The economy is changing. We need new tools.

- The largest firms are valued primarily for their data.
- Do the economics change? Or is data just new capital?

Challenges:

- Economic activity generates informative data. Production is a form of active experimentation.
- How do we value information used for multiple periods? Requires dynamic programming with information as a state variable.
- Data depreciation depends on economic fluctuations.
- Data is a non-rival good, whose value declines when it is sold.
Overview

- Model: recursive framework, as tractable as std DSGE.
 - A tool to value data and data-intensive firms.

- Long run growth
 - Diminishing returns

- Short run tools
 - Increasing returns

- Efficiency and externalities

- Imperfect Competition and Market Power
continuum of competitive firms i

each uses capital $k_{i,t}$ to produce k_i^α units of goods

these goods have quality $A_{i,t}$

Output / demand

\[Y_t = \int_i A_{i,t} k_i^\alpha di \]

\[P_t = \bar{P} Y_t^{-\gamma} \]
firm has one optimal technique: $\theta_t + \epsilon_{a,i,t}$

- θ_t: AR(1), innovation $\eta_t \sim N(\mu, \sigma^2_{\theta})$

$$\theta_t = \bar{\theta} + \rho(\theta_{t-1} - \bar{\theta}) + \eta_t$$

- $\epsilon_{a,i,t} \sim N(0, \sigma^2_{\epsilon})$ is unlearnable and i.i.d.

- quality depends on chosen production technique $a_{i,t}$ and distance to optimum $(\theta_t + \epsilon_{a,i,t})$:

$$A_{i,t} = g \left((a_{i,t} - \theta_t - \epsilon_{a,i,t})^2 \right)$$

- $g(.)$: monotonically decreasing (accuracy is good)
at time t, firm obtains $n_{i,t}$ data points about θ_{t+1}

\triangleright $n_{i,t} = z_i k_{i,t}^\alpha$

\triangleright data is a byproduct of production with data-mining ability z_i

each data point $m \in [1 : n_{i,t}]$ reveals

$$s_{i,t,m} = \theta_{t+1} + \xi_{i,t,m} \quad \text{where} \quad \xi_{i,t,m} \sim N(0, \sigma^2_\epsilon)$$
Data Feedback Loop

More Data

More Transactions / Customers

Higher Quality / Efficiency
Model: Market for Data

- $\delta_{i,t}$: amount of data traded by firm i at time t
 - $\delta_{i,t} > 0$: data purchases (< 0: data sales)
 - firm can buy or sell, not both

- data price π_t clears the data market

- multi-use data: firm can sell it and still use it
 - ι: fraction of sold data that is lost
 - We need $\iota > 0$ for a competitive equilibrium to exist.
 - Many data contracts include prohibitions on seller use. Or this captures imperfect competition.

- Data adjustment cost: $\Psi(\cdot)$: avoid 1-period convergence
Valuing and depreciating data as an asset.

What happens in the long run?
 ▶ Diminishing returns: no long-run growth without innovation.
 ▶ Endogenous growth: If data is used for R&D

What happens in the short run?
 ▶ Increasing returns, data poverty traps
 ▶ data barter and book-to-market dynamics

Welfare and business stealing
Solution: Depreciating Data with Bayes Law

- Goal is to forecast \(\theta_{t+1} = \rho \theta_t + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim N(0, \sigma^2_{\theta}). \)

- Priors: \(E[\theta_t|I_t] \) and \(V[\theta_t|I_t] := \Omega_t^{-1} \). \(\Omega_t \) is “stock of knowledge.”

- What are today’s beliefs about tomorrow’s state?

\[
E[\theta_{t+1}|I_t] = \rho E[\theta_t|I_t]
\]

\[
V[\theta_{t+1}|I_t] = \rho^2 \Omega_t^{-1} + \sigma^2_{\varepsilon}
\]

- Bayes law for normal variables says:
 posterior precision = prior precision + signal precision \(\sigma^{-2}_s \).

- A law of motion for stock of knowledge (Kalman filter, Ricatti eqn):

\[
\Omega_{t+1} = (\rho^2 \Omega_t^{-1} + \sigma^2_{\theta})^{-1} + \sigma^{-2}_s
\]

Discount more for low persistence \(\rho \) and volatile innovations \(\sigma^2_{\theta} \).
Semi-rival data as a negative bid-ask spread

- For data purchases ($\delta_{i,t} > 0$), data added to stock is $n_{i,t} + \delta_{i,t}$.

- For data sales ($\delta_{i,t} < 0$), net data additions are $n_{i,t} + \iota \delta_{i,t}$.

- An adjusted price of data: $\tilde{\pi}_{i,t} \equiv \pi / (1_{\omega_{i,t} > n_{i,t}} + \iota 1_{\omega_{i,t} < n_{i,t}})$.

- This price is higher for data sales than it is for data purchases. We can use tools from finance for modeling economies with bid-ask spreads.
Valuing Data: A Recursive Solution

- $a_{i,t}^* = \mathbb{E}[\theta_t + \varepsilon_{i,t} | \mathcal{I}_{i,t}] \rightarrow$ Quality $A_{i,t} \approx$ a fn of squared forecast error.

