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Abstract

Using data representing one-third of the world’s population, we find that ex-

treme hot and cold days cause substantial labor supply declines for weather-exposed

workers, but not for weather-protected workers. With these results and a simple

theoretical framework, we calculate that the value of a weather-protected job’s ther-

mal comfort varies widely globally but is worth 2.9% of annual income on average.

We project that climate change will increase worker thermal discomfort by 1.8% of

global GDP in 2099 under a very high emissions scenario and 0.5% under an in-

termediate scenario, demonstrating the importance of this new category of climate

damages.



I Introduction

Willingness-to-pay for goods that lack an explicit market is a topic of considerable interest

to economists and policymakers. An area of particular interest has been workplace ameni-

ties. It is widely recognized that a worker derives well-being not only from a job’s wage

compensation, but also from its non-wage amenities, which include predictable work-

ing hours, a comfortable work environment, and safety from health hazards, including

mortality risk. At least since Smith (1776) and more formally in Rosen’s (1974) seminal

work, the “compensating differentials” theory has posited that jobs with unpleasant work-

ing conditions must offer a wage premium over similar jobs with more pleasant working

conditions. However, despite its theoretical grounding, decisive field evidence has been

challenging to marshal due to the potential for confounding the impact of the target job

amenity with others that are unobserved, and endogenous sorting such that higher ability

workers have jobs with better unobserved amenities (Lavetti, 2023). As a result of these

challenges, the value workers place on workplace amenities remains poorly understood,

with credible empirical studies typically confined to selected settings (Greenberg et al.,

2021; Kolstad and Kowalski, 2016; Mas and Pallais, 2017; Wissmann, 2022).

One potentially important job amenity that, to the best of our knowledge, has not been

studied previously is thermal comfort or temperature-induced labor disutility. As climate

change is causing new temperature records to be set regularly and policymakers grapple

with the appropriate ways to protect workers,1 the importance of worker thermal discom-

fort is becoming apparent. Although it is commonly understood that extreme hot or cold

temperatures make people uncomfortable, irritable, and generally unhappy, the magni-

tude of workers’ willingness-to-pay for thermal discomfort is unknown. Because globally

over 60% of prime age adults work, even small influences of temperature on individual

workers have the potential to accumulate into large effects in aggregate. Importantly, the

willingness-to-pay for thermal comfort on the job is distinct from temperatures’ effects

on labor supply and productivity, which have both been the subject of well developed

literatures (e.g., Graff Zivin and Neidell (2014), Somanathan et al. (2018)).2 However, no

existing study quantifies willingness-to-pay (WTP) to avoid temperature-induced labor

disutility.

This paper has three main parts that together demonstrate that worker disutility from

extreme temperatures is an imporant non-wage workplace amenity and projects that it

1See President Biden’s recent announcement described here: https://www.reuters.com/world/us/

dangerous-us-heat-wave-pushes-eastward-capping-globes-record-july-2023-07-27/.
2Building on a century of laboratory, factory, and military experiments (Bell and Watts, 1971; Glazer,

2005; Hancock, Ross, and Szalma, 2007; Huntington, 1922; Parsons, 2014; Pilcher, Nadler, and Busch,
2002; Ramsey, 1995; Seppanen, Fisk, and Lei, 2006; Vaile et al., 2008; Wyon, 2001), Graff Zivin and
Neidell (2014) and Garg, Gibson, and Sun (2019) provide estimates for the effect of temperature on labor
supply using time use survey data from the US and China respectively, while macroeconomic analyses
suggest that labor productivity effects are a channel through which temperature affects economic output
(Burke, Hsiang, and Miguel, 2015; Deryugina and Hsiang, 2014; Heal and Park, 2013; Hsiang, 2010;
Zhang et al., 2018).

1

https://www.reuters.com/world/us/dangerous-us-heat-wave-pushes-eastward-capping-globes-record-july-2023-07-27/
https://www.reuters.com/world/us/dangerous-us-heat-wave-pushes-eastward-capping-globes-record-july-2023-07-27/


will become a substantial share of the costs of climate change. The first part develops

a simple approach to recover an expression of workers' WTP for thermal comfort. The

key insight is that the workers optimal condition for time spent at work equates the

marginal disutility of labor with the wage. Practically, we embed this idea in a framework

where wages are set periodically (i.e., annually), labor supply is determined daily, and the

amenity (e.g., temperature) arrives daily. Workers choose their labor supply in response

to the wage they earn and the disutility they experience while working, which varies with

temperature.

