A MONETARY POLICY ASSET PRICING MODEL

Ricardo J. Caballero
Alp Simsek

WORKING PAPER 30132
Felipe Del Canto provided outstanding research assistance. We also thank Chris Ackerman, Benjamin Boehlert, Jonathan Brownrigg, John Campbell, Nicolas Caramp, William English, Vadim Elenev, Martin Lettau, Caroline Pflueger, Karthik Sastry and seminar participants at BoE, Cowles, CREI, HBS, LSE, NBER EFG, WFA, NUS, NYU Stern, Stanford, UCSB, UCI, and Koc University for their comments. Caballero acknowledges support from the National Science Foundation (NSF) under Grant Number SES-1848857. First draft: May 03, 2022. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2022 by Ricardo J. Caballero and Alp Simsek. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

We propose a model where the central bank’s (“the Fed’s”) interpretation of macroeconomic needs drives aggregate asset prices. The Fed affects macroeconomic activity with a lag by altering aggregate asset prices. Its objective is to align future aggregate demand and supply (in expectation). We reverse engineer the aggregate asset price that implements the Fed’s objective (“pystar”) and derive several implications: (i) the Fed’s beliefs about future macroeconomic needs (aggregate demand and supply) drive aggregate asset prices, while standard financial forces determine relative asset prices; (ii) more precise news about future aggregate demand makes output less volatile but increases asset price volatility; (iii) with aggregate demand inertia, the Fed overshoots asset prices in response to current output gaps; (iv) inflation is negatively correlated with aggregate asset prices, regardless of its source (aggregate demand or supply); and (v) belief disagreements between the central bank and the market generate a policy risk premium and potential “behind-the-curve” asset price dynamics.

Ricardo J. Caballero
Department of Economics, E52-528
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
and NBER
caball@mit.edu

Alp Simsek
Yale School of Management
Yale University
Edward P. Evans Hall
165 Whitney Ave
New Haven, CT 06511
and NBER
alp.simsek@yale.edu

Dynamic link to most recent draft:
https://www.dropbox.com/s/m9zsyrrxxwettjzz/MPAPpublic.pdf?dl=0
1. Introduction

“So, of course, monetary policy does, famously, work with long and variable lags. The way I think of it is, our policy decisions affect financial conditions immediately. In fact, financial conditions have usually been affected well before we actually announce our decisions. Then, changes in financial conditions begin to affect economic activity... within a few months.” (Chair Jerome Powell’s Press Conference, September 21, 2022)

Monetary policy works by changing financial conditions—a summary measure of aggregate asset prices—which then transmits to the real economy with a lag. In this paper, we turn these observations into an asset pricing model. The key idea is to reverse engineer the Fed’s policy problem to solve for the aggregate asset price per potential output that ensures future macroeconomic balance under the Fed’s beliefs (“pystar”). When the Fed is unconstrained and acts optimally, asset prices cannot deviate much from “pystar.” For example, during the late stages of the Covid-19 recovery, we saw several episodes where markets attempted to rebound. However, these rallies were quickly reversed by a Fed speech or a policy announcement, since the Fed believed the economy needed tight financial conditions to reduce inflation.

Our model features a two-speed economy: a slow and unsophisticated macroeconomic side and a fast and sophisticated financial market side. The two-speed is a realistic feature, as emphasized by Chair Powell’s quote, and it enables us to introduce policy transmission lags and other frictions that complicate monetary policy in practice. Specifically, in our model spending decisions are made by a group of agents (“households”) that respond to asset prices, but with noise, delays, and inertia. Asset pricing is determined by a different group of agents (“the market”), who are forward looking, and immediately react to economic shocks and the likely monetary policy response to those shocks. The Fed wants to influence the behavior of households, but it needs to operate through the market. Moreover, the market and the Fed have their own sets of beliefs about the future.

1 One of the most popular financial conditions index followed by practitioners is Goldman’s GSUSFCI Index (see Hatzius and Sten [2018]). Excluding house prices (for which there is no high frequency data), the equity market dominates fluctuations in financial conditions in the US since 2000. The equity market (measured as the Shiller’s P/E ratio) accounts for about 40 percent of the average annual absolute change in financial conditions. This compares with less than 20% (each) for corporate spreads and riskless long rates. See Hatzius et al. [2017]. Recently, Ajello et al. [2023] propose a new financial conditions index based on the FRB/US model, which carefully integrates the transmission lags of different asset prices and spreads. Their estimates indicate that equity price increases, followed by house price increases, accounted for the lion’s share of the policy-induced loosening in financial conditions during Covid-19 (until 2022).

2 The model also has “hand-to-mouth” agents, but these only play a technical role, as they simplify the labor supply side of the model and generate a Keynesian multiplier.
state of the economy and the corresponding policy response. This means that the Fed needs to closely monitor and “cooperate” with the market to control asset prices, and the market needs to monitor the Fed to determine asset prices and the risk premium.

As a baseline, we start with a relatively standard model without transmission lags. Specifically, households mostly follow the optimal consumption rule with log utility. They respond to aggregate wealth immediately, with a constant marginal propensity to consume (MPC) out of wealth. We allow for aggregate demand shocks, which we capture with noisy deviations from the optimal consumption rule but could be interpreted as, e.g., MPC shocks or fiscal policy. This baseline model isolates a key mechanism that is at the heart of several of our main results: “pystar” is driven by macroeconomic needs—imbalances between aggregate demand and supply—rather than by financial forces such as cash-flow expectations or risk premia. Aggregate asset prices should be such that they induce households to spend just enough to ensure that output is at its potential. This logic determines “pystar” purely from macroeconomic conditions, leaving no room for traditional financial forces. In the background, the Fed adjusts the interest rate (or, in practice, any other tool it may have available) to implement “pystar.” For instance, when the market becomes more pessimistic about future cash flows, aggregate asset prices do not decline because the Fed cuts the interest rate—providing an explanation for “the Fed put.” Instead, these types of purely financial shocks drive relative asset prices, such as the price of aggregate stocks vs aggregate bonds, subject to an adding-up constraint determined by macroeconomic needs.

We then turn to our main model. The baseline model attributes too much power to monetary policy and leaves no room for the Fed’s beliefs (or judgement) to affect macroeconomic outcomes. In practice, monetary policy has much less control over aggregate demand. A major reason for this lack of control is policy transmission lags. These lags are empirically well documented and they make monetary policy difficult and belief-dependent: the Fed needs to forecast future macroeconomic conditions because it effectively sets policy for a future period. The core of the paper introduces transmission lags and related realistic frictions, and derives their implications for aggregate asset prices.

We start by analyzing pure transmission lags, which we capture by making households respond to asset prices with a lag. In this setup, we show that the Fed’s beliefs about future aggregate demand and supply drive “pystar.” When the Fed expects aggregate demand to be relatively low or aggregate supply to be relatively high (as in the Covid-19 recovery), it targets higher asset prices. Conversely, when the Fed expects high demand or low supply, it sets lower asset prices. In this context, asset prices fluctuate with macroeconomic news about future demand or supply that shifts the Fed’s beliefs. More precise news
about future aggregate demand makes output less volatile but, perhaps surprisingly, it also makes the aggregate asset price more volatile. As the Fed’s ability to forecast the future improves, the Fed preempts and mitigates demand-driven business cycles, but the Fed achieves this stability in the real economy by inducing larger fluctuations in financial markets.

We then turn to a richer setup that additionally features internal demand inertia: along with responding to asset prices with a lag, households partly repeat their own past spending behavior. Internal inertia and transmission lags are closely related because at a microeconomic level they emerge from the same frictions that generate inertial behavior, such as adjustment costs or habit formation. When we allow for internal demand inertia, current output persists into the future even if the driving shocks are not persistent. The Fed then targets a “pystar” that neutralizes the future effects of current output. When output is below (resp. above) its potential, the Fed overshoots asset prices upward (resp. downward) to achieve macroeconomic balance faster. This overshooting seemingly creates a disconnect between the performance of the real economy and financial markets, but it also accelerates the recovery.

For simplicity, in most of the paper we assume fully sticky good prices. When we endogenize inflation via a standard New Keynesian Phillips Curve (NKPC), we find that inflation is negatively correlated with aggregate asset prices, regardless of whether inflation is driven by demand or supply shocks. This result is driven by two observations. First, with transmission lags the Fed stabilizes the expected future output gaps and inflation, but it cannot stabilize the current output gap. Therefore, inflation depends only on the current output gap. Second, both demand and supply shocks induce a negative covariance between the current output gap and aggregate asset prices. A positive demand shock raises the output gap (and inflation) and induces the Fed to overshoot asset prices in the downward direction. A negative supply shock also raises the output gap (and inflation) and induces the Fed to target a lower asset price to align the future demand with the lower level of supply. It follows that in our model inflation is bad news for asset prices. This also implies that the inflation risk premium is typically positive: the expected real return on the nominal risk-free asset (which is subject to inflation risk) usually exceeds the return on the real risk-free asset (which is inflation-protected).

Since the Fed’s beliefs about the future state of the economy drive asset prices, our final set of results investigate what happens when the Fed and the market have belief disagreements—as we routinely see in practice. Our earlier results are robust to disagreements: the Fed still implements the “pystar” that is appropriate under its own belief. However, disagreements affect the risk premium and the policy interest rate. When the
market disagrees with the Fed, it perceives policy “mistakes.” The market’s anticipation of future disagreements and “mistakes” increases the aggregate risk premium—we refer to this as a policy risk premium. In addition, current disagreements create a “behind-the-curve” phenomenon where the market expects the Fed to reverse course. For instance, a demand-optimistic market (that expects higher aggregate demand than the Fed) thinks a dovish Fed will induce a positive output gap, after which it will have to reverse course and overshoot asset prices downward. We further show that disagreements affect the interest rate the Fed needs to set to achieve “pystar.” The market’s perception that the Fed is behind-the-curve and will make future “mistakes” exerts pressure on aggregate asset prices. In equilibrium, the Fed adjusts the interest rate to absorb this pressure and keep the asset price at “pystar” (in line with “the Fed put/call”).

Literature review. This paper is about the interaction between monetary policy, financial markets, and business cycles. Our earlier work on this subject focused on spillover effects from financial markets to macroeconomic outcomes. When monetary policy is constrained, financial market shocks or frictions—such as time-varying risk premia or financial speculation—can cause aggregate demand recessions and motivate prudential policies (see, e.g., Caballero and Simsek (2020, 2021c); Pflueger et al. (2020); Caballero and Farhi (2018)). Likewise, policy constraints and financial frictions can amplify supply shocks and motivate unconventional monetary policy (see, e.g., Caballero and Simsek (2021a)). This paper uses a similar conceptual framework but focuses on the spillback effects from macroeconomic needs to financial markets. To make these needs realistic, we enrich the macroeconomics side of our earlier model with ingredients such as demand shocks, transmission lags, and demand inertia. We focus on the asset pricing implications of a monetary policy framework aimed at stabilizing this richer economy.

In terms of the specific modeling ingredients, we build on some of the insights in our recent work. In Caballero and Simsek (2021b), we showed that demand inertia induces the Fed to generate a temporary disconnect between the real economy and asset prices. In Caballero and Simsek (2022a), we began our exploration of the consequences of disagreements between the Fed and the market for optimal monetary policy. The former paper studies a one-off shock, while the latter paper’s analysis is conducted within a standard log-linearized New Keynesian model (without explicit asset prices or risk). This paper integrates the monetary policy insights of both papers into a proper asset pricing model with risk and risk-premia. This integration uncovers several new results that have no counterparts in our earlier work. Among other results, we show that the Fed’s beliefs drive asset prices, inflation is negatively correlated with aggregate asset prices,
and the Fed-market disagreements induce a policy risk premium and a behind-the-curve phenomenon.

Contemporaneously, Bianchi et al. (2022a,b) build and estimate models in which asset prices, like in our model, are determined by forward-looking agents ("investors"), whereas the macroeconomic dynamics are driven by less sophisticated agents with inertial beliefs ("households"). They emphasize that investors’ beliefs about monetary policy regimes affect asset prices. A key substantive difference between our models is that in ours macroeconomic outcomes are affected by asset prices. This channel drives our results, as it provides the rationale for the Fed to target asset prices.

In our model, the Fed is concerned about asset prices primarily due to their impact on aggregate demand. This perspective aligns with that of Bernanke and Gertler (2000, 2001), who argue that the Fed should not stabilize asset prices per se—it should instead stabilize the inflationary and disinflationary pressures generated by asset price fluctuations. Our paper complements Bernanke and Gertler (2000, 2001) in the sense that they focus on the optimal monetary policy implied by this perspective, while we focus on the implications for asset prices and the risk premium. The connection between the Fed and asset prices is also present in an emergent New Keynesian literature with explicit risk markets (Caballero and Simsek (2020); Kekre and Lenel (2021); Pflueger and Rinaldi (2020)). That literature focuses on risk-market shocks or monetary policy shocks, whereas we focus on macroeconomic shocks and highlight how they can spill back to risk markets through the Fed’s response to these shocks. Also, in that literature the Fed is often embedded in a Taylor-type rule, rather than being an optimizing agent with its own set of beliefs.

The idea that asset prices are influenced by macroeconomic conditions is familiar from consumption-based asset pricing models (e.g., Lucas (1978)). Relative to this literature, our model has two distinct features: Output is determined by aggregate demand (due to nominal rigidities) and policy affects output with lags. These features create a central role for the Fed: in our model, asset prices are driven by macroeconomic conditions filtered through the Fed’s beliefs.

There is an extensive finance literature documenting “excess” volatility in asset prices, such as the stock market (see, e.g., Shiller (2014)). The literature has emphasized a number of financial-market shocks that could induce asset price volatility, e.g., time-varying risk premia, time-varying beliefs, or supply-demand effects (see, e.g., Cochrane

3 More broadly, our paper is part of a large theoretical New-Keynesian literature (see Woodford (2005); Gali (2015) for reviews). A strand of this literature builds models with realistic transmission lags to analyze the performance of different monetary policy rules (see Rudebusch and Svensson (1999); Svensson (2003)). We share with these papers the perspective that with transmission lags the optimal policy typically depends on the Fed’s beliefs (or judgement), but we focus on the implications for asset prices.
We complement this literature by showing that, with transmission lags and inertia, optimal monetary policy can also cause the appearance of “excess” volatility in asset prices. In our model, the Fed induces asset price volatility in response to news about future aggregate demand and in response to current output gaps. This Fed-induced volatility seems “excessive” in the sense that it is not linked to underlying productivity, but it helps improve macroeconomic stability.

Our results on macroeconomic news is related to a large literature that empirically investigates the market reaction to macroeconomic news announcements (e.g., McQueen and Roley (1993); Fleming and Remolona (1997); Boyd et al. (2005); Andersen et al. (2007)). In recent work, Elenev et al. (2023) document and explain the cyclicality of the stock market response to news, whereas we analyze how improvements in the precision of news affects asset price and macroeconomic volatility.

Our results on the inflation risk premium are related to a large empirical literature that studies the relationship between inflation and asset prices (see Cieslak and Pflueger (2022) for a survey). In recent work, Fang et al. (2022) show that core inflation (excluding food and energy) comoves negatively with most asset returns, which is consistent with our analysis. Fang et al. (2022) explain this comovement result using a New Keynesian model with cost-push (markup) shocks. In contrast, we show that, with realistic policy lags and inertia, demand or supply shocks also induce a negative correlation between inflation and asset prices. The effect of demand shocks is particularly noteworthy, because these shocks simultaneously induce high output (a demand boom) along with high inflation, as in the late stages of the Covid-19 recovery. In contrast, a cost-push shock would induce the Fed to target low output (a demand recession) to fight high inflation.

Finally, the idea that monetary policy affects and operates through asset prices is well supported empirically by Jensen et al. (1996), Thorbecke (1997), Jensen and Mercer (2002), Rigobon and Sack (2004), Ehrmann and Fratzscher (2004), Bernanke and Kuttner (2005), Bauer and Swanson (2020), among others. Moreover, Cieslak and Vissing-Jorgensen (2020) conduct a textual analysis of FOMC documents and find strong support for the idea that the Fed pays attention to stock prices and cuts interest rates after stock price declines (“the Fed put”). We build on these insights and turn them into an asset pricing framework.

Our model is also consistent with the “excess” volatility in long-term bonds observed by Van Binsbergen (2020). In our model, when there is a positive signal about future aggregate demand or when the economy currently has a positive output gap, the Fed reduces bond prices—to reduce aggregate asset prices and aggregate demand. When there is a positive cash-flow beliefs shock, the Fed once again reduces bond prices—this time to insulate the aggregate asset prices from this shock (the Fed put/call).
The rest of the paper is organized as follows. Section 2 introduces our baseline model without transmission delays or inertia. Sections 3 and 4 establish our results for transmission lags and inertia, respectively. Section 5 endogenizes inflation. Section 6 introduces disagreements between the market and the Fed. Section 7 provides final remarks. The appendix contains the omitted derivations and extensions.

2. The baseline model without transmission lags

In this section, we develop a baseline version of our model without transmission lags. This model is a variant of the textbook New Keynesian model with the main difference that we allow for a financial market block with a non-trivial risk premium, and we characterize the implications of the model for aggregate asset prices. It is a stepping stone to our main analysis with lags and allows us to highlight a basic mechanism that is behind several of our main results: aggregate asset prices are driven by macroeconomic needs—specifically, the gap between aggregate demand and supply—rather than by traditional financial forces such as cash-flow beliefs or risk premia. Financial forces influence relative asset prices subject to an adding-up constraint imposed by macroeconomic needs.

2.1. Environment

The economy is set in discrete time $t \in \{0, 1, \ldots\}$. There are four types of agents: “asset-holding households” (the households), “hand-to-mouth agents,” “portfolio managers (the market),” and “the central bank (the Fed).” Hand-to-mouth agents do not play an important role beyond decoupling the labor supply from the households’ consumption behavior. Households make consumption-savings decisions (possibly with frictions) that drive aggregate demand. The market makes a portfolio choice decision on behalf of the households and determines asset prices. The Fed sets monetary policy to close the output gap.

Supply side and nominal rigidities. The supply side features a competitive final goods sector and monopolistically competitive intermediate goods firms that produce according to

$$Y_t = \left(\int_0^1 Y_t(\nu)^{\frac{\kappa-1}{\kappa}} d\nu \right)^{\frac{\kappa}{\kappa-1}}, \text{ where } Y_t(\nu) = A_t L_t(\nu)^{1-\alpha}.$$

For now, the intermediate good firms have fully sticky nominal prices (we endogenize inflation in Section 5). Since these firms operate with a markup, they find it optimal to
meet the demand for their good. Therefore, output is determined by aggregate demand, which depends on the consumption of households, C^H_t, and hand-to-mouth agents, C^{HM}_t:

$$Y_t = C^H_t + C^{HM}_t. \quad (1)$$

Labor is supplied by the hand-to-mouth agents. They have the per-period utility function

$$\log C^{HM}_t = \chi \frac{L_{1+\varphi}}{1+\varphi},$$

which leads to a standard labor supply curve (see Appendix A.1).

With these production technologies, if the model was fully competitive, labor’s share of output would be constant and given by $(1-\alpha)Y_t$. However, since the intermediate good firms have monopoly power and make pure profits, labor’s share is smaller than $(1-\alpha)Y_t$. To simplify the exposition, we assume the government taxes part of the firms’ profits (lump-sum) and redistributes to workers (lump-sum), so that labor’s share is as in the fully competitive case (see Appendix A.1 for details). This implies the spending of hand-to-mouth agents (who supply all labor) is

$$C^{HM}_t = (1-\alpha)Y_t. \quad (2)$$

Combining Eqs. (1) and (2) yields

$$Y_t = \frac{C^H_t}{\alpha}. \quad (3)$$

Hand-to-mouth agents create a Keynesian multiplier effect, but output is ultimately determined by (asset-holding) households’ spending, C^H_t.

