δ, kD(δ)) = l θe +

∫ 1

θe

θ H dθ +

∫ θ

θe

δ(1− θH/l)) dθ (22)

The third term
∫ θ
θe
δ(1 − θH/l)) dθ is negative and constitutes the loss in value

which occurs by Proposition (3.3) since depositors also withdraw for state above

the e�cient liquidation state according to their dominance region which requires

ine�cient liquidation of fraction δn/l of the asset. Before we further discuss bank

value of run-proof banks we derive the value of the all equity �nanced bank. As debt

ratio goes to zero, the run-proof bank becomes all equity �nanced and we have

Corollary 4.1. The value of the all equity �nanced bank equals

V e = l θe +

∫ 1

θe

θH dθ (23)

Since the bank acts in the best interest of equity investors, in the all equity

�nanced case the bank liquidates if and only if liquidation is e�cient, that is for

states below θe. We can now de�ne risk classes of run-proof banks

Risk-classes (run-proof) Denote byX the random variable which describes total

return on bank investment, this time for a run-proof bank. From (22), the total

return on investment of a run-proof bank equals

X(θ) =


l, θ < θe

θ H, θ ≥ θb = θ

δ(1− θH/l)), θ ∈ (θe, θ)

(24)

where coupon k is such that depositors participate at debt ratio δ. For run-proof

banks, a rise in debt ratio no longer a�ects the critical state θb = θ as long as debt

ratio is such that the bank remains run-proof. Also, the e�cient liquidation state

at which the bank liquidates voluntarily is independent of debt. Therefore, to run-

proof banks the cut-o� states of the bank's risk class are independent of debt ratio.

Between the cut-o�s however, the bank has to liquidate assets to serve withdrawing

investors and liquidation is ine�cient. Since the extent of asset liquidation depends

on her debt ratio, lost value increases in debt. Thus, the bank's risk class strictly

alters in debt ratio if we can show that depositors do not demand a risk-adjustment
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of coupon for higher debt ratio. But this is the case since depositors' roll over

threshold and their utility is independent of debt in the run-proof case. To see this,

consider the limit utility to depositors from the contract

EU = 1 · θ +
∫ 1

θ

θk dθ (25)

As the bank is run-proof, utility no longer directly depends on debt given a run

since the bank can always pay the original coupon of one unit. Additionally, the

feedback e�ect via the trigger does not occur for run-proof banks since the trigger

(risk of debt) is independent of debt. Thus, since the risk and utility remain constant

in debt depositors do not demand higher coupons as compensation for higher debt

ratios. Since the return on investment between the cut-o�s strictly decreases in debt

ratio, the return distribution (risk class) of the run-proof bank alters in debt and

Modigliani Miller cannot apply.

Proposition 4.2. For run-proof banks, the risk- class and value of the bank strictly

decrease in debt ratio.

In particular, every risk class has exactly one element and we obtain as counter-

part to Theorem 3.1

Theorem 4.1. For run-proof banks, every bank risk class has Lebesgue measure

zero.

Further, as a Corollary from Proposition 4.2,

Corollary 4.2. For a �xed asset, under endogenous liquidity risk the highest attain-

able risk class only contains the all equity �nanced bank.

The result holds, since by Proposition 4.2 the all equity �nanced bank attains

the highest value among all run-proof banks and by Proposition 3.3 the critical state

of every run-prone bank exceeds the e�cient liquidation state for any debt ratio and

for any coupon depositors might demand for compensation. The value of the bank is

maximized when �nancing all investment with equity only, since only then assets are

liquidated e�ciently. It should be noted that Proposition (4.2) seems driven by the

intervention policy of the LOLR. But the result is robust, to assuming for instance

that LOLR intervenes with liquidity assistance for all states, see Lemma 7.4.

Theorem (4.2) further tells us, that under endogenous liquidity risk with asset

illiquidity the Modigliani Miller Theorem can only apply to run-prone banks if at all.

The Theorem never holds in general, since total return of run-proof banks strictly

alters in debt.
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5 Extension: Deposit Insurance

Under complete deposit insurance, depositors have no incentive to withdraw or are

indi�erent and ignore their signals since they are compensated by the insurer in case

the bank cannot repay deposits. A run-prone bank, by the same reasoning as above,

never voluntarily liquidates assets early since equity value from continuation is higher

than value from liquidation which is at zero. Since assets are never liquidated, value

of the run-prone bank equals

V i,r =

∫ 1

0

θ H dθ (26)

The value is independent of debt and coupon payments since no liquidation takes

place, and all coupon payments are transfers. Thus, all run-prone, fully insured

banks belong to the same risk-class, have same value and the Modigliani Miller

Theorem applies.

Proposition 5.1. Under full deposit insurance, all run-prone banks belong to the

same risk class.

If the bank faces no liquidity mismatch and is run-proof but completely insured,

again all depositors roll over. The bank prematurely liquidates assets voluntarily

only if time two equity value from liquidation exceeds equity value from continuation.