The model allows us to derive a expression for the WTP for thermal comfort that we

use throughout the analysis. Specifically, this expression is equal to the change in labor

supply due to the temperature change multiplied by the ratio of the wage rate and the

elasticity of labor supply with respect to wages, holding the marginal utility of wealth

constant (i.e., the Frisch elasticity of labor supply). In many respects, our approach is

the obverse of the canonical compensating differentials literature for estimating the value

of non-pecuniary job characteristics (Rosen, 1986; Thaler and Rosen, 1976), because we

assume that wages are fixed and labor supply is elastic while that approach assumes

that workers supply labor inelastically and that wages are flexible. We believe that our

approach is better suited for daily amenities, like daily temperatures, while the canonical

one is better suited for more permanent amenities.

The second part of the paper quantifies the current value of workplace thermal comfort

at high spatial resolution globally using a novel dataset on individuals’ labor supply and

historical weather data. We constructed a data set containing daily or weekly minutes

worked for over 6 million individual workers by harmonizing disparate time use and labor

force surveys from seven countries representing nearly a third of the world’s population

(i.e., Brazil, France, India, Mexico, Spain, UK, USA). These data are complemented with

daily, 0.25◦ × 0.25◦ globally harmonized historical climate data.

We find an inverse-U relationship between weekly minutes worked for workers in high-

risk, weather-exposed industries (i.e., agriculture, mining, construction, and manufactur-

ing), with a daily high temperature of 40◦ C (104◦ F) leading to 29 fewer minutes worked,

relative to a 27◦ C (81◦ F) day. It is noteworthy that there is effectively no relationship

between time spent working and daily high temperatures for workers in the rest of the

economy, which we consider low risk for weather exposure. This finding is presumably due

to indoor cooling and heating. These results are derived from rich econometric models

that exploit within-location daily variation in weather to identify plausibly causal effects.

With these results and the paper’s theoretical framework, we estimate the global av-

erage value of thermal comfort provided by a low-risk job relative to a high-risk job as

equal to 2.9% of annual income. It is noteworthy that the WTP for a low-risk job is

substantially larger in regions that frequently experience either extremely hot (e.g., it

is 8.3% in Baghdad) or cold (e.g., 6.8% in Oslo) temperatures. Thus, this workplace

amenity appears comparable in magnitude in utility terms to previously studied ones,

including observed differences in on-the-job mortality risk (Greenberg et al., 2021), a

2



smoke-free workplace (Wissmann, 2022), and employer-sponsored health insurance (Kol-

stad and Kowalski, 2016).

The third part applies the economic model and estimated labor supply-temperature re-

lationships to project the increase in worker disutility from predicted temperature change

due to climate change. Specifically, we calculate the compensating variation necessary to

offset the change in the utility value of workers’ thermal comfort caused by projected cli-

mate change. Importantly, the projections account for predicted evolutions in the shares

of high- and low-risk workers regionally as economies develop and the climate warms

(e.g., the share of high-risk workers is lower in wealthier locations). The broad approach

to estimating these costs of climate change follows the one outlined in Rode et al. (2021),

Carleton et al. (2022), Hultgren et al. (2022), and Depsky et al. (2023).

We find that end-of-century global labor disutility costs due to projected climate

change amount to roughly 1.8% of 2099 global GDP under a very high emissions scenario

and fall to about 0.5% under an intermediate emissions scenario, demonstrating the bene-

fits of mitigation.3 The costs are highly heterogeneous with a substantially higher burden

in the parts of the world that are poorer and hotter today. Additionally, the net present

value of the global welfare costs due to labor disutility from the release of an additional

ton of CO2, which we refer to as the labor disutility “partial” social cost of carbon (SCC),

is a substantial share of the total SCC (i.e., all measureable climate damages). For ex-

ample, the United States Government used this working paper’s research to include the

labor disutility costs in its 2023 updating of the SCC; its inclusion increased the SCC by