- **state variable: stock of knowledge**

\[
\Omega_{i,t} \equiv \mathbb{E} \left[\left(\mathbb{E}[\theta_t | \mathcal{I}_{i,t}] - \theta_t \right)^2 \right]^{-1} \text{ (posterior precision)}
\]

Lemma

The optimal sequence of capital / data choices $\{k_{i,t}, \delta_{i,t}\}$ **solves:**

\[
V(\Omega_{i,t}) = \max_{k_{i,t}, \delta_{i,t}} P_t \mathbb{E}_i \left[A_{i,t}(\Omega_{i,t}) \right] k_{i,t}^\alpha - \Psi(\Delta \Omega_{i,t+1}) - \pi \delta_{i,t} - rk_{i,t} + \frac{V(\Omega_{i,t+1})}{1 + r}
\]

where $n_{i,t} = z_i k_{i,t}^\alpha$ and (Kalman filter)

\[
\Omega_{i,t+1} = \left[\rho^2 (\Omega_{i,t} + \tilde{\sigma}_a^{-2})^{-1} + \sigma_\theta^2 \right]^{-1} + \left(n_{it} + \delta_{it} (1 \delta_{it>0} + 1 \delta_{it<0}) \right) \sigma_\varepsilon^{-2}
\]
Understanding Growth. Data Inflows and Outflows

- **inflow**: \(z_i k_{it}^\alpha \sigma_\varepsilon^{-2} \) (# of data points \(\times \) precision)

- **outflow**: data depreciation

```
Growth stops for two reasons: Can’t reduce errors below zero and unlearnable risk.
```
Endogenous Growth

- So far, data added to current productivity. Did not augment a stock of ideas.

- Alternative model: Data \rightarrow idea creation

\[A_{i,t} = A_{i,t-1} + \max\{0, \Delta A_{i,t}\}, \quad (1) \]
\[\Delta A_{i,t} = \bar{A} - (a_{i,t} - \theta_t - \varepsilon_{a,i,t})^2. \quad (2) \]

- Data increases step size in a quality ladder \rightarrow growth

- One should distinguish data used for research from data used for process optimization. (Just like capital vs. R&D investment.)

Long run, data looks just like capital
Short Run: Single firm enters a steady state

Proposition (Convex Data Flow)

There exist parameters α and \bar{P}, and a threshold $\hat{\Omega}$ such that when knowledge is scarce $\Omega_{it} < \hat{\Omega}$, net data flow $d\Omega_{it}$ increases over time.

Could explain firm size divergence, ... and eventually convergence?
Data Barter. Why Produce At a Loss?

- **Barter means**: data is “exchanged” for the good
 - at good price \(P_t = 0 \)

- Reality: lots of data is bartered for services (phone apps)

- Result: Data barter arises early in a firm’s life (depends on pref.s)
 - firms produce goods at a loss to generate data

\[
\frac{\partial V_t}{\partial \Omega_{i,t}} > 0
\]

- GDP is missing lots of digital economic activity because price does not reflect value.

How to correct it?
Welfare, Decentralization and Efficiency

- Household problem: c_{it} is quality units consumed
 \[\max \sum_{t=0}^{\infty} \beta^t \left(\bar{u} \frac{c_t^{1-\gamma}}{(1-\gamma)} + m_t - \frac{h_t^{1+v}}{(1+v)} \right) \]
 subject to \[p_t c_t + m_t = \Pi_t + w_t h_t, \quad \forall t \]
- Numeraire good m production linear in labor h_t, with wage w_t
 \[\max n_t \bar{m} n_t - w_t h_t \]
- Retail good c produced with data and capital, with $E[A_{i,t}]$ and data law of motion, as before. Firm solves
 \[\max \sum_{t=0}^{\infty} \frac{1}{(1+r)^t} \left(P_t E[A_{i,t} k_{i,t}^\alpha] - \psi(\Omega_{i,t+1}) - \Pi_{i,t} - r k_{i,t} \right) \]
- Consumption and data markets clear: $\sum_i c_{it} = A_{it} k_{jt}^\alpha$
 Numeraire used to pay capital rental at open economy r.

→ Efficiency. No externalities.
Lots of data used for advertising. Arguable business stealing.

We can adjust quality so that data processing helps the firm that uses it, but has no social value:

Morris-Shin (2002)

\[A_{i,t} = \bar{A} - (a_{i,t} - \theta_t - \varepsilon_{a,i,t})^2 + \int_{j=0}^{1} (a_{j,t} - \theta_{j,t} - \varepsilon_{a,j,t})^2 dj \]

- Unchanged: firm choices, firm dynamics, aggregate quality
- Changed: welfare
Key features of the model:
▶ Data is information. Information resolves uncertainty (risk). We model this as uncertain consumer demand for a variety of products.
▶ Firms price risk.
▶ Firms choose an up-front investment and then choose how much to produce (Cournot).

Data’s Competing Effects on Markups

In the paper: Markup Measurement
▶ Data creates composition effects: How one measures markups matters.
▶ Procyclical product and counter-cyclical firm / industry markups
Model (1/2): Firms

- n_F firms, indexed by i.