That is for states θ < θv(δ) where

θv(δ) =
l − δk
H − δk

(27)

The value of the insured run-proof bank is thus

V rp,i =

∫ θv

0

l dθ +

∫ 1

θv

θ H dθ (28)

The voluntary liquidation state θv depends on the bank's debt ratio. Intuitively,

as the bank's debt ratio increases the bank liquidates less often since proceeds from

liquidation net of debt service need to exceed equity value from continuation where

continuation yields a chance to earn high asset return. Therefore, while all run-

prone, fully insured banks lie in the same risk class, risk classes of run-proof, insured

banks alter in capital structure, i.e. decrease in debt and the Modigliani Miller

cannot apply.

Proposition 5.2. Under full deposit insurance, the risk class of run-proof banks

strictly decreases in debt ratio .
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As in the uninsured case, risk classes of run-proof banks have only one element

and Modigliani Miller cannot apply. Further, the run-proof bank liquidates assets

too seldom, θv(δ) < θe, and by this loses value. Still, θv > 0 implies that the value of

the run-proof fully insured bank exceeds value of the run-prone insured bank which

never liquidates, and we have shown

Theorem 5.1. Under full deposit insurance, the value of every run-proof bank ex-

ceeds value of every run-prone bank. The all equity �nanced bank achieves highest

value

V i,r < V rp,i ≤ V e (29)

By convergence of the state θv, the value of the run-proof insured bank approaches

the value of the all equity �nanced bank as debt ratio goes to zero and approaches

the value of the run-prone insured bank as debt ratio becomes large. Similar to

the case without deposit insurance, the Modigliani Miller Theorem cannot apply in

general but under insurance applies within the class of run-prone banks.

6 Conclusion

This paper demonstrates that the Modigliani Miller Theorem does in general not

apply to banks which face endogenous liquidity risk when assets are illiquid, inde-

pendently of deposit insurance. The original no-arbitrage proof of the Modigliani

Miller Theorem is conducted by showing that �rms of the same risk class but with

distinct capital structures must have same values, otherwise arbitrage exists. A risk

class contains �rms with perfectly correlated returns. If debt is risky, changes in

debt require higher coupon payments to depositors to maintain participation. We

show that a bank's risk class varies in both the amount of short-term debt �nancing

and coupon demanded for changed risk. Thus, it can be that risk classes contain

only small numbers of banks with distinct capital structures although all banks con-

sidered invest in the same asset. Therefore, the Modigliani Miller Theorem is in

general not applicable since its main requirement, the independence of risk classes

from capital structure, is not satis�ed for banks. Banks can become more or less

valuable as short-term debt ratio alters and their costs of capital change. In par-

ticular, more short-term debt can be socially costly or bene�cial. While the failure

of Modigliani Miller is known for settings which incorporate bankruptcy costs, this

paper o�ers a new perspective from the view point of the game theoretic literature

on endogenous liquidity risk.
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Our paper deviates from the classic Modigliani Miller setting in various ways

to discuss the connection to the literature on endogenous liquidity risk (Diamond

and Dybvig, 1983; Goldstein and Pauzner, 2005; Morris and Shin, 2016; Eisenbach,

2017). Crucial for the result to obtain is that the asset carries a liquidity premium

such that the bank cannot liquidate prematurely at fair value (continuation value).

As a consequence, the total return distribution jumps in the bankruptcy state which

depends on debt ratio and coupon. In contrast, Modigliani and Miller assume per-

fectly safe debt (no bankruptcy) while Stiglitz (1969) allows for bankruptcy but at

no costs. Further, we assume non-contractible actions of the bank manager who

acts on behalf of equity investors, similar to Dewatripont and Tirole (1994). As

a consequence, depositors have to run to enforce liquidation which may result in a

deadweight loss. The analysis here reduces bank capital structure to short-term debt

and equity. The results remain to hold with some minor changes when substituting

part of equity with long-term debt.19 We assume that a lender of last resort exists

to intervene with liquidity assistance at the interim period if the bank is solvent

but illiquid. We assume this intervention to maintain clean intuition and formula.

The assumption of liquidity assistance paid by the lender of last resort here can be

misunderstood as crucial since the Modigliani Miller Theorem is know to not hold

under debt subsidies, e.g. in form of tax shield. This is not the case here. All main

results continue to hold when not considering intervention.20 We model the asset's

liquidation value as a �xed constant. This is again without loss of generality. Eisen-

bach (2017) models liquidation value as an endogenous function of the aggregate

number of assets sold in the economy, where banks are price takers. Alternatively,

Morris and Shin (2016) model the amount of cash the bank can pledge against the

asset as function the state. In either case, as long as liquidation value of the asset

may in some states deviate from continuation value, our results continue to hold

when ine�cient asset liquidation exists and reduces bank value. The main deviation

of our analysis from the previous literature on the Modigliani Miller Theorem is that

we work in a game theoretic setting which requires the allocation of a probability

distribution to states of the world to derive optimal behavior of depositors. In con-

trast, the proof to the original Modigliani Miller Theorem proceeds via no arbitrage

which does not require assignments of probabilities. A further deviation is that we

work in a monopolistic setting instead of competitive markets. We do so since in the

19The bankruptcy state will still vary in debt and coupons.
20First, we show that as noise vanishes, the lender of last resort never intervenes. Still, the

assumption that LOLR exists alters payo�s for certain states. Without LOLR, the bankruptcy
state would still vary in both debt and coupon and the formula for bank value will be the same at
the limit. There is one notable exception, without LOLR, the trigger becomes hump-shaped and
concave in coupon (interior maximizer).