Potential output and aggregate supply shocks. Consider a flexible-price benchmark economy without nominal rigidities (the same setup except the intermediate good firms have fully flexible prices). In this benchmark, the equilibrium labor supply is constant and solves $\chi (L^*)^{1+\varphi} = \frac{\varepsilon-1}{\varepsilon}$ (see Appendix A.1). Output is given by $Y_t^* = A_t (L^*)^{-1-\alpha}$. We refer to Y_t^* as potential output. Log potential output, $y_t^* = \log Y_t^*$, is driven by A_t and evolves according to

$$y_{t+1}^* = y_t^* + z_{t+1}, \quad \text{where } z_{t+1} \sim N(0, \sigma^2_z). \quad (4)$$

For simplicity, supply shocks are permanent and follow a log-normal distribution.
In our model with sticky prices, output is given by (3) and can deviate from its potential. We let \(y_t = \log Y_t \) denote log output and \(\bar{y}_t = y_t - y^*_t \) denote the output gap.

Financial assets. There are two assets. There is a market portfolio, which is a claim on firms’ profits \(\alpha Y_t \) (the firms’ share of output). We let \(P_t \) denote the ex-dividend price of the market portfolio (which we also refer to as “the aggregate asset price” or “aggregate asset prices”). The gross return of the market portfolio is

\[
R_{t+1} = \frac{\alpha Y_{t+1} + P_{t+1}}{P_t}.
\]

(5)

There is also a risk-free asset in zero net supply. Its gross return \(R^f_t \) is set by the Fed, as we describe subsequently.

Households’ consumption-savings decisions and demand shocks. Households have standard preferences:

\[
E_t \left[\sum_{h=0}^{\infty} \beta^{t+h} \log C^{H}_{t+h} \right],
\]

(6)

along with the budget constraint

\[
W_{t+1} + C^{H}_{t+1} = W_t \left((1 - \omega_t) R^f_t + \omega_t R_{t+1} \right)
\]

\[
= D_{t+1} + K_{t+1},
\]

(7)

where \(D_{t+1} = W_t \left((1 - \omega_t) \left(R^f_t - 1 \right) + \omega_t \frac{\alpha Y_{t+1}}{P_t} \right) \)

and \(K_{t+1} = W_t \left[1 - \omega_t + \omega_t \frac{P_{t+1}}{P_t} \right] \).

\(W_t \) denotes the end-of-period wealth and \(\omega_t \) denotes the market portfolio weight in period \(t \). The term \(W_t \left((1 - \omega_t) R^f_t + \omega_t R_{t+1} \right) \) is the beginning-of-period wealth in period \(t + 1 \). The second line breaks this term into a component that captures the interest and dividend income \(D_{t+1} \) and a residual component that captures the capital \(K_{t+1} \). This distinction will facilitate our exposition.

Households make a consumption-savings decision. However, they do not necessarily make an optimal decision. Rather, we assume households follow consumption rules. To impose some discipline on these rules, we start with the optimal rule with the preferences in (6), which is given by

\[
C^{H}_{t} = (1 - \beta) (D_t + K_t).
\]
According to the optimal rule, households spend a fraction of their beginning-of-period wealth. We consider empirically-grounded deviations from this rule. In the benchmark model, we assume that consumption instead follows:

\[C_t^H = (1 - \beta) (D_t + K_t \exp(\delta_t)), \quad \text{where } \delta_t \sim N\left(0, \sigma_{\delta}^2\right). \]

Here, \(\delta_t \) captures aggregate demand shocks; all else equal, a higher \(\delta_t \) means households spend more than predicted by the optimal rule. The exact functional form does not play an important role beyond simplifying the expressions. The special case \(\sigma_{\delta}^2 = 0 \) corresponds to the textbook model in which households’ consumption is fully optimal.

The demand shock captures various behavioral or informational frictions that affect households’ spending in practice, e.g., a consumer sentiment shock. It can also be viewed as a simple modeling device to capture a variety of shocks that affect aggregate demand, e.g., a discount rate shock or a fiscal policy shock. We assume the demand shocks are transitory, although our analysis is flexible and can accommodate more persistent shocks. In subsequent sections, we will modify the rule in (8) to introduce transmission lags and demand inertia.

The portfolio managers (the market) and the portfolio allocation. Households delegate their portfolio choice to portfolio managers (the market), who invest on their behalf. The portfolio managers are infinitesimal and they do not consume themselves. They make a portfolio allocation to maximize expected log household wealth,

\[\max_{\omega_t} E_t^M \left[\log \left(W_t \left(R_t^f + \omega_t \left(R_{t+1}^f - R_t^f \right) \right) \right) \right]. \]

We formulate the portfolio problem in terms of wealth, rather than consumption, because we allow consumption to deviate from the optimal rule. In our setup, wealth is a more accurate representation of welfare, as it captures the ideal consumption a household could choose if she followed the optimal rule. We assume portfolio managers maximize log-wealth in line with the households’ preferences in (6). In the special case where households follow the optimal rule \((\sigma_{\delta}^2 = 0) \), problem (9) results in portfolio allocations that maximize the households’ utility. The superscript \(M \) captures the market’s belief.

Asset market clearing and the equilibrium return. Financial markets are in equilibrium when the households hold the market portfolio, both before and after the portfolio
allocation:

\[W_t = P_t \quad \text{and} \quad \omega_t = 1. \quad (10) \]

Problem (9) implies a standard optimality condition. Substituting \(\omega_t = 1 \) into this condition, we obtain

\[E_t^M \left[M_{t+1} R_t^f \right] = 1 \quad \text{where} \quad M_{t+1} = \frac{1}{R_{t+1}}. \quad (11) \]

The model features a standard stochastic discount factor (SDF) driven by aggregate wealth. Assuming \(R_{t+1} \) is (approximately) log-normally distributed, this implies a financial market equilibrium condition,

\[E_t^M [r_{t+1} + \frac{1}{2} \text{var}_t^M [r_{t+1}]] - i_t = r p_t \equiv \text{var}_t^M [r_{t+1}]. \quad (12) \]

We use lower-case letters to represent the log of the corresponding variable and \(i_t = \log R_t^f \) to denote the log risk-free interest rate. In equilibrium, the expected excess return on the market portfolio is equal to the required risk premium, which is determined by the variance of the aggregate return.

Campbell-Shiller approximation to the equilibrium return. We use a log-normal approximation to the equilibrium return on the market portfolio, \(R_{t+1} = \frac{\alpha Y_{t+1} + P_{t+1}}{P_t} \), that facilitates closed-form solutions. In Appendix A.2, we show that absent shocks the dividend price ratio is constant and given by \(\frac{\alpha Y_t}{P_t} = \frac{1-\beta}{\beta} \). We then log-linearize (5) around this ratio to obtain

\[r_{t+1} = \kappa + (1-\beta) y_{t+1} + \beta p_{t+1} - p_t, \quad (13) \]

where \(\kappa \equiv -\beta \log \beta - (1-\beta) \log \left(\frac{1-\beta}{\alpha} \right) \).

This is the Campbell-Shiller approximation applied to our model (see Campbell (2017)).

The central bank (the Fed) and monetary policy. In each period, the Fed sets the risk-free interest rate (without commitment) to minimize the discounted sum of quadratic log output gaps:

\[\min_{R_{t}^f} \sum_{h=0}^{\infty} \beta^h g_{t+h}^2. \quad (14) \]
The superscript F captures the Fed’s belief. In the baseline model, the solution to problem (14) is simple; the Fed always sets the interest rate that closes the output gap

$$Y_t = Y_t^*, \text{ which implies } \tilde{y}_t = y_t - y_t^* = 0.$$ \hfill (15)

2.2. Macroeconomic needs drive the aggregate asset price

We next characterize the equilibrium and illustrate that aggregate asset prices are driven by macroeconomic needs. We do this in a slight extension of the baseline setup in which the market thinks the supply shocks are drawn from

$$z_{t+1} \sim N \left(b_t, \sigma_z^2 \right), \text{ where } b_t \sim N \left(0, \sigma_b^2 \right).$$ \hfill (16)

Here, b_t is a belief shock for future cash flows. These shocks are not central for our analysis: they enable us to capture standard financial forces, such as time-varying cash-flow sentiment, which we contrast with macroeconomic needs. The special case $\sigma_z^2 = 0$ is the baseline model (see (4)).

To solve for the equilibrium, we first combine Eqs. (7) and (10) to obtain $D_t = \alpha Y_t, \ K_t = P_t$. In equilibrium, dividends are equal to the firms’ share of output. Capital is equal to the (ex-dividend) value of the market portfolio. Substituting these observations into the consumption rule in (8), we obtain

$$C_t^H = (1 - \beta) \left(\alpha Y_t + P_t \exp (\delta_t) \right).$$

Substituting Eq. (3) ($C_t^H = \alpha Y_t$) into this expression yields an output-asset price relation

$$Y_t = (1 - \beta \frac{1}{\alpha \beta} P_t \exp (\delta_t))$$

$$\implies y_t = m + p_t + \delta_t, \text{ where } m \equiv \log \left(\frac{1 - \beta}{\alpha \beta} \right).$$ \hfill (17)

Output depends on aggregate wealth, P_t, the MPC out of wealth, $1 - \beta$, the demand shock, δ_t, and the Keynesian multiplier, $1/(\alpha \beta)$. The second line describes the relation in logs and obtains the derived parameter m.\footnote{The output-asset price relation (17) can be interpreted more broadly as a reduced form for various channels that link asset prices and aggregate demand. For example, in Caballero and Simsek (2020) we show that adding investment also leaves the output-asset price relation qualitatively unchanged (due to a Q-theory mechanism).}

The output-asset price relation in (17) and its variants play a central role in our
analysis. Specifically, we invert this equation to find the asset price that solves the Fed’s policy problem. In this section, the Fed sets output equal to its potential at all times (see (15)). Therefore, the Fed targets asset prices

\[p_t = p_t^* \equiv y_t^* - m - \delta_t, \]

which, from the output-asset price relation, ensures that \(y_t = y_t^* \). We normalize \(p_t^* \) by potential output to define “pystar”—the Fed’s target (log) aggregate asset price per potential output:

\[(py)_t^* \equiv p_t^* - y_t^* = -m - \delta_t. \]

The Fed targets asset prices such that households spend just enough to ensure that aggregate demand is equal to aggregate supply.

How does the Fed achieve “pystar”? This depends on the financial market side of the model. Using (13), along with \(y_t = y_t^* \) and \(p_t = p_t^* \), we calculate

\[
\begin{align*}
 r_{t+1} &= \rho + (1 - \beta) y_{t+1}^* + \beta (y_{t+1}^* - \delta_{t+1}) - (y_t^* - \delta_t) \\
 &= \rho + \delta_t + z_{t+1} - \beta \delta_{t+1}.
\end{align*}
\]

Here, \(\rho = -\log \beta \) is the discount rate. The equilibrium return is affected by supply and demand shocks. A positive future supply shock increases the return. A positive future demand shock \(\delta_{t+1} \) reduces the realized return (due to the policy response it triggers). Combining (19) and (12), we solve for the equilibrium interest rate the Fed needs to set to achieve “pystar,” and for the equilibrium risk premium

\[
\begin{align*}
 i_t &= \rho + b_t + \delta_t - \frac{1}{2} rp_t \quad \text{and} \quad rp_t = \sigma_z^2 + \beta^2 \sigma_\delta^2.
\end{align*}
\]

Both supply and demand shocks raise the risk premium because they contribute to asset price volatility. The interest rate is decreasing in the risk premium and increasing in the demand shock and in the belief shock. The following result summarizes the equilibrium.

Proposition 1 (Macroeconomic needs drive the aggregate asset price). Consider the model without transmission lags and with belief shocks for future cash flows. In equilibrium, the Fed targets a “pystar” given by (18). The equilibrium return on the market portfolio is given by (19). The policy interest rate and the risk premium are given by (20).

This result shows that the aggregate asset price is driven by macroeconomic needs—imbalances between aggregate demand and supply. In particular, Eqs. (18–20) show
that “pystar” depends on macroeconomic variables and shocks that drive demand (\(m\) and \(\delta_t\)). A positive demand shock (\(\delta_t > 0\)) reduces the aggregate asset price. When households are inclined to spend more than usual, the Fed hikes the interest rate and reduces aggregate wealth and spending. By doing this, the Fed prevents the positive output gap that the surge in spending would otherwise induce. Conversely, in response to a negative demand shock (\(\delta_t < 0\), the Fed cuts the interest rate and raises aggregate wealth, which prevents the negative output gap that the decline in spending would otherwise induce.

The result also shows that, perhaps surprisingly, the aggregate asset price does not depend on traditional financial forces such as market’s beliefs or risk premia (unless they correlate with macroeconomic needs). Eqs. (18–20) show that market belief shocks (as well as risk premia) are absorbed by the interest rate. For instance, a negative cash-flow belief shock (\(b_t < 0\)) leaves “pystar” unchanged but induces a decline in the interest rate. Intuitively, a decline in the market’s “optimism” puts downward pressure on asset prices. However, the Fed does not want asset prices to decline: given that aggregate supply has not changed, a decline in asset prices would induce an inefficient demand recession. Therefore, the Fed cuts the interest rate and prevents the decline in aggregate asset prices—providing an explanation for “the Fed put.” Conversely, in response to a positive cash-flow shock (\(b_t > 0\)), the Fed hikes the interest rate and prevents an aggregate asset price boom that would induce a demand boom.

What happens with traditional financial forces in our model? They drive relative asset prices. For instance, suppose the portfolio managers can also trade a risky asset \(j\) in zero net supply with one-period-ahead payoff \(\{X_{t+1}^j\}\). Then, the equilibrium return on this asset, \(R_{t+1}^j = \frac{X_{t+1}^j}{P_t}\), satisfies the standard asset pricing condition, \(E_t^M[M_{t+1}R_{t+1}^j] = 1\) [cf. (11)]. In Appendix B.1, we further show that financial forces affect the price of assets in positive supply such as aggregate stocks and bonds. We extend the model so that there are two claims on production firms: the equity claim (“aggregate stocks”) and the risk-free debt claim (“aggregate bonds”). The market portfolio is the sum of aggregate stocks and aggregate bonds, \(P_t = P_t^b + P_t^s\). In this model, the macroeconomic needs still drive \(P_t\) but traditional financial forces influence \(P_t^b\) and \(P_t^s\). For instance, a negative cash-flow belief shock (\(b_t < 0\)) leaves \(P_t\) unchanged (as in Proposition 1), but it also decreases \(P_t^s\) and increases \(P_t^b\)—since stocks are more exposed to future earnings than bonds. Intuitively, macroeconomic needs impose an adding-up constraint on prices of assets in positive supply, but the relative asset prices are determined by financial forces.

Importantly, up to now we have assumed that monetary policy affects asset prices instantaneously and that asset prices affect aggregate demand instantaneously. These
assumptions imply that monetary policy is very powerful: it can set output to its potential at all times. Consequently, the outcomes resemble a real business cycles (RBC) model: in equilibrium, there are no demand booms or recessions and the Fed’s beliefs (or the judgement) does not affect macroeconomic outcomes or asset prices. In practice, monetary policy has much less control over aggregate demand, and this has substantial implications for both aggregate activity and asset prices. We next turn to these issues.

3. Asset pricing with policy transmission lags

A major reason behind the Fed’s imperfect aggregate demand control is transmission lags—a large empirical literature documents that the full effect of monetary policy on output builds over several quarters (see Remark 2). In view of these lags, monetary policy needs to anticipate future macroeconomic needs. Since macroeconomic needs are uncertain and difficult to predict, some demand-driven business cycles are inevitable. Moreover, the Fed’s beliefs play a central role for macroeconomic outcomes: the better the Fed is able to anticipate future macroeconomic needs, the more it can mitigate demand-driven business cycles. We next present our main results that show transmission lags and related frictions matter greatly not only for macroeconomic outcomes but also for asset prices. We show that transmission lags imply that the Fed’s beliefs drive aggregate asset prices. Moreover, improvements in the Fed’s ability to predict future macroeconomic needs increases asset price volatility.

To capture lags, suppose households follow a modified version of the rule in (8):

\[C_H^t = (1 - \beta) (D_t + K_{t-1} \exp(\delta_t)) , \]

where \(\delta_t \sim N(0, \sigma^2_\delta) \) as before. That is, households respond to the lagged value of the capital portion of their wealth. To simplify the equations, we assume households respond to dividend and interest income immediately.

Following the same steps as before, we obtain the output-asset price relation

\[Y_t = \frac{1 - \beta}{\alpha \beta} P_{t-1} \exp(\delta_t) \Rightarrow y_t = m + p_{t-1} + \delta_t. \]

Asset prices affect output as before, but the effects operate with a lag.

An immediate implication of Eq. (22) is that output gaps can no longer be zero at all times and states. To see this, consider the equilibrium in period \(t \). Since \(p_{t-1} \) is
predetermined, output fluctuates with demand shocks δ_t. However, potential output still evolves according to (4) and fluctuates according to supply shocks z_t. Since δ_t and z_t are uncorrelated (by assumption), the output gap is non-zero except for a measure zero set of events. Because output responds to asset prices with a lag, both supply and demand shocks lead to output gaps, which the Fed cannot offset.

In this case, the Fed minimizes the same quadratic objective function (14) as before, but subject to the constraint (22). In every period, the Fed sets policy without commitment (it takes its future policy decisions as given). It is then easy to show that the optimal policy implies

$$E_t^F[y_{t+1}] = E_t^F[y_{t+1}^*]$$

(23)

The Fed sets expected demand equal to expected supply, under its belief.

To solve for “pystar” in this case, we combine (23) and (22), along with $y_{t+1}^* = y_t^* + z_{t+1}$, to obtain

$$m + p_t^* + E_t^F[\delta_{t+1}] = y_t^* + E_t^F[z_{t+1}].$$

Expected demand depends on the Fed’s target asset price and the Fed’s expectation for the demand shock. Expected supply depends on the Fed’s expectation for the supply shock. We can then solve for the Fed’s target aggregate asset price

$$p_t = p_t^* \equiv y_t^* - E_t^F[\delta_{t+1}] - m,$$

where $\delta_{t+1} \equiv \delta_{t+1} - z_{t+1}$ is the net demand shock. As before, we normalize this price with the current potential output, which yields “pystar”:

$$(py)_t^* = p_t^* - y_t^* = -E_t^F[\delta_{t+1}] - m.$$ (24)

Now “pystar” depends on the Fed’s expectation about future macroeconomic needs. The Fed sets a higher “pystar” when it expects lower future demand or higher future supply. Conversely, the Fed sets a lower “pystar” when it expects higher future demand or lower future supply.

Substituting Eq. (24) into (22) (with $p_t = p_t^*$) we solve for future output:

$$y_{t+1} = y_t^* + \delta_{t+1} - E_t^F[\delta_{t+1}]$$ (25)

$$\tilde{y}_{t+1} = \delta_{t+1} - E_t^F[\delta_{t+1}].$$ (26)

The first equation says that output is driven by demand shocks relative to the Fed’s
forecast of net demand, while supply shocks do not affect output contemporaneously. The second equation says that the output gap is driven by the unforecastable component of net demand shocks. If demand is realized to be higher than (or supply is realized to be lower than) what the Fed forecasted, then the output gap is positive. The following proposition summarizes this discussion.