- The product space has N attributes, indexed by j. Goods, indexed by k, are combinations of attributes with weights a_{jk}.

- Firm chooses: investment in lowering marginal cost c_i at price $g(\chi_c, c_i)$, and a quantity to produce q_i (vector) to maximize $E[U_i]$ and U_i:

$$U_i = E[\pi_i | I_i] - \frac{\rho_i}{2} \text{Var}[\pi_i | I_i] - g(\chi_c, c_i)$$

$$\pi_i = q'_i (p - Ac_i)$$

- ρ_i is firm i’s price of risk. From CAPM? From preferences?
Model (2/2): Demand and Data

- **Demand**: Customers’ willingness to pay decreases in the quantity that all firms produce of attribute $j +$ firm-specific shock b_i:

$$
\hat{v}_i = \hat{p} - \frac{1}{\phi} \sum_{i'=1}^{N} \hat{q}_{i'-j} + b_i
$$

attribute demand shock $b_i \sim N(0, I)$ is i.i.d. across firms (relax). ϕ is price elasticity of demand.

- **Customers’ value of a good is linear in attributes** $v_k = \sum_{j=1}^{N} a_{jk} \hat{v}_j$.

- **Data is information about demand shocks**: (exogenous)
 - n_{di} data points for firm i, independent across firms.
 - Each data point is: $\tilde{s}_{i,z} = b_i + \tilde{\epsilon}_{i,z}$, where $\tilde{\epsilon}_{i,z} \sim N(0, \Sigma)$.
 - Information set: $\mathcal{I}_i := \{ \{ \tilde{s}_{i,z} \}_{z=1}^{n_{di}} \}_{i=1}^{n_F}$ (All info public. Private info in appdx)
Equilibrium

- FOC: Production depends on risk and price impact (denominator) and expected profit (numerator) Kyle ‘89 or Back and Zender ‘93.

$$q_i = \left(\rho_i \text{Var}[p_i|\mathcal{I}_i] + \frac{\partial \mathbb{E}[p_i|\mathcal{I}_i]}{\partial q_i} \right)^{-1} \left(\mathbb{E}[p_i|\mathcal{I}_i] - c_i \right)$$

- Define sensitivity of production to a change in the expected price:

$$H_i := \left(\frac{2}{\phi} I_N + \rho_i \text{Var}[b_i|\mathcal{I}_i] \right)^{-1}$$

Data lowers Var, raises H_i.

H_i governs the $\text{cov}(q_i, p_i)$.

Data allows a firm to choose quantities that covary with prices.

- Optimal choice of cost (firm size):

$$\frac{\partial \mathbb{E}[U_i]}{\partial \tilde{c}_{ij}} = \frac{1}{2} \frac{\partial \mathbb{E}[\tilde{p} - \tilde{c}_i]}{\partial \tilde{c}_{ij}} H_i \mathbb{E}[\tilde{p} - \tilde{c}_i] - \frac{\partial g(\chi_c, \tilde{c}_i)}{\partial \tilde{c}_{ij}} = 0 \ \forall j$$

marginal benefit

marginal cost
Product Markups

Product-level markup for k produced by firm i:

$$M_{ik}^p := \frac{E[p_i(k)]}{c_i(k)}$$

$$= \frac{1}{a_k'c_i} \left(a_k'p - a_k'A^{-1}(\phi I + \bar{H})^{-1} \left(\sum \hat{H}_{i'j}A(p - \tilde{c}_{i'}) \right) \right)$$

What makes product markups large?

- Having lots of valuable attributes: big a_k’s.
- Low price elasticity of demand: Low ϕ.

New:
- Scarce data or high price of risk. High $\rho Var[p|\eta_j]$ makes \bar{H} low. Markup has a risk premium in there.
Proposition

Data-investment complementarity. Data lowers choice of c_i.

Proposition

Higher investment raises product markups. Lower c_i increases M_{ik}^p.

Single-good duopoly. $g(\chi_c, c_i) = \chi_c (\overline{c} - c_i)^2 / 2$ with $\chi_c = 1$ and $\overline{c} = 3$; $p = 5$, $\phi = 1$, $\sigma_b = 1$.
Markups: Risk Premium Channel

Proposition

*For investment cost χ_c or ρ sufficiently high, data reduces M_{ik}^p.***

Proposition

Net effect: Data in(de)creases product markups when risk price or marginal cost of investment is sufficiently low (high).
Dynamic Imperfect Competition

How to combine the recursive economy with the static imperfect competition model?

Challenges: Every firm’s information matters for price. All information sets are state variables.

Potential payoffs:
Understand new firm dynamics in a digital economy.

How to measure competition when many prices are zero?

How to value firms that have never made a profit?

What if we add firm entry?

Welfare? Should we tax data? How?
Conclusions

- Economists cannot continue to study industrial economies. We live in a knowledge economy. We need modern tools that reflect this reality.

- Knowledge economies are not easy to work with. Production generates data, depreciation not std, semi-rivalry, increasing returns and decreasing returns, information state variables.

- Lots of new directions to explore
 - measurement
 - firms dynamics
 - data pricing and valuation theory