27



original Modigliani Miller setting debt is risk-free and equivalent to storage while

in our setting debt is risky and storage constitutes an alternative investment to de-

positors. To concentrate on showing that risk classes may change in debt, we shut

down investors' opportunity to invest in equity or other �rm's capital to restrict the

number of outside options. Since bank risk classes here shift in both, debt ratio

and coupons, the outside option plays a crucial role since it determines depositors'

compensation for risk. With competition, the following challenge will arise: when

allowing investors to trade arbitrary numbers of units in debt and equity, depositors

become asymmetrically large which alters the trigger, see Corsetti et al. (2004).
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7 Appendix

Proof. [Proposition 3.1] We follow closely the existence and uniqueness proof given

in Goldstein and Pauzner (2005).

A: Existence and uniqueness of a trigger equilibrium A Bayesian equilibrium is

a strategy pro�le such that each investor chooses the best action given her private

signal and her beliefs about other players actions and strategies of other players. In

equilibrium, an investor decides to withdraw when her expected payo� from rolling

over versus withdrawing given her signal is negative, decides to roll over when it is

positive and is indi�erent if the expected payo� is zero. Since investors are identical

ex ante, investors strategies can only di�er at signals that make an investor indi�erent

between rolling over and withdrawing. In a trigger equilibrium around trigger signal

θ∗, all investors withdraw when they observe signals below θ∗ and roll over if they

observe signals above θ∗. In case of directly observing θ∗ investors are indi�erent

and we specify here hat they will roll over. A threshold equilibrium around trigger

θ∗ exists if and only if given that all other investors use a trigger strategy around

signal θ∗ an investor �nds it optimal to also use a trigger strategy around trigger θ∗.

Assume, all investors follow a symmetric threshold strategy around trigger signal

θ∗, then the proportion of investors who withdraw at each state is deterministic.

Denote by n(θ, θ∗) the proportion of investors who observe signals below signal θ∗

and thus withdraw if the true state is θ.

Let D(θi, n(·, θ∗)) the expected payo� di�erence from rolling over versus with-

drawing when the investor observes signal θi, and other investors follow a trigger

strategy around θ∗. Given signal θi an investor's posterior belief on state θ is uni-

form on [θi − ε, θi + ε]. The expected payo� di�erence therefore is

D(θi, n(·, θ∗)) =
1

2ε

∫ θi+ε

θi−ε

[
(kθ − 1) 1{n(θ,θ∗)≤ l

δ
} −

l

δn(θ, θ∗)
1{n(θ,θ∗)> l

δ
}

]
dθ (30)

where 1{n(θ,θ∗)≤ l
δ
} is an indicator function which takes value one if and only if the

state realizes such that the endogenous proportion of withdrawing investors is below

ratio l
δ
, that is in the absence of a bank run, while indicator function 1{n(θ,θ∗)> l

δ
}

equals one if and only if the state realizes such that a run occurs. For existence of a

trigger equilibrium we need to show that given a signal realization below (above) the

threshold which other investors use, the single investor �nds it optimal to withdraw

(roll over)

D(θi, n(·, θ∗)) < 0 for all θi < θ∗ (31)

D(θi, n(·, θ∗)) > 0 for all θi > θ∗ (32)
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and existence and uniqueness of a signal θ∗ for which an investor is indi�erent be-

tween rolling over and withdrawing (payo� indi�erence)

0 = D(θ∗, n(·, θ∗)) (33)

To prove existence and uniqueness of θ∗ such that (33) holds, observe that the

function D(θ∗, n(·, θ∗)) is continuous in θ∗. By existence of dominance regions, we

have D(θ∗, n(·, θ∗)) < 0 for signals θ∗ < θ − ε and D(θ∗, n(·, θ∗)) > 0 for θ∗ > θ + ε.

Thus, together with continuity by the Intermediate Value Theorem there exists at

least one θ∗ for which (33) holds.

To see uniqueness, since all other investors use a threshold strategy around θ∗

and are small, we know the function n(θ, θ∗) and can substitute n(θ, θ∗) = 1
2
+ θ∗−θ

2ε

to derive

D(θ∗, n(·, θ∗)) =
∫ l/(δ)

0

(kθ(n, θ∗)− 1) dn−
∫ 1

l/(δ)

l

δn
dn (34)

where θ(n, θ∗) = θ∗ + ε(1 − 2n), θ∗ ∈ [θ − ε, θ + ε] is the inverse of the function

n(θ, θ∗). For uniqueness, observe that D(θ∗, n(·, θ∗)) depends on signal θ∗ only via

the asset return function p(θ) which is strictly increasing in signal θ∗ for θ∗ < θ+ ε.