Proposition 2 (Transmission lags and the Fed’s beliefs). Consider the model with transmission lags. In equilibrium, “pystar” is given by (24) and is decreasing in the Fed’s beliefs about future net aggregate demand. Output and its gap are given by (25)–(26). The output gap is driven by net demand shocks relative to the Fed’s forecast.

To characterize the equilibrium further, we need to specify the Fed’s beliefs about future demand and supply. We do this in a slight variant of the baseline model in which the agents receive macroeconomic news about future shocks. In addition to closing the model, this setup connects our analysis with a growing empirical literature that investigates the asset price effects of macroeconomic news announcements (e.g., Elenev et al. (2023)). We complement this literature by analyzing how macroeconomic news affects the volatility of asset prices.

3.1. Macroeconomic news and asset price volatility

Suppose the agents receive news about the next period’s demand shock:

\[n_{\delta t} = \delta_{t+1} + e_{\delta t}, \quad \text{where } e_{\delta t} \sim N \left(0, \sigma^2_{\delta} \right). \]

In practice, macroeconomic news announcements such as nonfarm payrolls can provide information about both future aggregate demand and supply. We focus on demand news because in Appendix B.2 we show that, while supply news does affect asset prices (in the expected direction), it does not affect the total asset price volatility in our model (see Remark 1 for intuition). For now, the Fed and the market agree on the interpretation of the demand news. We consider the implications of disagreements between the Fed and the market in Section 6. Throughout the paper, when agents have common beliefs, we drop the superscript on the expectations and the variance operators.

Recall that demand shocks are drawn from the i.i.d. distribution, \(N \left(0, \sigma^2_{\delta} \right) \). Therefore,
after observing \(n_{\delta t} \), the Fed and the market have common posterior beliefs given by

\[
\delta_{t+1} \sim N(\gamma_\delta n_{\delta t}, \sigma_\delta^2) \quad \text{where} \quad \gamma_\delta = \frac{1}{1/\sigma_\delta^2 + 1/\sigma_z^2} \quad \text{and} \quad \sigma_\delta^2 = \frac{1}{1/\sigma_\delta^2 + 1/\sigma_z^2}.
\]

The posterior mean is a dampened version of the news signal, and the posterior variance is smaller than the prior variance.

With this setup, agents’ common belief for the expected net demand in the next period is \(E_t[\delta_{t+1}] = E_t[\delta_{t+1}] = \gamma_\delta n_{\delta t} \) (since \(E_t[z_{t+1}] = 0 \)). The following corollary to Proposition 2 characterizes the equilibrium with these beliefs. It also shows that news about aggregate demand has opposite effects on output and asset price volatilities.

Corollary 1 (Macroeconomic news and volatility). Consider the setup in Proposition 2 with news about future demand. The equilibrium is given by:

\[
\begin{align*}
 p_t & = p_t^* \equiv y_t^* - \gamma_\delta n_{\delta t} - m \\
 y_{t+1} & = y_t^* + \delta_{t+1} - \gamma_\delta n_{\delta t} \\
 \tilde{y}_{t+1} & = \delta_{t+1} - \gamma_\delta n_{\delta t} - z_{t+1} \\
 r_{t+1} & = \rho + \gamma_\delta n_{\delta t} + (1 - \beta) (\delta_{t+1} - \gamma_\delta n_{\delta t}) + \beta (z_{t+1} - \gamma_\delta n_{\delta,t+1}) \\
 i_t & = E_t[r_{t+1}] - \frac{1}{2} r_{pt}, \quad \text{with} \ E_t[r_{t+1}] = \rho + \gamma_\delta n_{\delta t} \\
 r_{pt} & = \var_t(r_{t+1}) = (1 - \beta)^2 \sigma_\delta^2 + \beta^2 (\sigma_z^2 + \sigma_\delta^2 - \sigma_\delta^2).
\end{align*}
\]

The conditional volatility of output and the aggregate asset price are

\[
\begin{align*}
 \var_t(y_{t+1}) & = \sigma_\delta^2 \quad \text{and} \quad \var_t(p_{t+1}) = \sigma_z^2 + (\sigma_\delta^2 - \sigma_\delta^2).
\end{align*}
\]

More precise demand news (lower \(\sigma_\delta^2 \) and \(\sigma_z^2 \)) reduces the volatility of output but increases the volatility of the aggregate asset price. When \(\beta > 1 - \beta \) (which holds for reasonable calibrations), more precise demand news increases both return volatility and the risk premium.

Eq. (34) holds since output volatility depends on the unforecastable demand variance, \(\var_t(\delta_{t+1} - \gamma_\delta n_{\delta t}) = \sigma_\delta^2 \), whereas aggregate asset price volatility depends on the forecastable demand variance, \(\var_t(\gamma_\delta n_{\delta,t+1}) = \sigma_\delta^2 - \sigma_\delta^2 \), and on the supply variance \(\sigma_z^2 \). When the Fed can forecast future demand more accurately, it becomes more “activist” and preemptively responds to demand shocks by adjusting the aggregate asset price. This
mitigates demand-driven output volatility, but it also increases the volatility of the aggregate asset price. This result suggests that improvements in the precision of news over time, perhaps due to better measurement (e.g., micro data) or better estimation techniques (e.g., machine learning), might induce a “Great Moderation” in the real economy at the expense of greater Fed-induced volatility in financial markets.

Corollary 1 characterizes the rest of the equilibrium and yields additional results. Eqs. (28–30) follow from substituting $E_t \left[\tilde{\delta}_{t+1} \right] = \gamma \delta n_{\delta t}$ into (24–22). Eq. (31) follows by substituting the equilibrium output and asset price into (13). In equilibrium, the return is increasing in the future demand shock relative to expectations, $\delta_{t+1} - \gamma \delta n_{\delta t}$, because this raises future output, y_{t+1}. The return is also increasing in the future supply shock z_{t+1} (resp. decreasing in the future demand signal, $n_{\delta t}$), because this increases (resp. decreases) future asset prices, p_{t+1}.

Next consider Eqs. (32) and (33) that describe the interest rate and the risk premium. These expressions follow from combining (31) with (12). In equilibrium, the interest rate is increasing in the demand news; after a positive demand news, $n_{\delta t} > 0$, the Fed reduces the aggregate asset price by increasing the interest rate. The risk premium (the return volatility) reflects a weighted average of future output (cash flow) volatility and future asset price volatility. Since more precise demand news reduces output volatility but raises asset price volatility, it exerts counteracting effects on the risk premium. When $\beta > 1 - \beta$ (which holds for reasonable calibrations), more precise demand news also increases the risk premium. That is, since conditional asset returns depend on future asset prices relatively more than on future cash flows, a higher asset price volatility translates into a higher risk premium, despite greater macroeconomic stability and lower output (cash flow) volatility.

Remark 1 (Volatility effects of supply news). In Appendix B.2, we extend the model to allow for news about future supply in addition to future demand. In the extended model, the demand news has the same effects on the volatility of output and asset prices as in Corollary 1 (see Corollary 8). More surprisingly, the supply news does not affect the conditional volatility of either the output or the aggregate asset price. While supply news frontloads some of the future output response to future supply shocks, it does not generate output surprises because in our model agents react to supply news (or shocks) only via asset prices, and agents react to asset prices with a lag. Supply news does generate asset price surprises: the aggregate asset price in the extended model is given by $p_t = y^*_t - \gamma \delta n_{\delta t} + \gamma \gamma_z z_{st} - m$, where higher n_{zt} denotes news about future supply z_{t+1}.
However, these asset price reactions to supply news do not increase total asset price volatility; they instead frontload part of the asset price volatility that would be generated by future supply shocks.

4. Asset pricing with internal demand inertia

So far, we have focused on the lagged response of aggregate demand to financial conditions. At the microeconomic level, these lags emerge largely from *internal demand inertia*, the idea that agents tend to repeat their past spending behavior and thus respond to exogenous disturbances (such as monetary policy or asset prices) gradually. Internal demand inertia is a realistic feature that may arise from microeconomic frictions such as adjustment costs or habit formation (see Caballero and Simsek (2021b, 2022b) and Woodford (2005), Chapter 5 for further discussion). Quantitative New-Keynesian models typically assume this type of inertia, because it helps match the observed delayed response of aggregate demand to a variety of shocks. We next adjust the consumption rule to capture internal demand inertia and derive the implications for asset prices.

Formally, suppose households follow a modified version of the rule in (21),

\[
C^H_t = (1 - \beta) D_t + [\eta \beta C^H_{t-1} + (1 - \eta) (1 - \beta) K_{t-1}] \exp (\delta_t),
\]

where \(\delta_t \sim N(0, \sigma^2) \) as before and \(\eta \in [0, 1) \). For simplicity, we keep the response to dividend income unchanged. We change the remaining part so that households respond to a weighted-average of their past spending and lagged aggregate wealth. The parameter \(\eta \) captures the extent of inertia. The case \(\eta = 0 \) yields the consumption rule (21) with pure transmission lags analyzed in the last section. We multiply the coefficient on lagged spending by \(\beta \), which ensures that the equation holds in a steady state.\(^6\)

Following the same steps as before, we obtain the output-asset price relation

\[
Y_t = \left(\eta Y_{t-1} + (1 - \eta) \frac{1 - \beta}{\alpha \beta} P_{t-1} \right) \exp (\delta_t).
\]

In Appendix A.4, we approximate this relation (around the steady state for \(Y_t/P_t \)) to

\(^6\)This equation also shows that a macroeconomic news announcement that suggests stronger-than-expected economic activity (e.g., a positive nonfarm payrolls surprise) can either decrease or increase the aggregate asset price depending on its information content about demand vs supply.

\(^7\)In Caballero and Simsek (2021b), we derive a version of the rule in (35) by assuming that in every period only a fraction of agents adjust their spending. Here, we simply assume the equation as an aggregate “rule” and derive its implications for asset prices.
obtain

\[y_t = (1 - \eta) m + \eta y_{t-1} + (1 - \eta) p_{t-1} + \delta_t. \] \hspace{1cm} (36)

When \(\eta = 0 \), the relation is the same as (22): there are policy lags, but no internal demand inertia. When \(\eta > 0 \), there is also internal demand inertia. Note that internal demand inertia creates *endogenous persistence*: aggregate demand persists over time, even though aggregate demand shocks are transitory.

As before, the Fed sets \(i_t \) to minimize the objective function in (14) subject to the output dynamics in (36). It is easy to check that the Fed’s optimality condition is still characterized by (23):

\[E_F^t [y_{t+1}] = E_F^t [y^*_t + 1]. \]

To solve for “pystar” in this case, we combine Eqs. (23) and (36), and use \(y^*_{t+1} = y^*_t + z_{t+1} \), to obtain

\[(1 - \eta) m + \eta y_t + (1 - \eta) p^*_t + E_t^F [\delta_{t+1}] = y_t^* + E_t^F [z_{t+1}]. \]

As before, we invert this equation to solve for “pystar”

\[(py)^*_t = p^*_t - y^*_t = -\frac{\eta}{1 - \eta} \tilde{y}_t - \frac{E_t^F [\tilde{\delta}_{t+1}]}{1 - \eta} - m, \quad \text{where } \tilde{\delta}_{t+1} \equiv \delta_{t+1} - z_{t+1}. \] \hspace{1cm} (37)

Compared to Eq. (24), the equilibrium features *asset price overshooting*—when the output gap is negative (in a demand recession), “pystar” is higher than usual (and vice versa for a positive output gap). With inertia, in a demand recession the Fed realizes that the current weakness in economic activity will persist into the future. Therefore, the Fed overshoots asset prices upward to neutralize the future effects of current weakness. Conversely, in a demand boom, the Fed overshoots asset prices downward to neutralize the future effects of strong spending in the current period. The overshooting mechanism creates a seeming disconnect between the performance of the economy and the financial markets, but this disconnect is useful in closing the output gap.

Eq. (37) also implies that inertia *amplifies* the Fed’s response to the current output gap and to its net demand forecast. Since inertia reduces the MPC out of wealth in a given period (controlling for the cumulative impact), the Fed “turns up” the signal to compensate for inertia and induce a faster recovery.

Substituting (37) back into (36) (with \(p_t = p^*_t \)) we solve for output and its gap

\[
\begin{align*}
y_{t+1} &= y^*_t + \delta_{t+1} - E_t^F [\tilde{\delta}_{t+1}] \\
\tilde{y}_{t+1} &= \tilde{\delta}_{t+1} - E_t^F [\tilde{\delta}_{t+1}].
\end{align*}
\hspace{1cm} (38)
\hspace{1cm} (39)\]

22
These expressions are the same as before [see (25)]. Since the Fed overshoots asset prices to neutralize the effects of the current output gap, future output and its gap are driven by unforecastable shocks, as before. The following proposition summarizes this discussion.

Proposition 3 (Internal inertia and asset price overshooting). Consider the model with internal demand inertia and transmission lags ($\eta > 0$). In equilibrium, “pystar,” output, and the output gap are given by Eqs. (37–39). The equilibrium features a Fed-induced asset price overshooting: in response to a negative current output gap, the Fed targets a higher-than-average “pystar” (and vice versa for a positive output gap).

We next adopt the belief structure in Section 3.1 where agents’ (common) beliefs satisfy $E_t [\delta_{t+1}] = \gamma_\delta n_{\delta t}$ and $E_t [z_{t+1}] = 0$. The following result completes the characterization and describes the covariance of output and asset prices. This covariance plays a key role in our analysis of inflation in the next section.

Corollary 2 (Covariance between the output gap and asset prices). Consider the setup in Proposition 3 with the belief structure in Section 3.1. The equilibrium is given by

\begin{align*}
p_t &= p_t^* = y_{t-1}^* + z_t - \frac{\eta}{1 + \eta} (\delta_t - \gamma_\delta n_{\delta t, t-1} - z_t) - \frac{\gamma_\delta n_{\delta t}}{1 - \eta} - m \quad (40) \\
y_{t+1} &= y_{t+1}^* + \delta_{t+1} - \gamma_\delta n_{\delta t} \quad (41) \\
\tilde{y}_{t+1} &= \delta_{t+1} - \gamma_\delta n_{\delta t} - z_{t+1} \quad (42) \\
r_{t+1} &= \rho + \frac{\gamma_\delta n_{\delta t}}{1 - \eta} + \frac{\eta}{1 - \eta} (\delta_t - \gamma_\delta n_{\delta t, t-1} - z_t) \\
&\quad + \left(\frac{1 - \beta}{1 - \eta} - \beta \frac{\eta}{1 - \eta} \right) (\delta_{t+1} - \gamma_\delta n_{\delta t}) + \frac{\beta}{1 - \eta} (z_{t+1} - \gamma_\delta n_{\delta t, t+1}) \quad (43) \\
i_t &= E_t [r_{t+1}] - \frac{1}{2} r p_t, \quad \text{with } E_t [r_{t+1}] = \rho + \frac{\gamma_\delta n_{\delta t}}{1 - \eta} + \frac{\eta (\delta_t - \gamma_\delta n_{\delta t, t-1} - z_t)}{1 - \eta} \quad (44) \\
r p_t &= \text{var}_t (r_{t+1}) = \left(\frac{1 - \eta - \beta}{1 - \eta} \right)^2 \sigma_{\delta}^2 + \left(\frac{\beta}{1 - \eta} \right)^2 (\sigma_z^2 + \sigma_\delta^2 - \sigma_{\delta z}^2). \quad (45)
\end{align*}

The output gap and the price of the market portfolio are negatively correlated:

\begin{equation}
\text{cov}_t (\tilde{y}_{t+1}, p_{t+1}) = -\frac{\eta}{1 - \eta} \sigma_{\delta}^2 - \frac{1}{1 - \eta} \sigma_z^2, \quad (46)
\end{equation}

where $\sigma_{\delta}^2 = \text{var}_t (\delta_{t+1} - \gamma_\delta n_{\delta t})$ is the unforecastable demand variance [see (27)].

Eqs. (40–45) generalize Eqs. (28–33) to the setting with inertia. Eq. (46) uses the equilibrium characterization to show that demand and supply shocks both induce a negative conditional covariance between the output gap and asset prices.
To understand (46), first consider a negative supply shock, $z_{t+1} < 0$. This shock increases the output gap \bar{y}_{t+1}, by reducing potential output y^*_{t+1}. At the same time, since the decline in the potential output is persistent, the shock induces the Fed to target lower asset prices. Note that this mechanism is driven by transmission lags but it does not rely on internal demand inertia. Supply shocks induce a negative covariance between the output gap and asset prices for any $\eta \geq 0$.

Next consider a positive demand shock, $\delta_{t+1} > 0$. This shock also drives up the output gap \bar{y}_{t+1}, by raising actual output y_{t+1}. In view of demand inertia, the Fed then overshoots asset prices downward. This mechanism does rely on inertia ($\eta > 0$). The effect is also more surprising than the effect of supply shocks, because an increase in output is associated with a decrease in asset prices. This is another manifestation of the disconnect between the performance of the economy and financial markets.

Remark 2 (Transmission lags and demand inertia in practice). We capture transmission lags by assuming that spending responds to asset prices with a delay of one period. How should we think of the length of a period? We envision the period length as the planning horizon of the Fed: a period is sufficiently long that the Fed can expect its current decisions to have a meaningful impact on the real economic activity in the next period. In practice, while the impact of monetary policy on output begins to be felt within months, its peak cumulative effect can take up to two years (see, e.g., Romer and Romer (2004) and Chodorow-Reich et al. (2021)). Based on this evidence, we can think of calibrating the period length as somewhere between a quarter and two years. For every choice of the period length, we can then calibrate the internal demand inertia η by combining the empirical evidence on transmission lags with Eq. (36): this equation implies that the impact of asset prices in the next period is given by, $(1 - \eta) p_t$, whereas the cumulative impact is given by $(1 - \eta) (1 + \eta + \eta^2 + ...) p_t = p_t$. The calibrations with different period lengths (and different corresponding η) differ mainly in terms of how quickly the Fed is willing or able to close current output gaps.

*In Caballero and Simsek (2021b), we use a model that features aggregate demand inertia but no explicit transmission lags, because the model is set in continuous time. In that environment, if there is no cost to overshooting asset prices, the Fed closes a negative output gap immediately by increasing (and subsequently decreasing) asset prices by an infinite amount to compensate for inertia. However, once we add costs to asset price overshooting, we recover the analogue of Proposition 3. Hence, transmission lags can also be viewed as capturing unmodeled costs to asset price overshooting in an environment with inertia. While the Fed might be able to shorten transmission lags by increasing asset price overshooting, there are natural limits to this alternative policy.
5. Inflation and asset prices

We next extend our model to allow for partially flexible prices and inflation. We adopt the textbook setup in which inflation is determined by a New-Keynesian Phillips Curve (NKPC). We show that in equilibrium inflation depends only on the current output gap. Therefore, Corollary 2 from the last section implies that inflation and asset prices are also negatively correlated. To simplify the exposition, we relegate the details of this section to Appendix A.5 and describe the changes introduced by inflation.

We adopt the standard Calvo setup: at each instant a randomly selected fraction of intermediate firms reset their nominal price, with a constant hazard. This price remains unchanged until the firm gets to adjust again. In the appendix, we show that this leads to the standard NKPC:

\[\pi_t = \kappa \bar{y}_t + \beta E_t^S [\pi_{t+1}] \]

(47)

Here, \(\pi_t \) denotes the log-linearized nominal inflation realized in period \(t \). The parameter, \(\kappa \), is a composite price flexibility parameter (see (A.26)). The superscript \(S \) denotes the price-setters’ (firms’) beliefs.

We keep the macroeconomic side of the model the same as in Section 4. In particular, the output-asset price relation (36) still holds.