$38.50, raising it by 25% (from $151.10 to $189.60), making apparent the importance of

this new category of climate damages.4

The rest of the paper is organized as follows: Section II develops a theoretical frame-

work to understand how a change in temperature can affect workers and firms; Section

III details the data sources used in this analysis, which include work hours data, histori-

cal and projected future climate data, and socioeconomic covariates; Section IV explains

the econometric approach for estimating the impact of temperature on labor supply on

high-and low-risk workers; Section V presents the results of the econometric analysis and

calculates the hedonic value of thermal comfort in a low-risk job; Section VI describes

the projected impacts of future climate change on worker disutility; Section VII explores

the robustness of our results to alternative assumptions about labor markets, including

allowing for wages to adjust daily and possible heterogeneity within risk groups; Section

VIII contains a concluding discussion.

3Throughout this paper, we use the terms “very high” and “intermediate” to refer to the RCP8.5 and
RCP4.5 emissions scenarios, analogous to the terminology in IPCC (2021).

4Other points of comparison that underscore the importance of labor disutility are that the Obama
Administraton’s total SCC was $51, and the DICE model’s recent baseline estimate is $61 (Barrage and
Nordhaus, 2023).
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II A stylized model of labor demand and supply un-

der extreme temperatures

To characterize specific ways through which temperature affects social welfare via la-

bor markets, we develop a stylized model of labor supply and demand under extreme

temperatures. Extreme temperatures impact both firm output and worker disutility.

While a number of previous studies deal with impacts on output (Adhvaryu, Kala, and

Nyshadham, 2020; Burke, Hsiang, and Miguel, 2015; Cachon, Gallino, and Olivares, 2012;

Deryugina and Hsiang, 2014; Heal and Park, 2013; Hsiang, 2010; Nath, 2020; Somanathan

et al., 2018; Zhang et al., 2018), no study thus far has quantified the impacts on worker

disutility.

To infer how the disutility of work varies with temperature, we use a revealed pref-

erence approach inspired by Rosen-style hedonic models (Rosen, 1986). In the canonical

version of these models, workers supply their labor inelastically and receive a wage pre-

mium for more arduous work conditions that allows homogeneous workers to work in

different sectors in equilibrium. However, there exist many settings in which wages are

rigid but labor is supplied elastically, making the standard hedonic model ill-suited. In

principle, discomfort from daily variation in temperature, air pollution, or noise pollution

may cause workers to change their labor supply, even if wages do not adjust on a daily

basis.

There are several reasons why fixed daily wages may be an empirically valid assump-

tion. Many workers are compensated by a salary that only varies annually, and non-

salaried workers are often employed under contracts that pre-determine their wage rate

over long time horizons (e.g., annual). Moreover, even in contexts in which wages can

vary at high frequency, the empirical labor economics literature suggests that in practice

they are relatively inflexible and, in particular, do not adjust based on changing daily or

weekly conditions (Akerlof et al., 1996; Barattieri, Basu, and Gottschalk, 2014; Dickens

et al., 2007; Grigsby, Hurst, and Yildirmaz, 2021; Kahn, 1997). Perhaps most relevant to

this study, Kaur (2019) finds that weather shocks with large negative productivity effects

do not affect the wages of agricultural day labor in India.5

This paper’s modeling insight is that when wage rates cannot adjust, there must

exist a different margin of adjustment to guarantee an equilibrium. Given that workers

dislike working in uncomfortable conditions, the predominant margin of adjustment in

these settings is likely to be labor supply. This section outlines a model of the labor

market that can be combined with the empirical relationship between labor supply and

temperature that we estimate below to compute the worker disutility costs of extreme

temperature.

The central feature of the model is that workers face disutility when working and

5While there exists considerable evidence that wages are inflexible over short time horizons, we never-
theless conduct a robustness check in Section VII.A that explores the sensitivity of our disutility estimates
to relaxing this assumption.
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the disutility varies with daily temperature. Worker productivity also varies with daily

temperature. We assume there exists an optimal daily temperature Topt where disutility

is minimized and productivity is maximized at any given labor supply.6 Furthermore, the

marginal disutility of labor is also minimized, and marginal product of labor maximized,

at Topt.
7

In the exposition that follows, we define the climate as the joint probability distribution

of possible daily temperatures that can be expected to occur over a year. Let τ be a vector

of parameters describing the entire joint probability distribution over daily temperatures.