Thus D(θ∗, n(·, θ∗)) strictly increases in θ∗ for θ∗ ∈ [θ− ε, θ+ ε] which together with

continuity gives us single-crossing.

Next we need to show that withdrawing is a best response if the private signal

of an investor realizes below the trigger played by other investors θi < θ∗, that

is we need to show (31). Following Goldstein and Pauzner (2005), let θi < θ∗.

Decompose the intervals [θi − ε, θi + ε] and [θ∗ − ε, θ∗ + ε] over which the integrals

D(θi, n(·, θ∗)) and D(θ∗, n(·, θ∗)) are calculated into a potentially empty common

part c = [θi − ε, θi + ε] ∩ [θ∗ − ε, θ∗ + ε] and the disjoint parts di = [θi − ε, θi + ε] \ c
and d∗ = [θ∗ − ε, θ∗ + ε] \ c. Then,

D(θi, n(·, θ∗)) =
1

2ε

∫
θ∈c

v(θ, n(θ, θ∗)) dθ +
1

2ε

∫
θ∈di

v(θ, n(θ, θ∗)) dθ (35)

D(θ∗, n(·, θ∗)) = 1

2ε

∫
θ∈c

v(θ, n(θ, θ∗)) dθ +
1

2ε

∫
θ∈d∗

v(θ, n(θ, θ∗)) dθ (36)

Considering (36), the integral
∫
θ∈c v(θ, n(θ, θ

∗)) dθ has to be negative since by

(33) D(θ∗, n(·, θ∗)) = 0 and since the fundamentals in range d∗ are higher than in c

as we assumed θi < θ∗ and because in interval [θ∗ − ε, θ∗ + ε] the payo� di�erence

v(θ, n) is positive for high values of θ, negative for low values of θ and satis�es single-
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crossing. In addition, the function n(θ, θ∗) equals one over the interval di, since di is

below θ∗−ε. Therefore, the integral
∫
θ∈di v(θ, n(θ, θ

∗)) dθ is negative too which with

(35) implies that D(θi, n(·, θ∗)) is negative. The proof for (32) proceeds analogous.
B No existence of non-monotone equilibria See Goldstein and Pauzner, proof

of Theorem 1, part C

Proof. [Lemma 3.2]

Conditional on observing signal θi an investor's posterior on state θ is uniform

on [θi−ε, θi+ε]. Let n(θ, θ∗) the proportion of depositors who observe signals below

the trigger and thus withdraw (aggregate action) in state θ if the trigger is θ∗.21

Then, by the error distribution

n(θ, θ∗) =


1
2
+ θ∗−θ

2ε
if θ ∈ [θ∗ − ε, θ∗ + ε]

1 if θ ≤ θ∗ − ε
0 if θ ≥ θ∗ + ε.

(37)

The expected payo� from rolling over versus withdrawing given signal θi = θ∗

and threshold θ∗ equals

D(θ∗, θ∗) =
1

2ε

∫ θ∗+ε

θ∗−ε
(θ k − 1) 1{n(θ,θ∗)≤n∗} −

l

δn
1{n(θ,θ∗)>n∗} dθ (38)

The marginal investor who observes signal θi = θ∗ has a uniform belief on n ∼
U [0, 1] (Laplacian belief, see Morris and Shin (2001)). Substituting for n using (37),

0 =

∫ n∗

0

(θ(n, θ∗) k − 1) dn+

∫ 1

n∗
− l

δn
dn (39)

where

θ(n, θ∗) = θ∗ + ε(1− 2n) (40)

is the inverse of n(θ, θ∗) for θ ∈ [θ∗−ε, θ∗+ε]. Plugging in θ(n, θ∗), since the posterior
belief of no run n∗ equals liquidity ratio l

δ
we obtain the equilibrium trigger

θ∗ =
1− ln(n∗(δ))

k
− ε (1− n∗(δ)) (41)

with derivatives which at the limit equal

21 Since the equilibrium is a symmetric trigger equilibrium played by a continuum of debt in-
vestors, the aggregate action is a deterministic function of the random state and the equilibrium
trigger signal and the measure of depositors observing signals below the trigger is given as δn.
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∂

∂δ
θ∗ =

1

kδ
> 0,

∂2

∂δ2
θ∗ = − 1

kδ2
< 0 (42)

∂

∂k
θ∗ = −θ

∗

k
< 0,

∂2

∂2k
θ∗ = −

∂
∂k
θ∗

k
> 0,

∂

∂δ

∂

∂k
θ∗ = −1

k

∂θ∗

∂δ
< 0 (43)

Proof. [Lemma 3.3] From (41), at the limit ε→ 0

θ∗ =
1− ln(n∗(δ))

k
>

1

k
= θ >

l

k
>

l

H
= θe

Proof. [Proposition 3.2]

The utility to depositors from the contract equals

EU =

∫ θ∗−ε

0

l

δ
dθ +

∫ θb

θ∗−ε

l

δn(θ)
n(θ) dθ (44)