We change the financial market side of the model slightly to allow for a nominal interest rate (which is what the Fed sets) in addition to the real interest rate. Specifically, there is a nominal risk-free asset with nominal interest rate denoted by \(R_{t}^{fn} \), in addition to the real risk-free asset with real interest rate \(R_{t}^{f} \), and the market portfolio with real return \(R_{t+1} \). Both risk-free assets are in zero net supply. Assuming the return and inflation are (approximately) jointly log-normally distributed, we have the following two financial market equilibrium conditions (see the appendix):

\[E_t^M [r_{t+1}] + \frac{1}{2} \text{var}_t^M [r_{t+1}] - i_t = rp_t \equiv \text{var}_t^M [r_{t+1}] \]

(48)

\[i_t^n - E_t^M [\pi_{t+1}] + \frac{1}{2} \text{var}(\pi_{t+1}) - i_t = irp_t \equiv -\text{cov}(\pi_{t+1}, r_{t+1}) \]

(49)

where \(i_t = \log R_{t}^{f} \) denotes the real risk-free interest rate (as before) and \(i_t^n = \log R_{t}^{fn} \) denotes the nominal risk-free interest rate.

Eq. (48) is the same as the earlier financial market equilibrium condition (12). Eq. (49) is new and describes the difference between the expected real return on the nominal risk-free rate and the real risk-free rate (the variance term \(\frac{1}{2} \text{var}(\pi_{t+1}) \) is a Jensen’s inequality adjustment). This difference corresponds to the inflation risk premium: the additional
return investors require from holding the nominal bond due to the fact that its real return declines with inflation. Eq. (49) says that the inflation risk premium depends negatively on the covariance between inflation and the (real) return on the market portfolio. If $\text{cov} (\pi_{t+1}, r_{t+1}) < 0$, i.e. inflation is high when the market portfolio generates a low return, the inflation risk premium is positive. If instead $\text{cov} (\pi_{t+1}, r_{t+1}) > 0$, the inflation risk premium is negative.

We also adjust the Fed’s problem to incorporate the costs of inflation gaps [cf. (14)]

$$
\min_{i_t^F} E_t^F \left[\sum_{h=0}^{\infty} \beta^h \left(\tilde{y}_{t+h}^2 + \psi \pi_{t+h}^2 \right) \right].
$$

Here, ψ denotes the relative welfare weight for the inflation gaps. We normalize the inflation target to zero so the inflation gap is equal to inflation. Note also that the Fed sets the nominal interest rate i_t^N (which is no longer the same as the real rate i_t).

Finally, we assume all agents (the Fed, the market, and the price setters) have common beliefs. The following results generalize Proposition 3 and Corollary 2 to this setup.

Proposition 4 (Asset pricing with inflation). Consider the setup in Proposition 3 but with nominal prices that are partially flexible. Suppose agents have common beliefs. There is an equilibrium in which the Fed achieves a zero expected inflation and a zero expected output gap

$$
E_t [\pi_{t+1}] = 0 \quad \text{and} \quad E_t [\tilde{y}_{t+1}] = 0.
$$

In equilibrium, the real variables are the same as in Proposition 3. Eqs. (37–39) still apply. Inflation is given by

$$
\pi_t = \kappa \tilde{y}_t.
$$

In equilibrium, the Fed still targets a zero expected output gap. By doing this, the Fed also achieves zero expected inflation. That is, in this setup, the “divine coincidence” applies in expectation—the Fed does not face a trade-off between stabilizing the output gap and inflation.

Since the Fed still targets a zero output gap on average, $E_t [\tilde{y}_{t+1}] = 0$, the real side of the model is the same as before. Hence, the equilibrium with inflation has a block-recursive structure. We solve for the real variables using Proposition 3 (ignoring inflation).

9Eq. (49) is a generalized Fisher equation that accounts for the inflation risk premium. In the textbook New-Keynesian model, the variance and covariance terms vanish (due to log-linearization) and this becomes the standard Fisher equation, $i_t^N = E_t^M [\pi_{t+1}] = i_t$. 10In [Caballero and Simsek (2022a)], we show that disagreements between the Fed and the price setters affect the price setters’ expected inflation and induce a policy trade-off similar to “cost-push” shocks. Here, we abstract from these effects and focus on the asset pricing effects of inflation.
We then solve for inflation using Eq. (51). Inflation depends only on the current output gap, because the Fed stabilizes future inflation on average, \(E_t [\pi_{t+1}] = 0 \) (and the price setters know this fact and have the same beliefs as the Fed).

Corollary 3 (Covariance between inflation and asset prices). *Consider the setup in Proposition 4 with the belief structure in Section 3.1. In equilibrium, the real variables are the same as in Corollary 2; Eqs. (40–45) still apply. Inflation is given by*

\[
\pi_{t+1} = \kappa \hat{y}_{t+1} = \kappa (\delta_{t+1} - \gamma \delta t - z_{t+1}).
\]

Inflation and the price of the market portfolio are negatively correlated (see (46)):

\[
cov_t (\pi_{t+1}, p_{t+1}) = \kappa cov_t (\hat{y}_{t+1}, p_{t+1}) = -\kappa \left(\frac{\eta}{1 - \eta} \sigma_\delta^2 + \frac{1}{1 - \eta} \sigma_z^2 \right).
\]

Since inflation depends on the current output gap, Corollary 2 implies that the aggregate asset price is negatively correlated, not only with the output gap, but also with inflation. As we described earlier, an unexpected positive demand shock increases the output gap and inflation. With inertia, a positive output gap induces the Fed to overshoot asset prices in the downward direction. Consequently, inflation and asset prices are negatively correlated. Recall also that a negative supply shock increases the output gap, while reducing asset prices (regardless of the degree of inertia). Therefore, regardless of whether it is driven by demand shocks or supply shocks, inflation is bad news for asset prices. This observation implies that in our setup the inflation risk premium is likely to be positive. The following result describes the conditions under which this is the case.

Corollary 4 (Inflation risk premium). *Consider the setup in Corollary 3. The inflation risk premium and the nominal interest rate are given by*

\[
irp_t = -cov_t (\pi_{t+1}, r_{t+1}) = \kappa \left(\frac{\beta}{1 - \eta} \sigma_\delta^2 + \kappa \left(\frac{\eta}{1 - \eta} - (1 - \beta) \right) \sigma_z^2 \right) \sigma_\delta^2
\]

\[
i^n_t = i_t + irp_t - \frac{1}{2} var_t (\pi_{t+1})
\]

where the real interest rate \(i_t \) is given by (44) and \(var_t (\pi_{t+1}) = \kappa^2 (\sigma_\delta^2 + \sigma_z^2) \). The inflation risk premium is strictly positive if and only if

\[
\frac{\sigma_\delta^2 + \eta}{1 - \eta} > \frac{1 - \beta}{\beta}.
\]
The result follows from combining our earlier characterization of equilibrium with the financial market equilibrium condition [49]. In equilibrium, the inflation risk premium depends on the covariance of inflation with the aggregate asset price. The nominal interest rate depends on the inflation risk premium and the real interest rate, which is the same as before (along with a Jensen adjustment term).

Eq. (55) describes the conditions under which the inflation risk premium is positive. With typical calibrations, the term on the right side of this condition is likely to be small. Thus, this condition fails only if the supply shocks are rare (relative to demand shocks) and internal demand inertia is small. Put differently, either a sizeable frequency of supply shocks or a sizeable internal demand inertia is sufficient for the inflation risk premium to be positive.11

6. Asset pricing with Fed-market disagreements

The previous sections showed the importance of the Fed’s beliefs for monetary policy and asset prices. In practice, market participants have their own opinionated beliefs and routinely disagree with the Fed on macroeconomic conditions and appropriate policy (see Caballero and Simsek (2022a)). We next derive the asset pricing implications of belief disagreements between the market and the Fed. In this context, the Fed still implements the “pystar” that is appropriate under its own belief. However, with disagreements, the market anticipates policy “mistakes” that have important implications for the risk premium and the interest rate. First, the anticipation of future disagreements and “mistakes” increases the risk premium—we refer to this as a policy risk premium. Second, current disagreements induce a “behind-the-curve” phenomenon in which the market expects the Fed to reverse course. Third, both current and anticipated future disagreements affect the policy interest rate the Fed needs to set to achieve “pystar.”

Throughout this section, we use the model from Section 4 that features inertia (η > 0)

11To see the intuition for Eq. (55), recall that the equilibrium return satisfies

\[r_{t+1} = \kappa + (1 - \beta) y_{t+1} + \beta p_{t+1} - p_t. \]

Inflation is negatively correlated with the aggregate asset price, \(\text{cov}_t(\pi_{t+1}, p_{t+1}) < 0 \) [see Corollary 3]. Hence, inflation can be positively correlated with the return only if it is driven by a shock that has countering effects on \(y_{t+1} \) and \(p_{t+1} \), and its effect on \(y_{t+1} \) is stronger than its effect on \(p_{t+1} \). A positive supply shock \((z_{t+1} > 0) \) does not affect \(y_{t+1} \) and raises \(p_{t+1} \), so it always induces a negative correlation between inflation and the return. A positive demand shock \((\delta_{t+1} - \gamma s_t) \) raises \(y_{t+1} \) and decreases \(p_{t+1} \), so it can induce a positive correlation between inflation and the return. The effect on \(y_{t+1} \) dominates the effect on \(p_{t+1} \) only if inertia is sufficiently low so that the Fed does not overshoot asset prices by much. Thus, the inflation risk premium can be negative only if demand surprises are very frequent relative to supply shocks, and inertia is low. Aside from these cases, the inflation risk premium is positive.
and fully sticky prices ($\kappa = 0$). The latter assumption simplifies the exposition and abstracts from the effects of disagreements on inflation (see Footnote 10).

We introduce belief disagreements by modifying the signal environment from Section 3.1. As before, agents receive a public signal about aggregate demand. Unlike before, the Fed and the market disagree about the interpretation of this signal. After observing the public signal, each agent $j \in \{F, M\}$ forms an idiosyncratic interpretation, μ_j^t. Given this interpretation, the agent believes the public signal is drawn from

$$n_{\delta t} =^j \delta_{t+1} - \mu_j^t + e_{\delta t}, \quad \text{where } e_{\delta t} \sim N \left(0, \sigma_\delta^2 \right).$$

The noise term $e_{\delta t}$ is i.i.d. across periods and independent from other random variables. The notation $=^j$ captures that the equality holds under agent j’s belief. Given their interpretations, agents form posterior mean-beliefs:

$$E^F_t [\delta_{t+1}] = \gamma_\delta (n_{\delta t} + \mu_F^t) \quad \text{and} \quad E^M_t [\delta_{t+1}] = \gamma_\delta (n_{\delta t} + \mu_M^t), \quad (56)$$

where γ_δ is the same as before (see (27)). Each agent thinks its interpretation is correct. Hence, when agents interpret the signal differently, they develop belief disagreements about the future aggregate demand shock. For now, we assume agents observe the others’ interpretations (and beliefs).

We also assume that agents’ interpretations follow a joint Normal distribution that is i.i.d. across periods (and both agents know this distribution):

$$\mu_F^t, \mu_M^t \sim N \left(0, \sigma_\mu^2 \right) \quad \text{and} \quad \text{corr} (\mu_F^t, \mu_M^t) = 1 - \frac{D}{2} \text{ with } D \in [0, 2]. \quad (57)$$

The parameter D captures the scope of disagreement. When $D = 0$, interpretations are the same and there are no disagreements. Eq. (57) also implies:

$$E^j_t [\mu_{t+1}^F - \mu_{t+1}^M] = 0 \quad \text{and} \quad \text{var}^j_t [\mu_{t+1}^F - \mu_{t+1}^M] = D \sigma_\mu^2. \quad (58)$$

Agents think interpretation differences have mean zero and variance increasing with D.

A key implication of this setup is that each agent thinks the other agent’s posterior belief is a “noisy” version of her own belief. To see this, consider the Fed’s posterior belief

$$\gamma_\delta (n_{\delta, t+1} + \mu_{t+1}^F) = \gamma_\delta (n_{\delta, t+1} + \mu_{t+1}^M) + \gamma_\delta (\mu_{t+1}^F - \mu_{t+1}^M). \quad (59)$$

The market thinks its own belief, $\gamma_\delta (n_{\delta, t+1} + \mu_{t+1}^M)$, is correct. Therefore, the market
thinks the Fed’s belief is a noisier version of its own belief. Specifically, the market’s perceived variance of the Fed’s future belief is the sum of the forecastable demand variance \((\sigma_d^2 - \tilde{\sigma}_d^2)\) and a noise term that increases with the scope of disagreement,

\[
\text{var}_t^M \left(\gamma \left(n_{\delta,t+1} + \mu_{t+1}^F \right) \right) = (\sigma_d^2 - \tilde{\sigma}_d^2) + \gamma_D^2 D \sigma_\mu^2.
\] (60)

The rest of the model is the same as in Section 4. The following proposition characterizes the equilibrium and generalizes Corollary 2 to the case with disagreements.

Proposition 5 (Fed-market disagreements). Consider the setup in Proposition 3 and Fed-market disagreements. The equilibrium is given by

\[
(pyt)_t^* = pyt_t - y_t^* = -\frac{\eta}{1-\eta} \tilde{y}_t - \gamma \left(n_{\delta,t} + \mu_t^F \right) - m
\] (61)

\[
y_t = y_{t-1} + \delta_t - \gamma \left(n_{\delta,t-1} + \mu_{t-1}^F \right)
\] (62)

\[
\tilde{y}_t = \delta_t - \gamma \left(n_{\delta,t-1} + \mu_{t-1}^F \right) - z_t
\] (63)

\[
r_{t+1} = \rho + \frac{\eta \tilde{y}_t + \gamma \left(n_{\delta,t} + \mu_t^F \right)}{1-\eta}
\]

\[
+ \frac{1-\eta - \beta}{1-\eta} \left(\delta_{t+1} - \gamma \left(n_{\delta,t} + \mu_t^F \right) \right) + \frac{\beta}{1-\eta} \left(z_{t+1} - \gamma \left(n_{\delta,t+1} + \mu_{t+1}^F \right) \right)
\] (64)

\[
i_t = E_t^M [r_{t+1}] - \frac{r_{pt}}{2}
\] (65)

where \(E_t^M [r_{t+1}] = \rho + \frac{\eta \tilde{y}_t}{1-\eta} + (\beta + \eta) \frac{\gamma \left(n_{\delta,t} + \mu_t^F \right)}{1-\eta} + (1 - \beta - \eta) \frac{\gamma \left(n_{\delta,t} + \mu_t^M \right)}{1-\eta} \)

\[
r_{pt} = \text{var}_t (r_{t+1}) = r_{pt}^\text{com} + \beta^2 \gamma_D^2 D \sigma_\mu^2,
\] (66)

where \(r_{pt}^\text{com}\) is the risk premium with common beliefs characterized in (45).

Eqs. (61–63) show that the Fed-market disagreements do not affect the equilibrium “pystar,” output, or the output gap, which are still determined by the Fed’s belief. In fact, these equations follow from (37–39) in Section 4 after substituting the Fed’s belief, \(E_t^F [\delta_{t+1}] = \gamma \left(n_{\delta,t} + \mu_t^F \right)\). The Fed still shields the economy from forecasted demand shocks under its belief.

In contrast, Eqs. (65–66) show that disagreements do affect the interest rate and the risk premium. Disagreements matter because the market has a different belief than the Fed and thinks the Fed should be targeting a different “pystar.” Therefore, the market thinks the Fed is making a policy “mistake.” These perceived “mistakes” affect the interest rate and the risk premium. In the rest of this section, we present three corollaries that unpack these effects.
Corollary 5 (Policy risk premium). The risk premium, \(rp_t = \text{var}_t^M [r_{t+1}] = rp_{t}^{\text{com}} + \beta^2 \gamma_d^2 D \sigma_\mu^2 \), is increasing in the scope of disagreement between the Fed and the market (\(D \)).

The result follows from Eq. (66). We sketch the proof of this equation, which helps develop the intuition. Note that the aggregate asset price in the next period is

\[
pt+1 = pt^* = yt+1 - \frac{\eta}{1-\eta} yt+1 - \frac{\gamma_d (n_{t+1} + \mu_{t+1}^F)}{1-\eta} - m. \tag{67}
\]

Combining this expression with (62–63), we obtain

\[
\text{var}_t^M (pt+1) = \text{var}_t^{\text{com}} (pt+1) + \gamma_d^2 D \sigma_\mu^2,
\]

where \(\text{var}_t^{\text{com}} (pt+1) \) is the asset price volatility that would obtain if the beliefs were common. Hence, disagreements increase the market’s perceived future asset price volatility \(\text{var}_t^M (pt+1) \). Thus, disagreements also increase the market’s perceived return volatility \(\text{var}_t^M (rt+1) \) (see the appendix for details).

With greater \(D \) the market thinks the Fed’s future beliefs will be “noisier” and the Fed will make more frequent policy “mistakes.” Therefore, the market also perceives greater future price and return volatility and demands a higher risk premium. We refer to the component of risk premium that stems from disagreements, \(\beta^2 \gamma_d^2 D \sigma_\mu^2 \), as the policy risk premium. In practice, we expect this premium to be especially large at times of macroeconomic uncertainty, which are likely to create a greater scope for disagreements.

Corollary 5 shows that the anticipation of future disagreements, \(\mu_{t+1}^F - \mu_{t+1}^M \), induces a risk premium. Our next result shows that current disagreements, \(\mu_t^F - \mu_t^M \), induce a phenomenon that we call behind-the-curve.

Corollary 6 (“Behind-the-curve”). Suppose the market is more demand-optimistic than the Fed, \(\mu_t^M > \mu_t^F \) (symmetric-opposite results hold when the market is more demand-pessimistic). The market thinks the Fed is “behind-the-curve” and will induce a positive output gap

\[
E_t^M [\bar{yt+1}] = \gamma_d (\mu_t^M - \mu_t^F) > 0, \tag{68}
\]

after which it will have to reverse course and implement a lower-than-average “pystar”

\[
E_t^M [pt+1] = yt^* - m - \frac{\eta}{1-\eta} \gamma_d (\mu_t^M - \mu_t^F) < yt^* - m. \tag{69}
\]

In terms of the interest rates, the demand-optimistic market thinks the Fed will switch from setting “too low” rates (lower than what is ideal under the market’s belief) to “too
high” rates (higher than what the Fed expects and higher than the long-run average rate):

\[i_t = i_t^M - \frac{\beta + \eta}{1 - \eta} \gamma_\delta (\mu_t^M - \mu_t^F) < i_t^M \]

(70)

\[E_t^M [i_{t+1}] = E_t^F [i_{t+1}] + \frac{\eta}{1 - \eta} \gamma_\delta (\mu_t^M - \mu_t^F) \text{ with } E_t^F [i_{t+1}] = \rho - \frac{\gamma}{2}, \]

(71)

where \(i_t^M \) is the equilibrium interest rate that would obtain in period \(t \) if the Fed had the same beliefs as the market in this period, \(\mu_t^F = \mu_t^M \) (see (65)).

For a sketch proof, first consider the market’s expectation for the future output gap, \(\tilde{y}_{t+1} = y_{t+1} - y_{t+1}^* \). Using Eq. (63), along with \(E_t^M [z_{t+1}] = 0 \), we calculate

\[E_t^M [\tilde{y}_{t+1}] = E_t^M [\delta_{t+1} - \gamma_\delta (n_{st} + \mu_t^F)] \]
\[= E_t^M [\delta_{t+1} - \gamma_\delta (n_{st} + \mu_t^M)] + \gamma_\delta (\mu_t^M - \mu_t^F) \]
\[= \gamma_\delta (\mu_t^M - \mu_t^F). \]

The second line uses (59) applied to period \(t \) and the last line uses the fact that \(E_t^M [\delta_{t+1} - \gamma_\delta (n_{st} + \mu_t^M)] = 0 \) (the market thinks its belief is unbiased). This proves (68). The market thinks the Fed is making a “mistake” and will not be able to achieve its target output gap on average (recall that the Fed targets a zero output gap, \(E_t^F [\tilde{y}_{t+1}] = 0 \)). Naturally, a demand-optimistic market expects a positive output gap.