A daily temperature realization for day d, Td, is randomly drawn from a distribution

characterized by τ . We express this random draw as Td(τ ).

The economy in our model consists of two sectors- “high-risk” (h) and “low-risk” (l)

-producing distinct goods indexed 1 and 2, respectively. High-risk jobs (e.g., agriculture)

are completely exposed to the daily outdoor temperature, Td(τ ). In contrast, low-risk jobs

(e.g., services) offer a partly protected work environment with a less extreme temperature,

T̃d(τ ), where T̃d(τ ) ≡ γTopt + (1 − γ)Td(τ ). The temperature T̃d(τ ) is thus a weighted

average between Topt and Td(τ ), with respective weights γ and 1− γ that the worker and

firm take as exogenous. The technological parameter γ ∈ (0, 1) captures the degree of

insulation from the outdoor temperature, with a γ value near zero representing almost no

insulation, and a γ value near one representing almost perfect maintainance of Topt.

At the beginning of the year, before daily temperatures are realized, firms specify their

wage rate and workers optimally choose in which of the two sectors to work. Thereafter,

upon each daily realization of temperature, workers choose how many hours to work

in their chosen sector. At the end of the year, firms realize output as a function of

total worker hours and the full sequence of realized daily temperatures over the year,

T (τ ) ≡ {Td(τ )}365
d=1, and workers choose how much to consume of each good based on

realized annual income and prices.8 In the context of this model, we derive an expression

for workers’ willingness to pay for a change in the climate τ and illustrate that the

disutility costs of extreme temperatures can be expressed as a function of estimable terms.

II.A Worker and firm sectoral choice and wage determination

Prior to the realization of daily temperatures, a representative worker faces a choice

of whether to work in the high-risk or low-risk sector, which offer wages ωh and ωl,

respectively. In addition to labor income, the worker receives asset income, κ, from

holding shares in the high- and low-risk firms. The worker gains utility from consumption

of the two goods, C1 (produced in high-risk sector, sold for price p) and C2 (produced in

6For this purpose, we assume the disutility-minimizing and productivity-maximizing temperature,
Topt, is constant, regardless of the level of labor supply.

7In other words, the marginal disutility of labor is increasing in temperature for T > Topt, but
decreasing in temperature for T < Topt, while the marginal product of labor is decreasing in temperature
for T > Topt, but increasing in temperature for T < Topt.

8In other words, workers consume hand-to-mouth on an annual basis.
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low-risk sector, with price normalized to 1). Workers face disutility from working and the

disutility varies with daily temperature, as experienced in each sector of employment.

The climate, described by τ , affects worker disutility through its influence on the

realized daily temperature draws, T ≡ {Td}365
d=1. We assume that workers are homogeneous

in their preferences and productivity in each sector. Because the daily temperatures are

not yet realized at the time of the worker’s sectoral choice, and the price p and amount of

asset income κ will depend on their realized values, a worker chooses the sector s ∈ {l, h}
that yields the higher expected utility given wages ωh and ωl, conditional on the climate

τ .

Each firm hires one worker and operates in one of the two sectors, producing either

good 1 (high risk) or good 2 (low risk). For reasons of simplicity and conciseness, we

assume that the production technology of all firms producing good 1 is identical and that

the technology for producing good 2 is also homogeneous. Let Lhd and Lld denote the

number of hours worked on day d by a high- and low-risk worker, respectively. Annual

output of good 1 is produced according to the production function af 1(
∑365

d=1 L
h
d ,T ), while

for good 2 it is produced according to the production function af 2(
∑365

d=1 L
l
d, T̃ ), where

T̃ ≡ {T̃d}365
d=1. Both production functions are increasing and concave in the annual hours

that a worker works. Furthermore, at any given labor supply, output of each good and

the marginal product of labor is maximized when the daily temperature on day d is Topt,

irrespective of the temperature on all other days in the year. The parameter a represents

a productivity factor common to both sectors of the economy.