+

∫ θ∗+ε

θb

n(θ) + (1− n(θ)) θkdθ +
∫ 1

θ∗+ε

θk dθ (45)

= θb
l

δ
+

∫ θ∗+ε

θb

n(θ) + (1− n(θ)) θk dθ +
∫ 1

θ∗+ε

θk dθ (46)

The value of debt equals

D = δ · EU = θbl +

∫ θ∗+ε

θb

δn(θ) + (1− n(θ)) δθk dθ +
∫ 1

θ∗+ε

θδk dθ (47)

Equity value per unit invested (return on equity) equals

EV =
1

1− δ

∫ 1

θb

θ (H − δn(θ, θ∗)− (1− n(θ, θ∗))δk) dθ (48)

Here, −δn(θ) is the repayment to the LOLR who intervenes for states above θb and

−(1− n(θ))δk is the repayment of debt claims in period two. LOLR intervenes for

states above θb when the bank is solvent while for states above θ∗ + ε all depositors

roll over and intervention is not required. Value of liquidity assistance paid equals
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L =

∫ θ∗+ε

θb

−δn(θ) + θδn(θ) dθ = 2ε

∫ l/δ

0

−δn+ θ(n, θ)δn dθ → 0

by Lebesgues Dominated Convergence Theorem, as the integrand is bounded.

Away from the limit, value of the bank is the sum of the value of debt, equity and

liquidity assistance and the equation follows when canceling out all transfers.

Proof. [Lemma 3.5] From (48)

∂

∂k
EV =

1

1− δ

[
− ∂θb
∂k

θb(H − l − k(δ − l))−
∫ 1

θb

θδ(1− n(θ))dθ (49)

+
∂θ∗

∂k
δ(k − 1)

∫ 1

θb

θ
∂n

∂θ∗
dθ
]

(50)

with n(θb) =
l
δ
. Further, with ∂n

∂θ∗
= 1

2ε
and substituting for n(θ, θ∗),

∫ 1

θb

θ
∂n

∂θ∗
dθ =

1

2ε

∫ l/δ

0

θ(n, θ∗) 2ε dn =

∫ l/δ

0

(θ∗ + ε(1− 2n)) dn (51)

at the limit, the latter part of the integrand vanishes and we have

∂

∂k
EV =

1

1− δ

[
− ∂θb
∂k

θb(H − kδ)−
∫ 1

θb

θδ(1− n(θ))dθ
]

(52)

since at the limit, ∂θ∗

∂k
= ∂θb

∂k
. The �rst term is the change in equity value due to

a change in stability and is positive, the second term is the change in equity value

due to an increase in contract costs and is negative. For the second derivatives, note

that we can take partial derivatives of (52) directly since away from the limit in (51),

any partial derivative of the second part of the integral would vanish as noise goes

to zero.

∂2

∂k2
EV =

1

1− δ

[
−

[
∂2θb
∂k2
· θb +

(
∂θb
∂k

)2
]
(H − kδ) + δ

∂θb
∂k

θb (53)

+

∫ 1

θb

θδ
∂n

∂θ∗
∂θ∗

∂k
dθ +

∂θb
∂k

θbδ(1− n(θb))
]

(54)

with n(θb) =
l
δ
and again with (51) we can simplify
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∂2

∂k2
EV =

1

1− δ

[
−

(
∂2θb
∂k2
· θb +

(
∂θb
∂k

)2
)
(H − kδ) + 2δ

∂θb
∂k

θb

]
(55)

Since ∂2θb
∂k2

= 2θ∗

k2
> 0 and ∂θ∗

∂k
< 0, all terms are negative and equity value is

concave in coupon. As a consequence, for given debt ratio equity value is either

monotone increasing, or monotone decreasing or hump-shaped in k. We have

Lemma 7.1. As coupon approaches its upper bound, equity investors do not partic-

ipate.

By Lemma 7.1, for every debt ratio and k → H, equity value undercuts value

of a direct investment in the asset, thus in equilibrium for given debt ratio equity

values cannot be monotone increasing in coupon since a direct investment in the

asset would perform better for all coupons. Consequently, for every debt ratio in

equilibrium equity value is either hump-shaped or monotone decreasing in k. We

next exclude the latter case. By concavity, if for given debt ratio and equity value

decreases in k as k → 1, it also decreases in k for all higher coupons. But

lim
k→1

∂

∂k
EV =

1

1− δ

[
− ∂θb
∂k

θb(H − δ)−
∫ 1

θb

θδ(1− n(θ))dθ
]

(56)

where −∂θb
∂k

= θb
k
= θb as k → 1 and at the limit, n = 0 for θ > θb, thus∫ 1

θb

θδ(1− n(θ))dθ → 1

2
δ(1− θ2b ) (57)

Thus,

lim
k→1

∂

∂k
EV =

1

1− δ

[
θ2b (H − δ)−

1

2
δ(1− θ2b )

]
(58)

and limk→1
∂
∂k
EV < 0 is equivalent to

θ2b <
δ

2H − δ
(59)

but δ
2H−δ < 1 and as k → 1, we have θb → 1 − ln(l/δ) > 1, thus (59) can never

hold and limk→1
∂
∂k
EV > 0, thus equity value cannot be monotonically decreasing.