Next consider the market’s expectation for the future asset price, \(p_{t+1} \). Using Eq. (67), along with \(E_t^M [y_{t+1}^*] = y_{t+1}^* \) and \(E_t^M [n_{st}, t+1 + \mu_t^F] = 0 \), we obtain

\[E_t^M [p_{t+1}] = y_{t}^* - \frac{\eta}{1 - \eta} E_t^M [\tilde{y}_{t+1}] - m. \]

Combining this with (68) proves (69). With demand inertia, the market further thinks the Fed will have to reverse course and make a large policy adjustment to address the future output gaps that its “mistake” will induce. A demand-optimistic market thinks: \textit{once the positive output gap develops, the Fed will realize its “mistake” and will have to reverse course, implementing a low future “pystar.”}

Finally, consider the market’s perception of the current interest rate, \(i_t \) vs \(i_t^M \), and its expectation for the future interest rate, \(E_t^M [i_{t+1}] \). Eqs. (70–71) follow from combining (65) with (68). These expressions describe the implications of “behind-the-curve” for interest rates. A demand-optimistic market thinks the Fed is currently setting “too low” rates. The market further thinks that, once the positive output gap develops, the Fed will switch to setting “too high” rates (to implement a low future “pystar”).
Our final corollary explains the effect of (future and current) disagreements on the policy interest rate.

Corollary 7 (Disagreements and the policy interest rate). *(i) An increase in the scope of disagreements between the Fed and the market \(D\) reduces the interest rate \(i_t\). *(ii) Let \(i_t^F\) denote the interest rate when the market has the same belief as the Fed in the current period, \(\mu_t^M = \mu_t^F\) (for a given \(D\)). When inertia is relatively low \(\eta < 1 - \beta\), a demand optimistic market \((\mu_t^M > \mu_t^F)\) induces the (demand-pessimistic) Fed to set a higher interest rate that partially accommodates the market’s belief, \(i_t > i_t^F\). Conversely, when inertia is high \(\eta > 1 - \beta\), a demand optimistic market induces the (demand-pessimistic) Fed to set a lower interest rate that overweights the Fed’s own belief, \(i_t < i_t^F\).

The first part follows from Corollary 5; a greater scope of future disagreements increases the risk premium. If the policy did not adjust the interest rate, a greater risk premium would reduce asset prices below “pystar.” The Fed reduces the interest rate to keep asset prices at “pystar” (consistent with “the Fed put/call”).

The second part is driven by the effect of (current) disagreements on the market’s expected return, \(E_t^M [r_{t+1}]\) (recall that \(i_t = E_t^M [r_{t+1}] - rp_t / 2\)). This depends on the market’s expectations for future cash flows and future asset prices, \(E_t^M [y_{t+1}]\) and \(E_t^M [p_{t+1}]\) (see (13)). Corollary 6 implies that current disagreements (“behind-the-curve”) induce competing effects on \(E_t^M [y_{t+1}]\) and \(E_t^M [p_{t+1}]\). On the one hand, a demand-optimistic market expects relatively high cash-flows (driven by the output boom that it anticipates). On the other hand, the market also expects relatively low asset prices. The expected return in (65) balances these two forces (see the proof of the proposition for a derivation):

\[
E_t^M [r_{t+1}] = \rho + \frac{\eta y_t + \gamma_s (n_yt + \mu_t^F)}{1 - \eta} + \left[(1 - \beta) - \frac{\beta \eta}{1 - \eta} \right] \gamma_s (\mu_t^M - \mu_t^F).
\]

The first term in the square bracket captures the future cash-flow effect of disagreements and the second term captures the future asset-prices effect. When \(\eta < 1 - \beta\) (relatively low inertia), the cash flow effect dominates and a more demand-optimistic market \((\mu_t^M > \mu_t^F)\) expects a higher return. When \(\eta > 1 - \beta\) (relatively high inertia), the asset-prices effect dominates and a more demand-optimistic market expects a lower return.

When inertia is low, a demand-optimistic market expects a high return via the anticipation of high cash flows. This induces a demand-pessimistic Fed to set a relatively high interest rate that partially accommodates the market’s view. If the Fed did not adjust the interest rate, the market’s expectations of a high return would increase asset prices above “pystar.” Conversely, when inertia is high, a demand-optimistic market ex-
pects a relatively low return via the anticipation of low future asset prices. This induces a demand-optimistic Fed to cut the rate more aggressively to prevent a decline of asset prices and implement “pystar.”

Remark 3 (Fed belief surprises as monetary policy shocks). *We have assumed that the market always knows the Fed’s current belief (and vice versa). In practice, the market is often uncertain about the Fed’s belief and learns it through a policy speech or announcement. In Caballero and Simsek (2022a), we use this observation to develop a theory of microfounded monetary policy shocks. To illustrate the idea, suppose each period has two phases. Initially, the market does not know the Fed’s interpretation \(\mu_t^F \). Later in the period, the market learns \(\mu_t^F \) (before portfolio and consumption decisions). The Fed knows \(\mu_t^M \) throughout. In this setting, the revelation of the Fed’s belief to the market affects financial markets like textbook monetary policy shocks (which are often modeled as random interest rate changes). For instance, when the Fed is revealed to be more demand-optimistic than the market expected, the interest rate increases and the aggregate asset price declines (see Appendix B.3 for a formalization). Unlike the textbook policy shocks, these shocks are not random: they are “optimal” under the Fed’s belief. These shocks affect financial markets like random shocks because the market does not share the Fed’s beliefs and perceives the policy changes induced by the Fed’s beliefs as “mistakes.”*

7. Final Remarks

Summary. We developed a framework to analyze the impact of monetary policy on asset prices. The central idea is to reverse engineer the Fed’s policy problem to solve for the aggregate asset price per potential output that ensures future macroeconomic balance under the Fed’s belief (“pystar”). When the Fed is unconstrained and acts optimally, it keeps the aggregate asset price close to this level by adjusting its policy tools. In the core of our analysis, we focused on a two-speed economy where households are slow and respond to asset prices with a lag. In this context, we derived several results that shed light on the interaction between monetary policy and asset prices.

12 One caveat is that, in the data, monetary policy shocks seem to affect stock prices through the risk premium (see Bernanke and Kuttner (2005); Bauer et al. (2023)). In our model, monetary policy shocks operate via the traditional interest rate and cash-flow channels. However, the model features a policy “mistakes” risk-premium that depends on disagreements (see Corollary 5). If the policy announcement provides information about the scope of new disagreements (\(D \)), then it can also affect the policy risk premium. In other words, during policy events, the market may not only learn what the Fed thinks, but also how the Fed thinks—and how much it is likely to deviate from its own view in future periods.
First, aggregate asset prices are driven by the Fed’s perceptions of macroeconomic needs—specifically, the Fed’s beliefs about future aggregate demand and supply. Asset prices are higher when the Fed expects higher aggregate supply and they are lower when the Fed expects higher aggregate demand. Perhaps surprisingly, traditional financial forces such as the market’s beliefs for future cash flows and its required risk premium do not drive aggregate asset prices. Instead, financial forces drive relative asset prices subject to an adding-up constraint determined by macroeconomic needs as perceived by the Fed.

Second, more precise macroeconomic news that improves the Fed’s ability to predict the future state of the economy reduces output volatility but it also increases asset price volatility. When the Fed can predict the future demand better, it preempts and mitigates demand-driven business cycles, but it does so by inducing greater asset price volatility.

Third, with internal demand inertia, the Fed overshoots the aggregate asset price upward (resp. downward) to neutralize the recessions (resp. booms) caused by demand shocks. This overshooting creates the appearance of a disconnect between the performance of the economy and the financial markets.

Fourth, inflation is negatively correlated with asset prices, regardless of whether it is driven by demand or supply shocks. A positive demand shock increases the output gap and inflation, while inducing the Fed to overshoot asset prices downward. A negative supply shock induces the Fed to target lower asset prices to align future demand with the lower level of supply. With either shock, positive inflation surprises are bad news for asset prices. This also implies that the inflation risk premium is typically positive.

Fifth, disagreements between the market and the Fed affect the risk premium and interest rate. The market anticipates excessive policy-induced volatility and demands a policy risk premium, which is especially high at times of macroeconomic uncertainty and disagreements. The market also thinks the Fed is “behind-the-curve” and will reverse course: for instance, a demand-optimistic market thinks the Fed will induce positive output gaps after which it will have to overshoot asset prices downward. The market’s perceptions of excessive policy-induced volatility and “behind-the-curve” affect the policy interest rate the Fed needs to set to achieve “ystar.”

Robustness and future work. We deliberately kept our analysis stark. Among other things, we assumed that the Fed is willing and able to use its tools with full potency to close the output gap (subject to the restrictions from transmission lags). In practice, the Fed’s power is more limited. The Fed may face an effective lower bound or other interest rate constraints. Alternatively, the Fed might be reluctant to act too aggressively in fear of destabilizing the financial sector. Our results are qualitatively robust to allowing for
these types of monetary policy constraints. Naturally, these constraints dampen the Fed’s put and its response to aggregate demand shocks. Thus, the constraints allow for some asset price volatility driven by financial market forces, while mitigating the policy-induced asset price volatility.

A general theme of our paper is that the Fed targets the aggregate asset price (financial conditions) rather than the policy interest rate. The policy interest rate is simply one of the tools the Fed uses to achieve its asset price target. This observation has two implications. First, our model makes stronger predictions for the aggregate asset price than for the policy rate. The aggregate asset price is driven by the Fed’s perception of macroeconomic imbalances. In contrast, the policy interest rate is driven by subtle details of the model, such as disagreements between the Fed and the market, the extent of internal demand inertia, and various forces that drive the risk premium. Second, formulating policy rules in terms of the aggregate asset price, rather than in terms of the policy rate, could be helpful. Our model supports Taylor-like rules in terms of the aggregate asset price. For instance, Eq. (37) from Section 4 describes “pystar” as a function of the current output gap, \tilde{y}_t (and a second term that incorporates the Fed’s beliefs about future macroeconomic conditions). In an extension of our model with multiple assets, where different asset prices might have a different impact on aggregate demand, the policy would suggest targeting a financial conditions index (FCI) that weights different asset valuations according to their impact on aggregate demand. We leave the analysis of the optimal FCI for future work.

References

Caballero, R. J., Simsek, A., 2021b. Monetary policy and asset price overshooting: A rationale for the Wall/Main street disconnect. NBER working paper No. 27712.

Caballero, R. J., Simsek, A., 2022b. A note on temporary supply shocks with aggregate demand inertia. NBER working paper No. 29815.

Cieslak, A., Pflueger, C. E., 2022. Inflation and asset returns. Available at SSRN.

Online Appendices: Not for Publication

A. Appendix: Omitted derivations

This appendix presents the analytical derivations and proofs omitted from the main text.

A.1. Microfoundations for the baseline environment

In this section, we describe the details of the baseline environment that we describe in Section 2.1 and use throughout the paper.

The supply side is the same as in Caballero and Simsek (2021b), with the difference that here we allow for shocks to potential output. In particular, the real side of the economy features two types of agents: “asset-holding households” (the households) denoted by superscript \(i = H \), and “hand-to-mouth agents” denoted by superscript \(i = HM \). There is a single factor, labor.

Hand-to-mouth agents supply labor according to standard intra-period preferences. They do not hold financial assets and spend all of their income. We write the hand-to-mouth agents’ problem as,

\[
\max_{L_t} \log C_{HM}^{HM} L_t^{1+\varphi} \quad \text{(A.1)}
\]

\[
Q_t C_{HM}^{HM} = W_t L_t + T_t.
\]

Here, \(\varphi \) denotes the Frisch elasticity of labor supply, \(Q_t \) denotes the nominal price for the final good, \(W_t \) denotes the nominal wage, and \(T_t \) denotes lump-sum transfers to labor (described subsequently). Using the optimality condition for problem (A.1), we obtain a standard labor supply curve

\[
\frac{W_t}{Q_t} = \chi L_t^{\varphi} C_{HM}^{HM}. \quad \text{(A.2)}
\]

Households own and spend out of the market portfolio and they supply no labor.

Production is otherwise similar to the standard New Keynesian model. There is a continuum of monopolistically competitive firms, denoted by \(\nu \in [0, 1] \). These firms produce differentiated intermediate goods, \(Y_t(\nu) \), subject to the Cobb-Douglas technology,

\[
Y_t(\nu) = A_t L_t(\nu)^{1-\alpha}. \quad \text{(A.3)}
\]

Here, \(1 - \alpha \) denotes the share of labor in production and \(A_t \) the total factor productivity. We allow \(A_t \) to change over time to capture supply shocks [see (4)].

A competitive final goods producer combines the intermediate goods according to the CES
technology,
\[Y_t = \left(\int_0^1 Y_t(\nu)^{\frac{\varepsilon-1}{\varepsilon}} d\nu \right)^{\varepsilon/(\varepsilon-1)}, \tag{A.4} \]
for some \(\varepsilon > 1 \). This implies the price of the final consumption good is determined by the ideal price index,
\[Q_t = \left(\int_0^1 Q_t(\nu)^{1-\varepsilon} d\nu \right)^{1/(1-\varepsilon)}, \tag{A.5} \]
and the demand for intermediate good firms satisfies,
\[Y_t(\nu) \leq \left(\frac{Q_t(\nu)}{Q_t} \right)^{-\varepsilon} Y_t. \tag{A.6} \]
Here, \(Q_t(\nu) \) denotes the nominal price set by the intermediate good firm \(\nu \).

The labor market clearing condition is
\[\int_0^1 L_t(\nu) d\nu = L_t. \tag{A.7} \]

The goods market clearing condition is
\[Y_t = C_t^H + C_t^{HM}. \tag{A.8} \]

Finally, to simplify the distribution of output across factors, we assume the government taxes part of the profits lump-sum and redistributes to workers to ensure they receive their production share of output. Specifically, each intermediate firm pays lump-sum taxes determined as follows:
\[T_t = (1 - \alpha) Q_t Y_t - W_t L_t. \tag{A.9} \]

This ensures that in equilibrium hand-to-mouth agents receive and spend their production share of output, \((1 - \alpha) Q_t Y_t \), and consume \[C_t^{HM} = (1 - \alpha) Y_t. \tag{A.10} \]

Households receive the total profits from the intermediate good firms, which amount to the residual share of output, \(\Pi_t \equiv \int_0^1 \Pi_t(\nu) d\nu = \alpha Q_t Y_t. \)

Flexible-price benchmark and potential output. To characterize the equilibrium, it is useful to start with a benchmark setting without nominal rigidities. In this benchmark, an
intermediate good firm ν solves the following problem,

$$\Pi = \max_{Q, L} QY - W_t L - T_t$$

where $Y = A_t L^{1-\alpha} = \left(\frac{Q}{Q_t}\right)^{-\varepsilon} Y_t$.

The firm takes as given the aggregate price, wage, and output, Q_t, W_t, Y_t, and chooses its price, labor input, and output Q, L, Y.

The optimal price is given by

$$Q = \frac{\varepsilon}{\varepsilon - 1} W_t \left(1 - \alpha\right) A_t L^{-\alpha}.$$ \hfill (A.12)

The firm sets an optimal markup over the marginal cost, where the marginal cost depends on the wage and (inversely) on the marginal product of labor.

In equilibrium, all firms choose the same prices and allocations, $Q_t = Q$ and $L_t = L$. Substituting this into (A.12), we obtain a labor demand equation,

$$\frac{W_t}{Q_t} = \frac{\varepsilon - 1}{\varepsilon} \left(1 - \alpha\right) A_t L^{-\alpha}.$$ \hfill (A.13)

Combining this with the labor supply equation (A.2), and substituting the hand-to-mouth consumption (A.10), we obtain the equilibrium labor as the solution to,

$$\chi (L^*)^\phi \left(1 - \alpha\right) Y_t^* = \frac{\varepsilon - 1}{\varepsilon} \left(1 - \alpha\right) A_t (L^*)^{-\alpha}.$$

In equilibrium, output is given by $Y_t^* = A_t (L^*)^{1-\alpha}$. Therefore, the equilibrium condition simplifies to,

$$\chi (L^*)^{1+\phi} = \frac{\varepsilon - 1}{\varepsilon}. \hfill (A.14)$$

We refer to L^* as the potential labor supply and $Y^* = A_t (L^*)^{1-\alpha}$ as the potential output.

Fully sticky prices. We next describe the equilibrium with nominal rigidities. For simplicity, we focus on the case with full price stickiness. In particular, intermediate good firms have a preset nominal price that remains fixed over time, $Q_t (\nu) = Q^*$. This implies the nominal price for the final good is also fixed and given by $Q_t = Q^*$ [see (A.5)]. Then, each intermediate good firm ν at time t solves the following version of problem (A.11),

$$\Pi = \max_{L} Q^* Y - W_t L - T_t$$

where $Y = AL^{1-\alpha} \leq Y_t$. \hfill (A.15)
For small aggregate demand shocks (which we assume) each firm optimally chooses to meet
the demand for its goods, \(Y = AL^{1-\alpha} = Y_t \). Therefore, each firm’s output is determined by
aggregate demand, which is equal to spending by households and hand-to-mouth agents [see (A.8)],
\[
Y_t = C_t^H + C_t^{HM}.
\]
This establishes Eq. \((1)\) in the main text.

Finally, recall that hand-to-mouth agents’ spending is given by \(C_t^{HM} = (1 - \alpha) Y_t \) [see Eq. \((A.10)\)]. Combining this with \(Y_t = C_t^H + C_t^{HM} \), the aggregate demand for goods is determined
by the households’ spending,
\[
Y_t = \frac{C_t^H}{\alpha}.
\]
This establishes Eq. \((3)\) in the main text.

Campbell-Shiller approximation. We finally derive the Campbell-Shiller approximation
in \((13)\). First note that Eq. \((5)\) implies
\[
\begin{align*}
\log (1 + X_{t+1}) & = \log (1 + X^*) + X* \log (1 + X^*) \log (1 + \frac{\alpha Y_{t+1} P_{t+1}}{P_t}) \\
& = \log \left(\frac{\alpha Y_{t+1}}{P_{t+1}} + 1 \right) + \log \left(\frac{P_{t+1}}{P_t} \right) \\
& = \log (1 + X_{t+1}) + p_{t+1} - p_t.
\end{align*}
\]
(A.16)

Here, we have defined the dividend price ratio, \(X_t = \alpha Y_t / P_t \).

Next consider the steady-state value of the dividend-price ratio absent shocks, denoted by
\(X^* \). Following the same steps as in Section 2, and setting the demand shock to zero \((\delta_t = 0) \), we
obtain the steady-state output-asset price relation \(Y^* = (1 - \beta) \frac{1}{\alpha \beta} P^* \) (see \((17)\)). This implies \(X^* = \alpha Y^* / P^*_t = \frac{1 - \beta}{\beta} \).