Although low-risk firms are exposed to less extreme temperatures, T̃d, as defined above,

the benefits of the less extreme temperature come at a cost. We define βj as the fixed cost

for firm j to protect itself from extreme temperature and operate in the low-risk sector.

The probability density function g(·) and cumulative distribution function G(·) specify

the distribution of βj values across firms.

Prior to the realization of daily temperatures, a firm j faces a choice of which sector to

operate in and the wage rate to offer in that sector. Firm j’s expected profit maximization

problem is thus a wage offer decision nested within a sectoral choice decision, where the

wage offer decision is subject to a participation constraint that the worker does not choose

the other sector. Because the daily temperatures are not yet realized at this stage, and

the price p and number of hours worked by high- and low-risk workers (Lh, Ll) will depend

on their realized value, the firms make their sectoral and wage offer decisions to maximize

expected profits, conditional on τ . Importantly, in deciding the wage within a sector, the

firm takes into account its expected effect on the worker’s labor supply.

II.B Worker labor supply decision

Having earlier accepted employment in a given sector at a specified wage, workers decide

how much labor to supply each day after the daily temperature is realized. For a given

day of the year d = d, a high-risk worker’s labor supply decision is thus:

6



max
Lhd

ETd>d
[
U(Ch

1 , C
h
2 )
∣∣∣ τ]−D(Lhd , Td),

such that p(T (τ ))Ch
1 (T (τ )) + Ch

2 (T (τ )) = ωh
[ d∑
d=1

Lhd +
365∑

d=d+1

Lhd(Td(τ ))
]

+ κ(T (τ )),

(1)

where utility U is increasing and concave in each good, and disutility, D, is increasing

and convex in daily labor supply. Furthermore, both disutility and the marginal disutility

of labor are increasing in temperature for T > Topt, but decreasing in temperature for

T < Topt. A low-risk worker’s daily labor supply decision is the same as that of a high-risk

worker, except that the low-risk worker is exposed to daily temperatures T̃d instead of Td.

In choosing daily labor supply, workers thus trade off labor disutility against the wage

earned from working.

Because workers choose how much of each good to consume at the end of the year,

based on annual income and prices, the labor supply decision on day d is based on the

expected utility of consumption. The expectation is taken over the vector of daily tem-

peratures in the year after day d (Td>d ≡ {Td}365
d=d+1), which have yet to be realized.9

II.C Equilibrium conditions

Prior to the realization of daily temperatures, the climate τ influences both the equilbrium

wages and composition of the economy across sectors by affecting expected disutility and

output in the two sectors. Equilibrium wages in the two sectors (ωh∗(τ ) and ωl∗(τ ))

reflect a compensating differential of higher wages for workers at high-risk firms (Rosen,

1974, 1986). The equilibrium shares of employment in each sector are determined by the

distribution across firms of the βj costs of protection from extreme temperatures. Letting

∆∗(τ ) denote the equilibrium difference between low- and high-risk risk sector expected

profit, only firms with βj < ∆∗(τ ) will choose to operate in the low-risk sector. Thus

the equilibrium shares of employment in the low- and high-risk sectors are respectively

G(∆∗(τ )) and 1−G(∆∗(τ )).

After the realization of each day’s temperature, workers choose daily labor supply in

each sector (Ll∗d (Td) and Lh∗d (Td)) such that the marginal disutility of labor equals the

pre-determined wage in that sector. At the end of the year, the equilibrium relative price

(p∗(T )) clears the markets for the two goods, and firms in each sector realize zero profits

after payments to shareholders (i.e., workers, who own the firms). Detailed derivations of

equilibrium conditions are shown in Appendix A.

9Similarly, the budget constraint reflects that daily labor supply decisions after d are yet to be made
and will depend on the daily temperature realizations.
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II.D Deriving an expression for temperature’s welfare effects on

workers and firms

This subsection derives an expression for workers’ willingness-to-pay (WTP) for a change

in the climate. The starting point is that a change in the climate τ , through altering daily

temperature realizations Td, affects worker disutility and firm productivity in the high-

and low-risk sectors. Moreover, changes in the climate also affect the sectoral composition

of the economy through changing expectations about daily temperatures. The expression

for WTP accounts for all these changes and is built on the expected indirect utility

functions of high- and low-risk workers.