Thus, in equilibrium equity value is hump-shaped in coupon k, i.e. there exists an

interior maximizer ku of equity value.

Proof. [Lemma 7.1] From (48),
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Since at the limit n = 0 for θ > θb,

lim
k→H

EV =
1

1− δ

∫ 1

θb

θ H(1− δ) dθ =
∫ 1

θb

θ H dθ <

∫ 1

0

θ H dθ (60)

where the right hand side equals utility from a direct investment in the asset.

Proof. [Proposition 3.3] De�ne coupon kD(δ) as the function of debt ratio such that

depositors' participation constraint remains binding when altering δ. That is, when

considering all run-prone debt ratios δ ∈ [l, 1], the coupon kD may deviate from

the constraint optimal k∗ since in the optimum depositors' constraint may be slack.

Assume for this proof, depositors' participation constraint binds in the optimum,

thus we have k∗ = kD and θb = θb(δ, kD(δ)). The change of bank value for a change

in debt ratio by Proposition 3.2 equals

∂

∂δ
V (k, δ) = (l −Hθb)

dθb
dδ

(61)

where the total change in critical state θb(δ, kD(δ)) is given as

dθb
dδ

=
∂θb
∂δ

+
∂θb
∂k

∂kD
∂δ

(62)

where ∂kD
∂δ

is depositors' marginal rate of substitution. The risk-preserving adjust-

ment kθb(δ), i.e. the coupon at debt ratio δ such that stability is maintained constant

at level θb satis�es

k′(δ)θb =
∂kθb
∂δ

= −
∂θ∗

∂δ
∂θ∗

∂k

= −
1
kδ

− θ∗

k

=
1

δθ∗
(63)

Since l − Hθb < 0, the value of the bank stays constant if and only if the total

change in the critical state is zero dθb
dδ

= 0, i.e. if and only if depositors' marginal

rate of substitution equals the risk-preserving adjustment kθb(δ). If the total change

in critical state is negative, dθb
dδ
< 0, bank value increases since l < Hθb in (61) that

is with ∂θb
∂k

< 0 if and only if

∂kD
∂δ
≥ ∂kθb

∂δ
(64)

Lemma 7.2. It holds

k′D(δ) = −
∂D
∂δ
∂D
∂k

= −
− l
δ2
θb +

∂θb
∂δ

(
l
δ
− θbk

)∫ 1

θb
(1− n(θ))θ dθ + ∂θb

∂k

(
l
δ
− θbk

) (65)
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If the risk-preserving adjustment and depositors' marginal rate of substitution satisfy

(64) the value of the bank increases since the coupon demanded to keep stability

constant grows slower than than coupon demanded by depositors for compensation

of additional risk. By Lemma 7.2, (64) holds if and only if

−
∂θ∗

∂δ
∂θ∗

∂k

≤ −
− l
δ2
θb +

∂θb
∂δ

(
l
δ
− θbk

)∫ 1

θb
(1− n(θ))θ dθ + ∂θb

∂k

(
l
δ
− θbk

) (66)

Since ∂θ∗

∂k
< 0 and the denominator on the right hand side is positive by l

δ
− θbk < 0,

by canceling terms we have equivalence to

∂θ∗

∂δ
∂θ∗

∂k

≥ −
l
δ2
θb∫ 1

θb
(1− n(θ))θ dθ

(67)

where the left hand side equals −k′θb(δ). Since n(θ) = 0 on [θ∗ + ε, 1] and θ∗ + ε→
θ∗ → θb, at the limit ε→ 0,∫ 1

θb

(1− n(θ))θ dθ =
∫ θ∗+ε

θb

(1− n(θ))θ dθ +
∫ 1

θ∗+ε

θ dθ → 1

2
(1− θ2b ) (68)

by Lebesgues dominated convergence Theorem. Plugging in (63), since at the limit,

the trigger and the critical state coincide,

1 ≤
l
δ
θ2b

1
2
(1− θ2b )

(69)

Since θb ∈ (0, 1),

θb ≥

√
1
2

l
δ
+ 1

2

=

√
E[θ]

l
δ
+ E[θ]

=: θM

Proof. [Lemma 7.2] From (44)

∂

∂δ
D = − l

δ2
θb +

∂θb
∂δ

(−(1− n(θb))θbk) +
∫ θ∗+ε

θb

∂n

∂θ∗
∂θ∗

∂δ
(1− θk) dθ (70)

Since for ε→ 0

∫ θ∗+ε

θb

∂n

∂θ∗
∂θ∗

∂δ
(1− θk) dθ = ∂θ∗

∂δ

∫ l/δ

0

1

2ε
(1− θ(n, θ∗)k) dθ → l

δ

∂θb
∂δ

(1− θ∗k) (71)

We have with n(θb) =
l
δ
and θ∗ → θb
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∂

∂δ
D = − l

δ2
θb +

∂θb
∂δ

(
l

δ
− θbk

)
(72)

Similarly,

∂

∂k
D → ∂θb

∂k

(
l

δ
− θbk

)
+

∫ 1

θb

(1− n(θ))θ dθ (73)

Further, since ∂θb
∂k

< 0 and by de�nition of the lower dominance region θbk > 1 >

l/δ, ∂
∂k
D > 0 and thus also ∂

∂k
EU = ∂

∂k
(D/δ) > 0.