Finally, log-linearize \((A.16)\) around \(X_{t+1} = X^* \). Let \(x_{t+1} = \log (X_{t+1} / X^*) \) denote the
log deviation of the dividend price ratio from its steady-state level. Consider the term,
\[
\log (1 + X_{t+1}) = \log (1 + X^* \exp(x_{t+1})).
\]
Using a Taylor approximation around \(x_{t+1} = 0 \), we obtain
\[
\log (1 + X_{t+1}) \approx \log (1 + X^*) + \frac{X^*}{1 + X^*} x_{t+1}
\]
\[
\approx \log \left(\frac{1}{\beta} \right) + (1 - \beta) \left(\log \left(\frac{\alpha Y_{t+1}}{P_{t+1}} \right) - \log \left(\frac{1 - \beta}{\beta} \right) \right).
\]
Substituting this into \((A.16)\) and collecting the constant terms, we obtain Eq. \((13)\) in the main
text.
A.2. Omitted derivations in Section 2

Proof of Proposition 1. In the main text, we show that the equilibrium asset price is given by

\[p_t = p^*_t = y^*_t - \delta_t - m \]

where \(m = \log \left(\frac{1 - \beta}{\alpha \beta} \right). \)

Substituting this along with \(y_{t+1} = y^*_t + z_{t+1} \) into (13), we obtain

\[
\begin{align*}
\kappa + (1 - \beta) y^*_{t+1} + \beta p_t - p_t &= \kappa + (1 - \beta) y^*_{t+1} + \beta (y^*_{t+1} - \delta_{t+1}) - (y^*_t - \delta_t) \\
&= \rho + (1 - \beta) y^*_{t+1} + \beta (y^*_{t+1} - \delta_{t+1}) - (y^*_t - \delta_t) \\
&= \rho + \delta_t + z_{t+1} - \beta \delta_{t+1}.
\end{align*}
\]

The third line substitutes \(\kappa \) from (13) and \(\rho = -\log \beta \) to calculate the constant term. This last line substitutes \(y^*_{t+1} = y^*_t + z_{t+1} \) to describe the return in terms of the shocks. This establishes (19). In the main text, we show that this implies (20).

A.3. Omitted derivations in Section 3

Proof of Proposition 2. Presented in the main text.

Proof of Corollary 1. Most of the proof is presented in the main text. Eqs. (28–30) follow from substituting \(E_t \left[\delta_{t+1} \right] = \gamma_n \delta^t \) into (24–26). To calculate the volatility induced by news, note that \(\gamma_n \delta^t \) and \(\delta_{t+1} - \gamma_n \delta^t \) capture the forecastable and the unforecastable components of aggregate demand shocks. These components are uncorrelated with one another and have variance given by

\[
\text{var}_t (\delta_{t+1} - \gamma_n \delta^t) = \sigma^2_{\delta} \quad \text{and} \quad \text{var}_t (\gamma_n \delta_{t+1} - \gamma_n \delta^t) = \sigma^2_{\delta} - \sigma^2_{\delta}.
\]

(A.17)

Combining this expression with Eq. (28) establishes Eq. (34) in the main text.

To calculate the risk premium and the interest rate, note that Eq. (13) implies

\[
\begin{align*}
\kappa + (1 - \beta) y^*_{t+1} + \beta p_t - p_t &= \kappa + (1 - \beta) (y^*_t + \delta_{t+1} - \gamma_n \delta^t) + \beta (y^*_{t+1} - \gamma_n \delta_{t+1}) - (y^*_t - \gamma_n \delta^t) \\
&= \rho + (1 - \beta) (y^*_t + \delta_{t+1} - \gamma_n \delta^t) + \beta (y^*_{t+1} - \gamma_n \delta_{t+1}) - (y^*_t - \gamma_n \delta^t) \\
&= \rho + \gamma_n \delta^t + (1 - \beta) (\delta_{t+1} - \gamma_n \delta^t) + \beta (z_{t+1} - \gamma_n \delta_{t+1}).
\end{align*}
\]

Here, the second line substitutes \(y_{t+1}, p_{t+1}, p_t \) using (28) and simplifies the constant terms (similar to the proof of Proposition 1). The last line substitutes \(y^*_{t+1} = y^*_t + z_{t+1} \) and simplifies the expression. This proves (31).
Finally, combining (31) with (A.17), we obtain Eq. (33). Combining the expression with (12), we also obtain (32), completing the proof.

A.4. Omitted derivations in Section 4

We first derive Eq. (36). We then present the proofs of the propositions and the corollaries in Section 3.

Output asset price relation with inertia. Recall that in this section we have the modified version of the consumption rule

$$C_t^H = (1 - \beta) D_t + \beta \left[\eta C_{t-1}^H + (1 - \eta) \frac{1 - \beta}{\beta} K_{t-1} \right] \exp (\delta_t).$$

Substituting $D_t = \alpha Y_t$ and $K_{t-1} = P_{t-1}$ and $C_t^H = \alpha Y_t$, we obtain

$$Y_t = \left(\eta Y_{t-1} + (1 - \eta) \frac{1 - \beta}{\alpha \beta} P_{t-1} \right) \exp (\delta_t).$$

Dividing by P_{t-1} and taking logs, we obtain

$$y_t = \log \left(\eta \frac{Y_{t-1}}{P_{t-1}} + (1 - \eta) \frac{1 - \beta}{\alpha \beta} \right) + p_{t-1} + \delta_t$$

$$= \log (\eta Z_{t-1} + (1 - \eta) Z^*) + p_{t-1} + \delta_t$$

$$= \log \left(1 + \eta \left(\frac{Z_{t-1}}{Z^*} - 1 \right) \right) + \log Z^* + p_{t-1} + \delta_t. \quad (A.18)$$

Here, the second line substitutes the output price ratio, $Z_t = Y_t/P_t$, and its steady-state level, $Z^* = Y^*_t/P^*_t = \frac{1 - \beta}{\alpha \beta}$ (see (18)).

Next, let $z_{t-1} = \log (Z_{t-1}/Z^*)$ denote the log deviation of the output price ratio from its steady-state level. Note that

$$\log \left(1 + \eta \left(\frac{Z_{t-1}}{Z^*} - 1 \right) \right) = \log (1 + \eta (\exp (z_{t-1}) - 1)) \approx \eta z_{t-1}.$$

Here, the last line applies a Taylor approximation around $z_{t-1} = 0$. Substituting this into (A.18), we obtain

$$y_t = \eta z_{t-1} + \log Z^* + p_{t-1} + \delta_t$$

$$= (1 - \eta) \log Z^* + \eta \log Z_{t-1} + p_{t-1} + \delta_t$$

$$= (1 - \eta) m + \eta (y_{t-1} - p_{t-1}) + p_{t-1} + \delta_t$$

$$= (1 - \eta) m + \eta y_{t-1} + (1 - \eta) p_{t-1} + \delta_t.$$
Here, the second line substitutes $z_{t-1} = \log (Z_{t-1}/Z^*)$. The third line substitutes $Z_{t-1} = Y_{t-1}/P_{t-1}$ and $m = \log Z^* = \log \left(\frac{1-\beta}{\alpha \beta} \right)$ (see (17)). The last line establishes Eq. (36).

Proof of Proposition 3. Presented in the main text.

Proof of Corollary 2. Under the belief structure in Section 3.1 agents’ (common) expectation for the demand shock is given by $E_t [\delta_{t+1}] = \gamma_{\delta} n_{\delta t}$, and their expected supply shock is zero, $E_t [z_{t+1}] = 0$. After substituting these beliefs, Eqs. (37–38) (for period t) imply the closed-form solutions in (40–42).

Next consider the equilibrium return r_{t+1} given by (see (13))

$$r_{t+1} = \kappa + (1 - \beta) y_{t+1} + \beta p_{t+1} - p_t.$$

Combining this with Eqs. (40) and (41), we obtain

$$r_{t+1} = \kappa + (1 - \beta) (y_t^* + \delta_{t+1} - \gamma_{\delta} n_{\delta t})$$

$$+ \beta \left(y_{t+1} - \eta \tilde{y}_t + \gamma_{\delta} n_{\delta, t+1} - m \right) - \left(y_t^* - \eta \tilde{y}_t + \gamma_{\delta} n_{\delta t} - m \right)$$

$$= \rho + (1 - \beta) (y_t^* + \delta_{t+1} - \gamma_{\delta} n_{\delta t})$$

$$+ \beta \left(y_{t+1} - \eta \tilde{y}_t + \frac{\delta_{t+1} - \gamma_{\delta} n_{\delta t} - z_{t+1} + \gamma_{\delta} n_{\delta, t+1}}{1 - \eta} \right)$$

$$- \left(y_t^* - \eta \delta_t - \gamma_{\delta} n_{\delta, t-1} - z_t + \gamma_{\delta} n_{\delta t} \right)$$

$$= \rho + \frac{\gamma_{\delta} n_{\delta t}}{1 - \eta} + \frac{\eta}{1 - \eta} \left(\delta_t - \gamma_{\delta} n_{\delta, t-1} - z_t \right)$$

$$+ \left(1 - \beta - \beta \frac{\eta}{1 - \eta} \right) \left(\delta_{t+1} - \gamma_{\delta} n_{\delta t} \right) + \frac{\beta}{1 - \eta} (z_{t+1} - \gamma_{\delta} n_{\delta, t+1}).$$

Here, the second equality simplifies the constant terms and substitutes $\tilde{y}_{t+1} = \delta_{t+1} - \gamma_{\delta} n_{\delta t} - z_{t+1}$ (see (42)) and $y_{t+1}^* = y_t^* + z_{t+1}$. The last equality collects similar terms together. This proves (43).

Next consider the equilibrium interest rate i_t and the risk premium $r p_t$. Using (12) and (43), we obtain (44)

$$i_t = E_t [r_{t+1}] - \frac{1}{2} r p_t$$

where $E_t [r_{t+1}] = \rho + \frac{\gamma_{\delta} n_{\delta t}}{1 - \eta} + \frac{\eta}{1 - \eta} \left(\delta_t - \gamma_{\delta} n_{\delta, t-1} - z_t \right)$.

Using (43), we further obtain (45).

$$r p_t = var_t (r_{t+1}) = \left(\frac{1 - \eta - \beta}{1 - \eta} \right)^2 \sigma^2 + \left(\frac{\beta}{1 - \eta} \right)^2 \left(\sigma^2 + \sigma^2_{n} - \sigma^2_{z} \right).$$

Finally, we use this characterization to calculate the conditional covariance $cov_{t-1} (y_t, p_t)$. Note that the unforecastable component of the demand shock, $\delta_t - \gamma_{\delta} n_{\delta, t-1}$, is uncorrelated
with the supply shock, z_t. It is also uncorrelated with the signal for the next period’s demand, n_{t+1} (since the demand shocks are i.i.d.). Combining these observations with (40) implies $cov_{t-1}(y_t, p_t) = -\frac{\alpha}{1-\delta} \sigma_\delta^2$ where $\sigma_\delta^2 = var_{t-1}(\delta_t - \gamma_\delta n_{t-1})$. This establishes (46) and completes the proof.

A.5. Omitted derivations in Section 5

We first present the details of the model with inflation that we use in Section 5. We then present the proof of Proposition 4. Throughout, we adopt the same notation as before for the real (inflation-adjusted) variables and introduce new notation for the nominal variables. In particular, Y_t, P_t, Rf_t denote the real output, the real aggregate asset price, and the real interest rate, respectively.

New-Keynesian Phillips Curve (NKPC). Consider the supply side described in Appendix A.1. Recall that there is a continuum of monopolistically competitive firms, denoted by $\nu \in [0, 1]$, that produce according to the Cobb-Douglas technology (A.3). A final good sector aggregates the output from these firms according to (A.4). The labor supply is provided by hand-to-mouth agents according to (A.2).

An intermediate good firm’s price is denoted by $Q_t(\nu)$. So far, we have assumed that these prices are permanently fixed. We now assume that in each period, a randomly selected fraction, $1 - \theta$, of firms reset their nominal prices. The firms that do not adjust their price in period t, set their labor input to meet the demand for their goods (since firms operate with a markup and we focus on small shocks).

Consider the firms that adjust their price in period t. Let Q_t^{adj} denote the optimal price set by these firms. We assume Q_t^{adj} solves the following version of problem (A.11)

$$
\max_{Q_t^{adj}} \sum_{h=0}^{\infty} \delta^h E_t^S \left\{ M_{t,t+h} \left(Y_{t+h|t} Q_t^{adj} - W_{t+h} L_{t+h|t} - T_t \right) \right\}
$$

(A.19)

where $Y_{t+h|t} = A_{t+h} L_{t+h|t}^{1-\alpha} = \left(\frac{Q_t^{adj}}{Q_{t+h}} \right)^{-\varepsilon} Y_{t+h}$

and $M_{t,t+h} = \beta^h \frac{1}{P_{t+h}} \frac{Q_{t+h}}{Q_{t+h}}$.

The terms, $L_{t+h|t}, Y_{t+h|t}$, denote the input and the output of the firm (that resets its price in period t) in a future period $t + h$. The term, $M_{t,t+h}$, is the stochastic discount factor (SDF) between periods t and $t+h$. Recall that P_t denotes the end-of-period price of the market portfolio. Consistent with the financial market side of our model, we assume the SDF is determined by asset-holding households’ wealth rather than their consumption. In equilibrium, asset-holding households’ wealth is equal to the value of the market portfolio. We use $E_t^S[\cdot]$ to denote the
firms’ (price-setters’) expectations.

The optimality condition for problem (A.19) is given by
\[
\sum_{h=0}^{\infty} \theta^h E_t^S \left\{ M_{t,t+h} Q_t^e Y_{t+h} \left(\frac{Q_t^{adj}}{W_{t+h}} \right) \right\} = 0 \quad (A.20)
\]

where \(L_{t+h} = \left(\frac{Q_t^{adj}}{Q_t} \right)^{\frac{1}{1-\alpha}} \left(\frac{Y_{t+h}}{A_{t+h}} \right)^{\frac{1}{1-\alpha}} \).

We next combine Eq. (A.20) with the remaining equilibrium conditions to derive the New-Keynesian Phillips curve. Specifically, we log-linearize the equilibrium around the allocation that features real potential outcomes and zero inflation, that is, \(L_t = L^*, Y_t = Y_t^* \) and \(Q_t = Q^* \) for each \(t \), where recall that \(L^* \) is given by (A.14) and \(Y^* = A_t L^* \). Throughout, we use the notation \(\tilde{x}_t = \log \left(\frac{X_t}{X_t^*} \right) \) to denote the log-linearized version of the corresponding variable \(X_t \). We also let \(Z_t = \frac{W_t}{\beta_t Q_t} \) denote the normalized (productivity-adjusted) real wage.

We first log-linearize the labor-supply equilibrium condition (A.2) and use \(C_{tHM} = (1 - \alpha) Y_t \) to obtain
\[
\tilde{z}_t = \varphi \tilde{l}_t + \tilde{y}_t. \quad (A.21)
\]

Log-linearizing Eqs. (A.3–A.4) and (A.7), we also obtain
\[
\tilde{y}_t = (1 - \alpha) \tilde{l}_t. \quad (A.22)
\]

Finally, we log-linearize Eq. (A.20) to obtain
\[
\sum_{h=0}^{\infty} (\theta \beta)^h E_t^S \left\{ \tilde{q}_t^{adj} - \left(\tilde{z}_{t+h} + \alpha \tilde{l}_{t+h} + \tilde{q}_{t+h} \right) \right\} = 0, \quad (A.23)
\]

where \(\tilde{l}_{t+h} = \frac{-\varphi \left(\tilde{q}_t^{adj} - \tilde{q}_{t+h} \right)}{1 - \alpha} + \tilde{l}_{t+h} \).

The second line uses \(\tilde{y}_t = (1 - \alpha) \tilde{l}_t \).

We next combine Eqs. (A.21–A.23) and rearrange terms to obtain a closed-form solution for the price set by adjusting firms
\[
\tilde{q}_t^{adj} = (1 - \theta \beta) \sum_{h=0}^{\infty} (\theta \beta)^h E_t^S \left[\Theta \tilde{y}_{t+h} + \tilde{q}_{t+h} \right],
\]

where \(\Theta = \frac{1 + \varphi}{1 - \alpha + \alpha \varepsilon} \).
Since the expression is recursive, we can also write it as a difference equation
\[
\tilde{q}_t^{adj} = (1 - \theta \beta) \left(\Theta \tilde{y}_t + \tilde{q}_t \right) + \theta \beta E_t^S \left[\tilde{q}_{t+1}^{adj} \right].
\] (A.24)

Here, we have used the law of iterated expectations, \(E_t^S \left[\cdot \right] = E_t^S \left[E_{t+1}^S \left[\cdot \right] \right] \).

Next, we consider the aggregate price index, \(A:5 \)
\[
Q_t = (1 - \epsilon) \left(Q_t^{adj} \right)^{1-\epsilon} + \int_{S_t} (Q_{t-1}(\nu))^{1-\epsilon} d\nu \right)^{1/(1-\epsilon)}
= (1 - \theta) \left(Q_t^{adj} \right)^{1-\epsilon} + \theta Q_{t-1}^{1-\epsilon} \right)^{1/(1-\epsilon)},
\]
where we have used the observation that a fraction \(\theta \) of prices are the same as in the last period. The term \(S_t \) denotes the set of sticky firms in period \(t \), and the second line follows from the assumption that adjusting terms are randomly selected. Log-linearizing the equation, we further obtain \(\tilde{q}_t = (1 - \theta) \tilde{q}_t^{adj} + \theta \tilde{q}_{t-1} \). After substituting inflation, \(\pi_t = \tilde{q}_t - \tilde{q}_{t-1} \), this implies
\[
\pi_t = (1 - \theta) \left(\tilde{q}_t^{adj} - \tilde{q}_{t-1} \right). \] (A.25)

Hence, inflation is proportional to the price change by adjusting firms.

Finally, note that Eq. (A.24) can be written in terms of the price change of adjusting firms as
\[
\tilde{q}_t^{adj} - \tilde{q}_{t-1} = (1 - \theta \beta) \Theta \tilde{y}_t + \tilde{q}_t - \tilde{q}_{t-1} + \theta \beta E_t^S \left[\tilde{q}_{t+1}^{adj} - \tilde{q}_t \right].
\]
Substituting \(\pi_t = \tilde{q}_t - \tilde{q}_{t-1} \) and combining with Eq. (A.25), we obtain the New-Keynesian Phillips curve \(47 \) that we use in the main text
\[
\kappa \left[\pi_{t+1} \right] = \frac{1 - \theta}{\theta} \frac{1 + \varphi}{1 - \alpha + \alpha \epsilon}. \] (A.26)

Output-asset price relation with inflation. We keep the macroeconomic side of the model the same as in Section 4. Specifically, households’ optimality condition is still given by \(35 \). Following the same steps as in Section 4, the output-asset price relation \(36 \) still holds
\[
y_t = (1 - \eta) m + \eta y_{t-1} + (1 - \eta) p_{t-1} + \delta_t.
\]
Here, \(y_t = \log Y_t \) and \(p_t = \log P_t \) denote the log of real output and the log of the real aggregate asset price.

Financial market equilibrium conditions with inflation. We adjust the financial market side of the model to allow for a nominal interest rate in addition to the real interest rate.
Specifically, financial markets feature three types of assets: a market portfolio, a real risk-free asset, and a nominal risk-free asset. Both risk-free assets are in zero net supply. As before, we let R_{t+1} denote the real return on the market portfolio and R^f_t denote the real risk-free interest rate. We also let R^{fn}_t denote the nominal risk-free interest rate. The Fed sets the nominal interest rate, R^{fn}_t, which is no longer the same as the real interest rate, R^f_t.