The expression for WTP for a change in τ is the negative of the total derivative of

indirect utility with respect to τ . This expression is divided by the marginal utility of

income (i.e., the marginal utility of the numeraire good, C2) to convert it from utils to

money, and its expected value is taken over the distribution of daily temperatures over

the year, T , conditional on τ . The total WTP is obtained by summing across high- and

low-risk workers, using the sectoral shares, 1−G(∆∗(τ )) and G(∆∗(τ )), evaluated at the

new, post-change τ .

Using the budget constraints, market clearing conditions, and the envelope theorem,

we can express the total WTP as follows (see Appendix A for details):

Total WTP = (1−G(∆∗(τ )))ET
[
− p∗af1

T (

365∑
d=1

Lh∗d ,T )
∂T

∂τ
−

365∑
d=1

(
p∗af1

L(

365∑
d=1

Lh∗d ,T )− ωh∗
)∂Lh∗d
∂Td

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(A) Output loss for high-risk sector (good 1)

+G(∆∗(τ ))ET
[
− (1− γ)af2

T (

365∑
d=1

Ll∗d , T̃ )
∂T

∂τ
−

365∑
d=1

(
af2
L(

365∑
d=1

Ll∗d ,T )− ωl∗
)∂Ll∗d
∂Td

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(B) Output loss for low-risk sector (good 2)

+ (1−G(∆∗(τ )))ET
[ 365∑
d=1

DT (Lh∗d , Td)

U2(Ch∗1 , Ch∗2 )

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(C) Disutility effects for high-risk workers

+G(∆∗(τ ))ET
[
(1− γ)

365∑
d=1

DT (Ll∗d , T̃d)

U2(Cl∗1 , C
l∗
2 )

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(D) Disutility effects for low-risk workers

.

(2)

Equation 2 reveals two channels through which climate affects welfare.10 The first,

captured in parts (A) and (B) of Equation 2, is the impact to output that has been

estimated previously at both microeconomic (Adhvaryu, Kala, and Nyshadham, 2020;

Cachon, Gallino, and Olivares, 2012; Somanathan et al., 2018; Zhang et al., 2018) and

macroeconomic scales (Burke, Hsiang, and Miguel, 2015; Deryugina and Hsiang, 2014;

10It is important to note that Equation 2 does not include climate-induced changes in prices (i.e.,
∂p∗

∂T
∂T
∂τ , ∂ω

h∗

∂τ , ∂ω
l∗

∂τ ), as these amount to transfers between workers and the firms they own and thus have
no net effect on total WTP. Moreover, while Equation 2 reflects the fact that a change in climate alters
the sectoral shares of the economy, 1 − G(∆∗(τ )) and G(∆∗(τ )), the total WTP expression does not
include changes in the low-risk sector’s total protection costs, as these are exactly offset by changes in
total profit due to the sectoral reallocation. See Appendix A for the detailed derivation.
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Heal and Park, 2013; Hsiang, 2010; Nath, 2020). Here, climate-induced changes to pro-

ductivity affect output in the high-risk sector and also in the low-risk sector, to the extent

that it is vulnerable to the outdoor temperature (as captured by the parameter γ).11 Given

the extensive literature and the limitations of our data, which do not include measures

of output, this paper does not directly estimate the productivity impacts of temperature

changes.

The second channel, captured in parts (C) and (D) of Equation 2, constitutes the

direct impact to worker disutility, and it is this paper’s primary focus. The core insight

is that work is less pleasant at high and low temperatures (i.e., when Td 6= Topt) and this

is captured by the DT (Ll∗d , Td) and DT (Ll∗d , T̃d) terms. We are unaware of previous efforts

to quantify DT , so there is no clear guidance on this channel’s share of total WTP for

a change in climate. The practical challenge is that the disutility of work is not directly

observable in data. This paper’s aim is to use a revealed preference-style approach to infer

how the disutility of work varies with temperature and to develop empirical estimates of

this second channel. Specifically, we derive an estimable expression for the wage change

necessary to keep worker utility constant, given a change in labor disutility caused by a

marginal change in daily temperature, holding all else equal.