Proof. [Proposition 3.4] The change of bank value for a change in debt ratio is given

by (61) where now the total change in critical state θb(δ, k
u(δ)) derives from a direct

change in debt and the indirect change via interior, unconstrained maximizer of

equity value ku given depositors' constraint is slack

dθb
dδ

=
∂θb
∂δ

+
∂θb
∂k

∂ku

∂δ
(74)

Since ku is implicitly de�ned by

∂

∂k
EV (δ, ku(δ)) = 0 (75)

with l < Hθb and
∂θb
∂k

< 0, by (61) bank value deteriorates in debt if dθb
dδ

> 0 or

alternatively
∂ku

∂δ
< −

∂θb
∂δ
∂θb
∂k

(76)

where the right hand side is the change in coupon necessary for an incremental

change in debt to maintain the bankruptcy state at a constant level. By de�nition

(75), as debt increases, ku has to change in a way that marginal equity value remains

zero, i.e. such that the total derivative satis�es d
dδ

∂
∂k
EV (δ, ku(δ)) = 0. The total

derivative equals

d

dδ

∂

∂k
EV (δ, ku(δ)) =

∂

∂δ

∂

∂k
EV (δ, ku(δ)) +

∂2

∂k2
EV (δ, ku(δ))

∂ku(δ)

∂δ
(77)

setting equal to zero yields

∂ku(δ)

∂δ
= −

∂
∂δ

∂
∂k
EV (δ, ku(δ))

∂2

∂k2
EV (δ, ku(δ))

(78)
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Calculating the cross-derivative, with n(θb) =
l
δ
, applying (51), ∂

∂δ
∂θb
∂k

= − 1
k
∂θ∗

∂δ
and

− 1
k
θb =

∂θ∗

∂k
, at the limit yields

∂

∂δ

∂

∂k
EV =

1

1− δ

[
− 2

∂θ∗

∂δ

∂θb
∂k

(H − δk) + ∂θb
∂k

θbk +
∂θb
∂δ

θb δ −
∫ 1

θb

θ(1− n(θ))dθ
]

+
1

1− δ
∂

∂k
EV (79)

With our results from above, inequality (76) is equivalent to

−

[
− 2∂θ

∗

∂δ
∂θb
∂k

(H − δk) + ∂θb
∂k
θbk +

∂θb
∂δ
θb δ −

∫ 1

θb
θ(1− n(θ))dθ

]
+ ∂

∂k
EV[

−
(
∂2θb
∂k2

θb +
(
∂θb
∂k

)2)
(H − kδ) + 2δ ∂θb

∂k
θb

] < −
∂θb
∂δ
∂θb
∂k

(80)

Lemma 7.3. Inequality (80) is at the limit equivalent to

θ2b − θb
2H

k(2H − k)
1− δ
δ
− k

(2H − k)
< 0 (81)

Setting the left hand side equal to zero yields the solution

θb,N1/N2 =
H

k(2H − k)
1− δ
δ
±

√(
H

k(2H − k)
1− δ
δ

)2

+
k

(2H − k)
(82)

Since k
(2H−k) > 0, the smaller solution θb,N1 undercuts zero. Since θb can only

take values in [0, 1], the critical states which satisfy (81) and for which bank value

deteriorates in debt, lie in the interval [0, θb,N2] with

θb,N2 =
H

k(2H − k)
1− δ
δ

+

√(
H

k(2H − k)
1− δ
δ

)2

+
k

(2H − k)
(83)

where θb,N2 monotonically decreases in δ. For θb > θb,N2, the equilibrium change in

coupon is such that bank value improves in debt. For θb = θb,N2, ku changes such

that the critical state remains constant. Last apply E[θ] = 1/2.

Proof. [Lemma 4.1]

In the run-proof case the payo� indi�erence equation becomes
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0 =
1

2ε

∫ θ∗+ε

θ∗−ε
(θ k − 1) dθ (84)

which yields the solution θ∗ = 1
k
= θ which decreases in k.