With these assumptions, portfolio managers (the market) solve the following version of problem (9)

$$
\max_{\omega_t} E^M_t \left[\log \left(W_t \left(R^f_t + \omega_t (R_{t+1} - R^f_t) + \omega^{fn}_t \left(\frac{R^{fn}_{t+1}/Q_t}{Q_t} - R^f_t \right) \right) \right) \right].
$$

Here, recall that Q_t denotes the aggregate nominal price index. Therefore, Q_{t+1}/Q_t denotes the realized inflation and $\frac{R^{fn}_{t+1}/Q_t}{Q_t}$ denotes the real return on the nominal risk-free asset. Note that the nominal asset is risky in real terms because its return does not scale with inflation.

In equilibrium, we have $\omega_t = 1$ and $\omega^{fn}_t = 0$. Following the same steps as before, we obtain two optimality conditions

$$
E^M_t \left[\frac{R^f_t}{R_{t+1}} \right] = 1 \text{ and } E^M_t \left[\frac{R^{fn}_t}{R_{t+1}/Q_t} \right] = 1.
$$

Assuming R_{t+1} is (approximately) log-normally distributed, the first optimality condition implies Eq. (48) in the main text

$$
E^M_t [r_{t+1}] + \frac{1}{2} \text{var}^M_t [r_{t+1}] - \iota_t = \tau p_t \equiv \text{var}^M_t [r_{t+1}].
$$

Assuming R_{t+1} and inflation Q_{t+1}/Q_t are (approximately) jointly log-normally distributed, the second optimality condition implies

$$
\iota^{fn}_t - E^M_t [\pi_{t+1}] - \iota_t + \frac{1}{2} \text{var}_t [\pi_{t+1}] + \text{cov}_t (\pi_{t+1}, r_{t+1}) + \frac{1}{2} \text{var}_t [r_{t+1}] = 0.
$$

After combining this with (12) and rearranging terms, we obtain Eq. (49) in the main text

$$
\left[\iota^{fn}_t - E^M_t [\pi_{t+1}] + \frac{1}{2} \text{var} (\pi_{t+1}) \right] - \iota_t = \iota p_t \equiv -\text{cov} (\pi_{t+1}, r_{t+1}).
$$

The Fed’s policy problem with inflation. We adjust the Fed’s problem to incorporate the costs of inflation gaps [cf. (14)]

$$
\max_{i_t} -\frac{1}{2} E^F_t \left[\sum_{h=0}^{\infty} \beta^h \left(\gamma^2_{t+h} + \psi \pi^2_{t+h} \right) \right]
$$

(A.27)
Here, ψ denotes the relative welfare weight for the inflation gaps. We normalize the inflation target to zero so the inflation gap is equal to inflation. Note also that the Fed sets the nominal interest rate i_n, which is no longer the same as the real rate i_t. As before, the Fed sets policy without commitment.

Finally, we assume all agents (the firm, the market, and the price setters) have common beliefs. In Caballero and Simsek (2022a), we show that disagreements between the Fed and the price setters affect the market’s expected inflation and induce a policy trade-off similar to “cost-push” shocks. Here, we abstract from these effects to focus on other drivers of inflation.

This completes the description of the model with inflation. We next prove Proposition 4, which characterizes the equilibrium.

Proof of Proposition 4. We conjecture and verify that there is an equilibrium in which Eqs. (50) hold

$$E_t[\pi_{t+1}] = 0 \text{ and } E_t[\tilde{y}_{t+1}] = 0,$$

along with Eqs. (37)–(39) from Section 4. In particular, the Fed still targets a zero expected output gap. By doing this, the Fed also achieves zero expected inflation.

As before, the Fed effectively controls the real aggregate asset price p_t. Therefore, we write the Fed’s problem as:

$$\max_{p_t} -\frac{1}{2} E_t \left[\frac{1}{2} (1 + \psi\kappa^2) \left[\tilde{y}_t + E_t \left[\tilde{y}^2_{t+1} \right] + E_t \left[\sum_{h=2}^{\infty} \beta^h \tilde{y}^2_{t+h} \right] \right] \right].$$

$$y_t = (1 - \eta) m + \eta y_{t-1} + (1 - \eta) p_{t-1} + \delta_t$$

$$\pi_t = \kappa \tilde{y}_t + \beta E_t [\pi_{t+1}].$$

Here, the last two lines follow from Eqs. (36) and (47), respectively.

Next note that our conjecture for expected inflation, $E_t[\pi_{t+1}] = 0$, implies that inflation is given by $\pi_{t+1} = \kappa \tilde{y}_{t+1}$. Substituting this expression, the Fed’s problem becomes:

$$\max_{p_t} -\frac{1}{2} (1 + \psi\kappa^2) \left[\tilde{y}_t + E_t \left[\tilde{y}^2_{t+1} \right] + E_t \left[\sum_{h=2}^{\infty} \beta^h \tilde{y}^2_{t+h} \right] \right].$$

$$y_{t+1} = (1 - \eta) m + \eta y_{t} + (1 - \eta) p_{t} + \delta_{t+1}$$

and $\tilde{y}_{t+h} = \tilde{\delta}_{t+h} - E_t \left[\tilde{\delta}_{t+h} \right]$ for $h \geq 2$.

Here, the last line uses our conjecture for the future output gaps (see (39)). The current output gap \tilde{y}_t is predetermined and not influenced by the current Fed decision. The future output gaps $\{\tilde{y}_{t+2}, \tilde{y}_{t+3}, \ldots\}$ are driven by unforecastable future shocks and therefore they are also not influenced by the current Fed decision. Using these observations, the optimality condition for problem (A.28) implies

$$E_t[\tilde{y}_{t+1}] = 0.$$

(A.29)
That is, the Fed targets a zero output gap on average as before.

We next verify our conjecture that the expected inflation is zero, \(E_t [\pi_{t+1}] = 0 \). First we take the period \(t \) expectations of the NKPC Eq. (47) for period \(t + 1 \) to obtain

\[
E_t [\pi_{t+1}] = \kappa E_t [\hat{y}_{t+1}] + \beta E_t [\pi_{t+2}].
\]

We then solve this equation forward (and assume inflation remains bounded in the limit) to obtain

\[
E_t [\pi_{t+1}] = \kappa \sum_{h=1}^{\infty} \beta^h E_{t+h-1} [\hat{y}_{t+h}] = \kappa E_t \left[\sum_{h=1}^{\infty} \beta^h E_{t+h-1} [\hat{y}_{t+h}] \right] = 0. \tag{A.30}
\]

Here, the second equality uses the law of iterated expectations and the last equality substitutes (A.29). This verifies \(E_t [\pi_{t+1}] = 0 \).

Since the Fed’s optimality condition from Section 4 still holds \((E_t [\hat{y}_{t+1}] = 0) \), the rest of the equilibrium is the same as in Section 4. In particular, “pystar,” the output, and the output gap are given by (37–39). This verifies our conjecture that there is an equilibrium that satisfies the equations in (50) along with along with Eqs. (37–39).

Finally, note that Eq. (39) implies the output gap is given by

\[
\hat{y}_t = \tilde{\delta}_t - E_{t-1} \left[\tilde{\delta}_t \right].
\]

Combining this observation with NKPC (47), inflation is given by Eq. (51) in the main text

\[
\pi_t = \kappa \hat{y}_t = \kappa \left(\tilde{\delta}_t - E_{t-1} \left[\tilde{\delta}_t \right] \right).
\]

This completes the proof.

Proof of Corollary 3. Assume the belief structure in Section 3.1. Following the same steps as in the proof of Corollary 2, we find that Eqs. (40–45) still apply. Applying the expression for the output gap along with Eq. (51) implies Eq. (52), completing the proof.

Proof of Corollary 4. Using Corollary 2 (which still applies), the return is given by

\[
\rho_{t+1} = \rho + \frac{\gamma n \delta_t}{1-\eta} + \frac{\eta}{1-\eta} (\delta_t - \gamma n \delta_{t-1} - z_t)
\]

\[
+ \left((1-\beta) - \beta \frac{\eta}{1-\eta} \right) (\delta_{t+1} - \gamma n \delta_{t+1}) + \frac{\beta}{1-\eta} (z_{t+1} - \gamma n \delta_{t+1})
\]

Using (52), inflation is given by

\[
\pi_{t+1} = \kappa (\delta_{t+1} - \gamma n \delta_t - z_{t+1}).
\]

Combining these expressions, we obtain (53). Combining this with the financial market equilib-
Proof of Proposition 5. Consider the model with disagreements and internal demand inertia described in Section 6. With disagreements, the equilibrium price, output, and output gap still satisfy (37). The Fed’s expected demand is given by

\[E_t^F [\delta_{t+1}] = E_t^F [\delta_{t+1}] = \gamma_{\delta} (n_{\delta t} + \mu_t^F). \]

Combining these observations, we obtain Eqs. (61–63).

Next consider the equilibrium return \(r_{t+1} \), given by (see (13))

\[r_{t+1} = \kappa + (1 - \beta) y_{t+1} + \beta p_{t+1} - p_t. \]

Substituting for the equilibrium output and the price from (61–62), we obtain

\[
\begin{align*}
r_{t+1} &= \kappa + (1 - \beta) \left(y_t^* + \delta_{t+1} - \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right) \right) \\
&\quad + \beta \left(y_{t+1} - \frac{\eta y_{t+1} + \gamma_{\delta} \left(n_{\delta,t+1} + \mu_{t+1}^F \right)}{1 - \eta} - m \right) - \left(y_t^* - \frac{\eta y_t + \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)}{1 - \eta} - m \right) \\
&= \rho + \frac{\eta y_t + \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)}{1 - \eta} + \left(1 - \beta \right) \left(\delta_{t+1} - \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right) \right) \\
&\quad \beta \left(\frac{\eta (\delta_{t+1} - \gamma_{\delta} (n_{\delta t} + \mu_t^F))}{1 - \eta} - \frac{\gamma_{\delta} (n_{\delta,t+1} + \mu_{t+1}^F)}{1 - \eta} \right) \\
&= \rho + \frac{\eta y_t + \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)}{1 - \eta} \\
&\quad + \frac{1 - \eta - \beta}{1 - \eta} \left(\delta_{t+1} - \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right) \right) + \frac{\beta}{1 - \eta} \left(\delta_{t+1} - \gamma_{\delta} \left(n_{\delta,t+1} + \mu_{t+1}^F \right) \right). \\
\end{align*}
\]

Here, the second equality simplifies the constant terms and substitutes \(\tilde{y}_{t+1} = \delta_{t+1} - \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right) - z_{t+1} \) and \(y_{t+1} = y_t^* + z_{t+1} \). The last equality collects similar terms together. This proves (64).

Next consider the equilibrium interest rate \(i_t \). Taking the expectation of (64) under the market’s belief, we obtain

\[
\begin{align*}
E_t^M [r_{t+1}] &= \rho + \frac{\eta y_t + \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)}{1 - \eta} + \frac{1 - \eta - \beta}{1 - \eta} E_t^M [\delta_{t+1} - \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)] \\
&= \rho + \frac{\eta y_t + \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)}{1 - \eta} + \frac{1 - \eta - \beta}{1 - \eta} \gamma_{\delta} \left(\mu_t^M - \mu_t^F \right) \\
&= \rho + \frac{\eta y_t + \gamma_{\delta} \left(n_{\delta t} \right)}{1 - \eta} + \left(\beta + \eta \right) \frac{\gamma_{\delta} \mu_t^M}{1 - \eta} + (1 - \beta - \eta) \frac{\gamma_{\delta} \mu_t^M}{1 - \eta} \\
\end{align*}
\]

Here, the first line uses \(E_t^M [z_{t+1}] = 0 \) and \(E_t^M \left[n_{\delta,t+1} + \mu_{t+1}^F \right] = 0 \) (the market thinks the Fed’s future signal will be unbiased on average). The second line substitutes \(E_t^M [\delta_{t+1} - \gamma_{\delta} \left(n_{\delta t} + \mu_t^F \right)] = \gamma_{\delta} \left(\mu_t^M - \mu_t^F \right) \), which follows from (68). The last line rearranges
terms. Combining this expression with (12) and rearranging terms, we obtain (65).

Finally consider the risk premium r_{pt}. Using (64), we obtain

$$r_{pt} = \text{var}_t M [r_{t+1}]$$

$$= \text{var}_t M \left[\frac{1 - \eta - \beta}{1 - \eta} \delta_{t+1} + \frac{\beta}{1 - \eta} (z_{t+1} - \gamma_\delta (n_{\delta, t+1} + \mu^F_{t+1})) \right]$$

$$= \left(\frac{1 - \eta - \beta}{1 - \eta} \right)^2 \sigma_\delta^2 + \left(\frac{\beta}{1 - \eta} \right)^2 \left(\sigma_z^2 + \sigma_\delta^2 - \sigma_\delta^2 + \gamma_\delta^2 D \sigma_\mu^2 \right). \quad (A.31)$$

Here, we have used (60) and the analogue of (A.17). Combining this with (33), we obtain

$$\text{var}_t M [r_{t+1}] = r_{pt} = r_{pt}^{\text{com}} + \beta^2 \gamma_\delta^2 D \sigma_\mu^2$$

where

$$r_{pt}^{\text{com}} = \left(\frac{1 - \eta - \beta}{1 - \eta} \right)^2 \sigma_\delta^2 + \left(\frac{\beta}{1 - \eta} \right)^2 \left(\sigma_z^2 + \sigma_\delta^2 - \sigma_\delta^2 \right).$$

This establishes (66) and completes the proof.

Proof of Corollary 5. Follows from Eq. (66).

Proof of Corollary 6. Most of the proof is presented in the main text. Here, we derive Eqs. (70 - 71).

Consider the market’s perception of the equilibrium interest rate i_t. Recall that the interest rate is given by (65). Substituting $\mu^F_t = \mu^M_t$ into this expression, we obtain

$$i^M_t = \rho + \frac{\eta \bar{y}_t + \gamma_\delta \left(n_{\delta t} + \mu^M_t \right)}{1 - \eta} - \frac{r_{pt}}{2}.$$

Subtracting this from (65), we obtain

$$i_t - i^M_t = - (\beta + \eta) \frac{\gamma_\delta \left(\mu^M_t - \mu^F_t \right)}{1 - \eta}.$$

When $\mu^M_t > \mu^F_t$, we also have $i_t < i^M_t$. The market thinks the interest rate is “too low”: lower than what would obtain if the Fed shared the same belief as the market. This proves (70).

Next consider the market’s expectation of the future interest rate $E^M_t [i_{t+1}]$. Consider Eq. (65) for period $t + 1$,

$$i_{t+1} = \rho + \frac{\eta \bar{y}_{t+1} + \gamma_\delta n_{\delta, t+1}}{1 - \eta} + (\beta + \eta) \frac{\gamma_\delta \mu^F_{t+1}}{1 - \eta} + (1 - \beta - \eta) \frac{\gamma_\delta \mu^M_{t+1}}{1 - \eta} - \frac{r_{pt+1}}{2}.$$
Taking the expectation under the Fed’s belief in period t, we obtain

$$E_t^F [i_{t+1}] = \rho + \frac{\eta E_t^F [\tilde{y}_{t+1}]}{1 - \eta} - \frac{r p_{t+1}}{2}$$

$$= \rho - \frac{r p_{t+1}}{2}.$$

The Fed expects future output gaps to be zero. Thus, the Fed expects the future interest rate to be centered around its long-run level. Taking the expectation under the market’s belief in period t, we instead obtain

$$E_t^M [i_{t+1}] = \rho + \frac{\eta E_t^M [\tilde{y}_{t+1}]}{1 - \eta} - \frac{r p_{t+1}}{2}$$

$$= \rho + \frac{\eta \gamma \delta (\mu_t^M - \mu_t^F)}{1 - \eta} - \frac{r p_{t+1}}{2}.$$

Since the market expects future output gaps to be non-zero, it also expects the future interest rate to react to these output gaps. In particular, a demand-optimistic market ($\mu_t^M > \mu_t^F$) expects the Fed to induce a positive output gap, which will then force the Fed to aggressively raise the interest rate. This establishes (71) and completes the proof.

Proof of Corollary 7 The proof of the first part is presented in the main text. For the second part, note that the interest rate is given by (65). Substituting $\mu_t^M = \mu_t^F$ into this expression, we obtain

$$i_t^F = \rho + \frac{\eta \tilde{y}_t + \gamma \delta (n_{\delta t} + \mu_t^F)}{1 - \eta} - \frac{r p_t}{2}.$$

Subtracting this from (65), we obtain

$$i_t - i_t^F = (1 - \beta - \eta) \frac{\gamma \delta (\mu_t^M - \mu_t^F)}{1 - \eta}.$$

When $\mu_t^M > \mu_t^F$, we have $i_t > i_t^F$ if $\eta < 1 - \beta$ and $i_t < i_t^F$ if $\eta > 1 - \beta$. The main text describes the intuition behind these effects. This completes the proof.
B. Appendix: Omitted extensions

This appendix presents the model extensions omitted from the main text.

B.1. Asset pricing for aggregate stocks and bonds

In the main text, we assume the market portfolio is the only financial claim on the production firms. In this appendix, we analyze the extension we discuss in Section 2.2 where production firms can also issue risk-free debt. Thus, there are in general two claims on production firms: the equity claim ("aggregate stocks") and the risk-free debt claim ("aggregate bonds"). We characterize asset prices and show that the price of the market portfolio and the risk-free interest rate are the same as in Proposition I. We further show that a positive demand shock reduces the price of both equity and debt claims, but a positive belief shock for future earnings raises the price of the equity claim while reducing the price of the debt claim.

Formally, consider the baseline model without transmission lags we analyze in Section 2 (the analysis could be extended to the setup with lags and inertia). Suppose at the end of period t (and only in this period) the representative production firm issues short-term debt and uses the proceeds to buy back equity shares. Let D denote the debt due in period $t+1$. For simplicity, we assume the debt issuance is sufficiently small that the firm never defaults (technically we consider the limit as $D \to 0$). We let P_t^b and P_t^s denote the price of the debt and equity claims, respectively. The one-period-ahead return on these claims are given by

$$R_t^b = \frac{D}{P_t^b} \quad \text{and} \quad R_t^s = \frac{\alpha Y_{t+1} + P_{t+1} - D}{P_t^s}.$$ (B.1)

As before, the market portfolio represents a claim on all financial assets. Its price and return are given by

$$P_t = P_t^b + P_t^s \quad \text{(B.2)}$$
$$R_t = \frac{P_t^b}{P_t} R_t^b + \frac{P_t^s}{P_t} R_t^s = \frac{\alpha Y_{t+1} + P_{t+1}}{P_t}.$$ (B.3)

We adapt the portfolio managers’ (the market’s) problem (9) to allow for investment in equity and debt claims. Since debt is safe, by no arbitrage its equilibrium return is given by the risk-free interest rate

$$R_t^b = R_t^f.$$ (B.4)

We can then formulate the managers’ problem as follows

$$\max_{\omega_t} E^M_t \left[\log \left(W_t \left(R_t^f + \omega_t^s \left(R_t^s - R_t^f \right) \right) \right) \right].$$
This is the same as problem (9) with the difference that the managers invest in the equity claim (rather than in the market portfolio). Finally, we adapt the asset market clearing condition (10) as follows

\[W_t = P_t \quad \text{and} \quad \omega_t^s = \frac{P_t^s}{P_t}. \]

(B.5)

In equilibrium, the portfolio weight on the equity claim is equal to its value relative to the market portfolio.

The following results characterize the asset prices in equilibrium and generalizes the results from Section 2 to this setting (the proofs are at the end of the section).

Proposition 6 (Asset pricing with stocks and bonds). Consider the baseline model from Section 2 with the difference that firms issue risk-free debt in (only) period \(t \). There is an equilibrium in which the price of the market portfolio \(P_t = \exp (p_t) \) and the interest rate \(R_t^f = \exp (i_t) \) are the same as in Proposition 4 and given by (18) and (20).

In period \(t \), the price of the debt and the equity claims are given by, respectively,

\[P_t^b = \frac{D}{R_t^f} \]
\[P_t^s = P_t - P_t^b. \]

(B.6)

(B.7)

For small shocks, these prices approximately satisfy

\[\tilde{p}_t^b = - (\delta_t + b_t) \]
\[\tilde{p}_t^s \tilde{P}_t^s = z_t - \delta_t - \tilde{p}_t^b \tilde{P}_t^b. \]

(B.8)

(B.9)

Here, \(P_t^b, P_t^s \) and \(P_t = P_t^b + P_t^s \) denote the asset prices in a benchmark with no shocks \(\delta_t = b_t = z_t = 0 \) and \(\tilde{p}_t^b = \log \left(\frac{P_t^b}{\tilde{P}_t^b} \right) \), \(\tilde{p}_t^s = \log \left(\frac{P_t^s}{\tilde{P}_t^s} \right) \) denote the log deviations of the debt and the equity claims around the benchmark.

Proposition 6 is an application of the Modigliani-Miller Theorem. Since there are no financial frictions, firms’ value with leverage is the same as their value without leverage. This in turn implies that the equilibrium without leverage, characterized in Proposition 4, remains an equilibrium with leverage. With leverage, we additionally obtain the price of the debt and equity claims. Eqs. (B.6–B.7) characterize these prices and Eqs. (B.8–B.9) characterize the log-linearized prices for small shocks. The debt price depends on its face value and the interest rate. Since equity is a levered claim on firms, its price is equal to the price of the market portfolio net of the debt claim.

Eqs. (B.8–B.9) characterize the effect of demand shocks and belief shocks on asset prices. A positive demand shock \((\delta_t > 0) \) reduces the price of the debt and the equity claim, as well as the price of the market portfolio. This shock affects the prices in period \(t \) by raising the interest
rate, which reduces the value of most financial assets. A positive belief shock for future cash flows \((b_t > 0)\) generates richer effects than a demand shock: it reduces the price of the debt claim and raises the price of the equity claim, while leaving the price of the market portfolio unchanged (as before). While the Fed stabilizes the aggregate asset price, \(P_t = P_t^s + P_t^b\), it induces relative price effects between equity and debt claims. Since the debt claim is mainly driven by the Fed’s interest rate decision, its price decreases. In contrast, since the equity claim is partly driven by the beliefs about future earnings, the belief shock increases its price despite the Fed’s interest rate response.

In sum, this extended model shows that macroeconomic needs drive the aggregate asset price, as in the main text, but traditional financial forces such as cash-flow expectations still influence relative asset prices. Intuitively, financial forces drive relative prices subject to an adding-up constraint induced by macroeconomic needs.

Proof of Proposition 6. For periods \(t + 1\) onward, the model is the same as before so the equilibrium is also unchanged. Consider the equilibrium in period \(t\). We show that there is an equilibrium in which \(P_t = \exp(p_t)\) and \(R_t^f = \exp(i_t)\) are the same as in Proposition 1. To prove this, we claim that the financial equilibrium condition for the market portfolio is the same as before,

\[
E_t^M \left[\frac{R_t^f}{R_{t+1}} \right] = 1. \tag{B.10}
\]

This in turn implies that the approximate equilibrium condition \((12)\) still applies. Note also that the output price relation \((17)\) still holds. These equations imply that \(p_t\) and \(i_t\) are the same as in Proposition 1.

It remains to prove the claim in \((B.10)\). To this end, first observe that problem \((9)\) implies the optimality condition

\[
E_t^M \left[\left(R_{t+1}^s - R_t^f \right) \frac{1}{R_t^f + \omega_t^s \left(R_{t+1}^s - R_t^f \right)} \right] = 0. \tag{B.11}
\]

Next note that in equilibrium we have

\[
R_t^f + \omega_t^s \left(R_{t+1}^s - R_t^f \right) = (1 - \omega_t^s) R_t^b + \omega_t^s R_{t+1}^s = R_{t+1}. \]
Here, we have used (B.4), (B.5) and (B.3). Likewise, we also have
\[R^s_{t+1} - R^f_t = \frac{\alpha Y_{t+1} + P_{t+1}}{P^s_t} - \frac{D}{P^b_t} \]
\[= \frac{P^s_t + P^b_t}{P^s_t} \left(\frac{\alpha Y_{t+1} + P_{t+1}}{P^s_t + P^b_t} - \frac{D}{P^b_t} \right) \]
\[= \frac{P^s_t + P^b_t}{P^s_t} \left(R_{t+1} - R^f_t \right) . \]

Here, we have used (B.3) and \(R^f_t = R^b_{t+1} = \frac{P^b_t}{P^s_t} \). Using (B.11), and substituting the expressions for \(R^f_t + \omega^s_t \left(R^s_{t+1} - R^f_t \right) \) and \(R^s_{t+1} - R^f_t \), we further obtain
\[\frac{P^s_t + P^b_t}{P^s_t} E_t^M \left[\left(R_{t+1} - R^f_t \right) \frac{1}{R^s_{t+1}} \right] = 0. \]

Rearranging this expression, we prove (B.10).

Why is the financial market equilibrium condition the same as before? In equilibrium agents hold the market portfolio, which implies that the stochastic discount factor is the same as before \((1/R_{t+1})\). In addition, stocks are a levered claim on the market portfolio, which implies that the optimality condition for stocks implies the optimality condition for the market portfolio. Consequently, the financial market side of the model is unchanged.

Next note that Eqs. (B.6)–(B.7) follow from Eqs. (B.1), (B.4) and (B.2). To log-linearize these equations, we first write them as
\[P^b_t \exp \left(\tilde{p}^b_t \right) = D \exp \left(- \left(\rho + \delta_t + b_t - \frac{1}{2} \sigma \right) \right) \]
\[P^s_t \exp \left(\tilde{p}^s_t \right) = \exp \left(\gamma^{s*}_{t-1} + z_t - m - \delta_t \right) - P^b_t \exp \left(\tilde{p}^b_t \right) \]

Here, we substituted \(i_t \) and \(p_t \) from Eqs. (18) and (20). We then linearize around \(\delta_t = b_t = z_t = 0 \) and substitute \(P^b_t = D \exp \left(- \left(\rho - \frac{1}{2} \sigma \right) \right) \), \(P^s_t = \exp \left(\gamma^{s*}_{t-1} - m \right) \) to obtain
\[\tilde{p}^b_t P^b_t = - (\delta_t + b_t) P^b_t \]
\[\tilde{p}^s_t P^s_t = (z_t - \delta_t) P^s_t - \tilde{p}^b_t P^b_t. \]

Rearranging these expressions proves Eqs. (B.8)–(B.9).

B.2. Macroeconomic news about future supply

In Section 3.1, we analyze the effects of news about future aggregate demand on asset price volatility. In this appendix, we show that these results are robust to allowing for news about
future aggregate supply. We also show that supply news does not affect the conditional volatility of either output or asset prices; even though supply news does affect asset prices (in the predicted direction).

Formally, suppose the agents receive news about both future demand and supply shocks:

\[
\begin{align*}
n_{\delta t} &= \delta_{t+1} + e_{\delta t}, \quad \text{where } e_{\delta t} \sim N(0, \sigma_\delta^2) \\
n_{zt} &= z_{t+1} + e_{zt}, \quad \text{where } e_{zt} \sim N(0, \sigma_z^2).
\end{align*}
\]

For simplicity, we assume that the signal noises \(e_{\delta t}\) and \(e_{zt}\) are uncorrelated with each other. Moreover, the Fed and the market agree on the interpretation of these signals.

Recall that shocks are drawn from i.i.d. distributions, \(N(0, \sigma_\delta^2)\) and \(N(0, \sigma_z^2)\). Therefore, after observing \(n_{\delta t}\) the Fed and the market have common posterior beliefs:

\[
\begin{align*}
\delta_{t+1} &\sim N(\gamma_\delta n_{\delta t}, \sigma_\delta^2) \quad \text{and} \quad z_{t+1} \sim N(\gamma_z n_{zt}, \sigma_z^2) \quad \text{where} \quad \gamma_\delta = \frac{1}{1/\sigma_\delta^2 + 1/\sigma_z^2} \\
\gamma_z &= \frac{1}{1/\sigma_z^2 + 1/\sigma_z^2} \\
\sigma_\delta^2 &= \frac{1}{1/\sigma_\delta^2 + 1/\sigma_\delta^2} \quad \text{and} \quad \sigma_z^2 = \frac{1}{1/\sigma_z^2 + 1/\sigma_z^2}.
\end{align*}
\]

The posterior means are dampened versions of the corresponding signals, and the posterior variances are smaller than the prior variances.

With this setup, agents’ common belief for the expected net demand in the next period is \(E_t[\delta_{t+1}] = E_t[\delta_{t+1} - z_{t+1}] = \gamma_\delta n_{\delta t} - \gamma_z n_{zt}\). The following corollary to Proposition 2 generalizes Corollary 1 to this setting.

Corollary 8 (Macroeconomic news about supply and demand). Consider the setup in Proposition 2 with news about both future demand and future supply. The equilibrium is given by:

\[
\begin{align*}
p_t = p_t^* &= y_t^* - \gamma_\delta n_{\delta t} + \gamma_z n_{zt} - m \\
y_{t+1} &= y_t^* - \gamma_\delta n_{\delta t} + \gamma_z n_{zt} + \delta_{t+1} \\
y_{t+1} &= \delta_{t+1} - \gamma_\delta n_{\delta t} - \gamma_z n_{zt} + z_{t+1} - \gamma_z n_{zt} \\
r_{t+1} &= \beta \begin{pmatrix} \rho + \gamma_\delta n_{\delta t} + (1 - \beta) (\delta_{t+1} - \gamma_\delta n_{\delta t}) + \gamma_z n_{zt} + \gamma_z n_{zt, t+1} \\
\end{pmatrix} \\
i_t &= E_t[r_{t+1}] = \frac{1}{2} \rho p_t, \quad \text{with } E_t[r_{t+1}] = \rho + \gamma_\delta n_{\delta t} \\
R_{p_t} &= \text{var}_t(r_{t+1}) = (1 - \beta)^2 \sigma_\delta^2 + \beta^2 (\sigma_z^2 + \sigma_\delta^2 - \sigma_\delta^2)
\end{align*}
\]

The conditional volatility of output and asset prices are given by

\[
\begin{align*}
\text{var}_t(y_{t+1}) &= \sigma_\delta^2 \\
\text{var}_t(p_{t+1}) &= \sigma_z^2 + \sigma_\delta^2 - \sigma_\delta^2.
\end{align*}
\]
More precise supply news (lower σ^2_z and σ^2_{nt}) does not affect the conditional volatility of output or the aggregate asset price. As in Corollary 7, more precise demand news (lower σ^2_{δ} and σ^2_{nt}) reduces the conditional volatility of output, increases the conditional volatility of the aggregate asset price, and increases the risk premium when $\beta > 1 - \beta$.

Eq. (B.13) generalize Eq. (28) to the setting with supply news. As before, positive demand news reduces the aggregate asset price. In contrast, positive supply news increases the aggregate asset price.

Eqs. (B.14 – B.19) generalize Eqs. (29 – 34). The last equation shows that the precision of demand news has the same effect on the volatility of output and the aggregate asset price as in the main text. Hence, our findings in Section 3.1 is robust to allowing for supply news.

Perhaps surprisingly, Eq. (B.19) also shows that the precision of supply news does not affect the conditional volatility of output or the aggregate asset price. The supply news frontloads the adjustment of future output to future supply ($y_{t+1} = y_t^* + \gamma_z n_{zt} + \delta_{t+1} - \gamma_{\delta} n_{\delta t}$). However, it does not affect output contemporaneously, so the supply news does not generate output surprises. The supply news does affect the current aggregate asset price, so it generates asset price surprises. However, this effect substitutes one type of asset price volatility with another, leaving the total asset price volatility unchanged. To see this, note that Eq. (28) implies

$$\text{var}_t (p_{t+1}) = \text{var}_t \left(y_{t+1}^* - \gamma_{\delta} n_{\delta,t+1} + \gamma_z n_{zt,t+1} \right)$$
$$= \sigma^2_z + (\sigma^2_{\delta} - \sigma^2_{\delta}) + (\sigma^2_z - \sigma^2_z)$$
$$= \sigma^2_z + \sigma^2_{\delta} - \sigma^2_{\delta}.$$

Here, the second line uses the fact that the conditional volatility of potential output is the unforecastable supply variance, $\text{var}_t (y_{t+1}^*) = \text{var}_t (z_{t+1} - \gamma_z n_{zt}) = \sigma^2_z$. While future supply news induces volatility ($\text{var}_t (\gamma_z n_{zt,t+1}) = \sigma^2_z - \sigma^2_z > 0$), past supply news reduces the conditional volatility induced by supply shocks ($\sigma^2_{\delta} < \sigma^2_z$). Therefore, the supply news does not increase the total asset price volatility either; it instead frontloads part of the asset price volatility that would be generated by future supply shocks.

Proof of Corollary 8. Eqs. (B.13 – B.15) follow from substituting $E_t [\tilde{\delta}_{t+1}] = \gamma_{\delta} n_{\delta t} - \gamma_z n_{zt}$ into (24 – 26). Eq. (B.19) follows by taking the variance of these expressions (see (B.20)).

To calculate the risk premium and the interest rate, note that Eq. (13) implies

$$r_{t+1} = \kappa + (1 - \beta) y_{t+1} + \beta p_{t+1} - p_t$$
$$= \rho + (1 - \beta) \left(y_t^* - \gamma_{\delta} n_{\delta t} + \gamma_z n_{zt} + \delta_{t+1} \right) + \left[\beta \left(y_{t+1}^* - \gamma_{\delta} n_{\delta,t+1} + \gamma_z n_{zt,t+1} \right) \right.$$
$$\left. - (y_t^* - \gamma_{\delta} n_{\delta t} + \gamma_z n_{zt}) \right]$$
$$= \rho + \gamma_{\delta} n_{\delta t} + (1 - \beta) (\delta_{t+1} - \gamma_{\delta} n_{\delta t}) + \left[\beta \left(\delta_{t+1} - \gamma_z n_{zt} \right) \right.$$
$$\left. - (\gamma_{\delta} n_{\delta,t+1} - \gamma_z n_{zt,t+1}) \right].$$
Here, the second line substitutes \(y_{t+1}, p_{t+1}, p_t \) using (B.13) and simplifies the constant terms (similar to the proof of Proposition 1). The last line substitutes \(y_{t+1} = y_t + z_{t+1} \) and simplifies the expression. This proves (B.16).

Finally, Eq. (B.18) follows from combining (B.16) with

\[
\begin{align*}
\text{var}_t (z_{t+1} - \gamma_z n_{zt}) &= \sigma_z^2 \quad \text{and} \quad \text{var}_t (\gamma_z n_{zt,t+1}) = \sigma_z^2 - \sigma_z^2 \\
\text{var}_t (\delta_{t+1} - \gamma_\delta n_{\delta t}) &= \sigma_\delta^2 \quad \text{and} \quad \text{var}_t (\gamma_\delta n_{\delta,t+1}) = \sigma_\delta^2 - \sigma_\delta^2.
\end{align*}
\]

Combining (B.16) with (12), we also obtain (B.17), completing the proof.

\[\Box\]

B.3. Fed belief surprises and monetary policy shocks

In Section 6, we analyze Fed-market disagreements in a setting in which the market always knows the Fed’s current belief (and vice versa). In practice, the market is often uncertain about the Fed’s belief and learns it through a policy speech or announcement. In Caballero and Simsek (2022a), we use this observation to develop a theory of microfounded monetary policy shocks driven by Fed belief surprises. In this appendix, we extend our model in Section 6 to formally illustrate these shocks that we briefly discuss in Remark 3.

To capture Fed belief surprises, consider the setup in Section 6 with the difference that each period has two phases. Initially, the market does not know the Fed’s interpretation \(\mu_t^F \). Later in the period, the market learns \(\mu_t^F \) (before portfolio and consumption decisions). Our goal is to understand how the revelation of the Fed’s interpretation to the market affects asset prices. For simplicity, suppose the Fed knows the market’s interpretation \(\mu_t^M \) throughout.

Initially, the market does not know the Fed’s interpretation and needs to form an expectation about it. Using (57), the market thinks

\[
\mu_t^F = \tilde{\beta} \mu_t^M + \tilde{\varepsilon}_t^F,
\]

where \(\tilde{\beta} = corr(\mu_t^F, \mu_t^M) = 1 - \frac{D}{\hat{\epsilon}} \) and \(\tilde{\varepsilon}_t^F \) has a zero mean. Given \(\mu_t^M \), the market expects the Fed’s interpretation to be \(\hat{E}_t^M [\mu_t^F] = \tilde{\beta} \mu_t^M \). Here, we use \(\hat{E}_t^M [\cdot] \) to denote the expectations operator before the revelation of the Fed’s actual belief \(\mu_t^F \). Therefore, the market also expects the aggregate asset price to be [see (61)]

\[
\hat{E}_t^M [p_t] = y_t^* - \frac{\eta}{1 - \eta} \hat{y}_t - \frac{\gamma_\delta (n_{\delta t} + \tilde{\beta} \mu_t^M)}{1 - \eta} - m.
\]

Later in the period, the market learns \(\mu_t^F \) and the aggregate price is realized to be

\[
p_t = y_t^* - \frac{\eta}{1 - \eta} \hat{y}_t - \frac{\gamma_\delta (n_{\delta t} + \mu_t^F)}{1 - \eta} - m.
\]
Combining these observations, we obtain

\[p_t - \tilde{E}_t^M [p_t] = -\frac{\gamma \delta (\mu^F_t - \tilde{\beta} \mu^M_t)}{1 - \eta} = -\frac{\gamma \delta \tilde{z}^F_t}{1 - \eta}. \]

(B.22)

The surprise change in the Fed’s belief (driven by its residual interpretation given the market’s interpretation) affects asset prices. When the Fed is revealed to be more demand-optimistic than the market expected, asset prices decline. Conversely, when the Fed is revealed to be more demand-pessimistic than expected, asset prices increase.

Using (65), it is also easy to check that the revelation of the Fed’s belief affects the interest rate:

\[i_t - \tilde{E}_t^M [i_t] = \frac{\beta + \eta \gamma \delta \tilde{z}^F_t}{1 - \eta}. \]

(B.23)

This surprise increase in the interest rate (partly) drives the valuation decline in (B.22). The following result summarizes this discussion.

Proposition 7 (Fed belief surprises and monetary policy shocks). When the Fed is revealed to be more demand-optimistic than the market expected, \(\mu^F_t > \tilde{E}_t^M [\mu^F_t] = \tilde{\beta} \mu^M_t \), the interest rate increases and the price of the market portfolio declines (and vice-versa when the Fed is revealed to be more-demand pessimistic than the market expected, \(\mu^F_t < \tilde{\beta} \mu^M_t \)).

One caveat is that we have assumed the market learns the Fed’s belief \(\mu^F_t \) automatically (in the second phase of the period). In practice, the Fed’s beliefs are usually revealed to the market through a monetary policy announcement. Our model can also capture this feature because, as illustrated by (B.23), there is a one-to-one mapping between the policy interest rate and the Fed’s belief surprise. In particular, when the Fed announces a higher interest rate than the market expected, this decision can reveal the Fed to be more demand-optimistic than what the market expected and trigger a monetary policy shock. In Caballero and Simsek (2022a), we formalize this idea and show that it is optimal for the Fed to set the rate in (65) and fully reveal its belief. Once the market learns the Fed’s belief, an analogue of Proposition 7 holds.