Proof. [Lemma 7.3]

With ∂2θb
∂k2

= − 2
k
∂θ∗

∂k
and since −∂θ∗

∂k
> 0, multiplication on both sides of (80) with

−∂θ∗

∂k
yields

[
− 2∂θ

∗

∂δ
∂θb
∂k

(H − δk) + ∂θb
∂k
θbk +

∂θb
∂δ
θb δ −

∫ 1

θb
θ(1− n(θ))dθ

]
+ ∂

∂k
EV[(

2
k
θb −

(
∂θb
∂k

))
(H − kδ) + 2δ θb

] <
∂θb
∂δ

(85)

since at the limit, ∂θ∗

∂k
= ∂θb

∂k
. Further, since the denominator on the left hand

side is positive, multiplication and plugging in ∂
∂k
EV from (52), k′θb(δ) = −

∂θb
∂δ
∂θb
∂k

= 1
δθb

and the cross derivatives of the trigger yields

− θ2bδk − (
kδ

1− δ
)

∫ 1

θb

θ(1− n(θ))dθ +
δ

1− δ
θ2b (H − kδ) < θb

H

k
(86)

As ε→ 0, since n(θ) = 0 on [θ∗ + ε, 1], we have∫ 1

θb

θ(1− n(θ))dθ → 1

2
(1− θ2b ) (87)

Plugging in and sorting terms, since H > k the inequality follows.

Proof. [Proposition 4.1] Assume the bank is run-proof, δ < l. All depositors only

withdraw if they infer from their signals that the true state lies in the lower dom-

inance region, that is we have θb = θ > θe. The lender of last resort assists with

liquidity for all states above critical state θb = θ. Since the bank is run-proof a frac-

tion of the asset remains invested independently of how many depositors withdraw

if the bank decides to do so. Assume θ ≥ θ, then all depositors roll over. If the

bank liquidates the asset, she realizes t2 equity value (l − δk)/(1 − δ) > 0 while if

she continues she realizes θ(H − δk)/(1− δ) since for states above the critical state
LOLR pays liquidity assistance so the bank does not need to liquidate assets. She
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therefore voluntarily liquidates if and only if

θ ≤ l − δk
H − δk

(88)

But l−δk
H−δk <

l
H
< 1

k
= θ by Lemma 3.3, since H > l. Thus for states θ ≥ θ the bank

does not liquidate voluntarily. Now assume θ < θ. Then all depositors withdraw,

n = 1 in t1 and no liquidity assistance is paid. The total continuation value of

investment is θH(1− δ/l) since the bank needs to liquidate fraction δ/l of the asset

to repay withdrawing depositors. If she liquidates the entire asset, she realizes l− δ.
Thus, she voluntarily liquidates assets if and only if

θ ≤ θv =
l − δ

H(1− δ/l)
=

l

H
= θe (89)

that is the bank liquidates exactly for states below the e�ciency cut-o�. Ex-

pected equity value for 1− δ units invested in the run-proof bank is thus

EV = (l − δ) θe +
∫ θ−ε

θe

θ H(1− δ

l
) dθ +

∫ θ

θ−ε
θ

(
H(1− δn(θ)

l
)− (1− n(θ))δk)

)
dθ

(90)

+

∫ θ+ε

θ

θ(H − δn(θ)− (1− n(θ))δk) dθ +
∫ 1

θ+ε

θ(H − δk) dθ (91)

where δn/l < 1 by δ < l, while value of debt equals

D = 1 · (θ − ε)δ +
∫ θ+ε

θ−ε
δn(θ) + (1− n(θ))δkθ dθ +

∫ 1

θ+ε

θδk dθ (92)

LOLR intervenes for states above θ while assistance is needed only for states below

θ + ε, otherwise all depositors roll over. Thus, the value of liquidity assistance is

L =

∫ θ+ε

θ

−δn(θ) + θδn(θ) dθ

The value of the bank is the sum of equity value, value of debt and liquidity

assistance, canceling out all transfers and considering n = 0 for θ < θ − ε

V rp = l θe +

∫ 1

θe

θ H dθ + δ

∫ θ

θe

n(θ, θ∗)(1− θH/l)) dθ (93)
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The states θe and θ are constant in debt ratio. Only the last term is negative due

to ine�cient liquidation and depends on debt via the integrand and the trigger in

the function n(θ, θ∗). The trigger increases in debt and function n increases in the

trigger such that the last term and thus value of the run-proof bank monotonically

decrease in debt ratio. At the limit, all depositors withdraw n(θ) = 1 for states in

the lower dominance region θ < θ and the formula follows.

Lemma 7.4. Consider a run-proof bank. If LOLR intervenes with liquidity assis-

tance for all states, still the bank's risk class varies in debt ratio.

Proof. [Lemma 7.4] This policy can be justi�ed, since a run-proof bank is in fact

solvent for all states at the interim period. Then, value of the run-proof bank will

take a di�erent form. Still, an ine�ciency whose size depends on the debt ratio

will persist since the bank will not liquidate voluntarily at the e�cient state. Thus

again, her risk-class will vary in her debt ratio. Assume θ < θ. Then all depositors

withdraw in t1. Equity value from voluntary liquidation is l − δ and equity value

from continuation is θ(H− δ) since the LOLR intervenes. Thus, the bank liquidates

voluntarily for states

θ < θv :=
l − δ
H − δ

<
l

H
= θe (94)

and the cuto� below she liquidates voluntarily depends on her debt ratio. Thus, an

ine�ciency remains and again her risk-class depends on her debt ratio.
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