For a high-risk worker on day d, we denote this compensatory wage change ∂ωh∗

∂Td

∂Td
∂τ
|V h0 ,

where V h
0 represents the initial, pre-temperature change utility level. The compensatory

wage change is obtained by taking the total derivative of the high-risk worker’s indirect

utility with respect to τ , while holding constant all other prices and income, and setting

this derivative equal to zero. This results in the following expression:

DT (Lh∗d , Td)

U2(Ch∗
1 , Ch∗

2 )

∂Td
∂τ

= Lh∗d

[∂ωh∗
∂Td

∂Td
∂τ

∣∣∣
V h0

]
. (3)

The object
DT (Lh∗d ,Td)

U2(Ch∗1 ,Ch∗2 )
is the key element of part (C) in the total WTP expression (Equa-

tion 2), representing the WTP to avoid the disutility effects of daily temperature on

high-risk workers. The expression is very similar to the measure of WTP that would

be derived from canonical Rosen-style hedonic models where workers supply their labor

inelastically and wage differentials guarantee an equilibrium (Rosen, 1986). However, in

our context, we assume that labor supply does adjust and the wage rate does not adjust

in response to the realization of a given day’s temperature.

To express Equation 3 in terms of objects we can estimate with the data in this context,

we therefore need to rewrite the right hand side in terms of changes in daily labor supply

(
∂Lh∗d
∂Td

∂Td
∂τ

), rather than changes in wages (∂ω
h∗

∂Td

∂Td
∂τ

). To do so, we rely on the elasticity of

11The effects on output consist of direct effects (i.e., p∗af1
T (
∑365
d=1 L

h∗
d ,T ) and (1−γ)af2

T (
∑365
d=1 L

l∗
d , T̃ )

for high- and low-risk sectors, respectively) and effects mediated through changes in labor supply (i.e.,(
p∗af1

L(
∑365
d=1 L

h∗
d ,T ) − ωh∗

)
∂Lh∗

d

∂Td
and

(
af2
L(
∑365
d=1 L

l∗, T̃ ) − ωl∗
)
∂Ll∗

d

∂Td
for high- and low-risk sectors,

respectively). Applying the envelope theorem does not eliminate the latter due to the timing of the wage
decision and also due to worker participation constraints in the firms’ profit maximization problem. See
Appendix A for a detailed derivation.

9



labor supply with respect to wage, holding the marginal utility of wealth constant. This

elasticity is often referred to as the Frisch elasticity of labor supply, and we denote it as

ε. With some manipulation, we can write:

DT (Lh∗d , Td)

U2(Ch∗
1 , Ch∗

2 )

∂Td
∂τ

=
ωh∗
(
∂Lh∗d
∂Td

∂Td
∂τ

)
ε

. (4)

This rearrangement provides an expression of the disutility costs to high-risk workers

in terms of changes in daily high-risk labor supply, an object we estimate in this paper.

A similar expression can be derived for low-risk workers:

(1− γ)
DT (Ll∗d , T̃d)

U2(C l∗
1 , C

l∗
2 )

∂Td
∂τ

=
ωl∗
(
∂Ll∗d
∂Td

∂Td
∂τ

)
ε

. (5)

Thus given a change in the distribution of daily temperatures (∂Td
∂τ

), equations 4 and 5

reveal that it is possible to develop estimates of the value of labor disutility (left-hand

side). Specifically, the value of disutility is equal to the product of the change in daily

work time due to changing temperatures and the wage, divided by the Frisch elasticity of

labor supply (right-hand side).

Figure 1 illustrates these disutility costs in the context of a daily labor market equi-

librium. The worker’s daily labor supply curve is specified by her marginal disutility of

labor, while the firm’s daily labor demand curve is specified by the marginal product of

labor. The intersection of these two curves determines the number of hours worked, shown

in Figure 1A for a daily temperature Topt. In our framework, the wage rate, ω∗, is fixed at

the beginning of the year and does not adjust in response to daily temperature variation.

Extreme temperatures do however, cause disutility to increase, both overall and on the

margin. Thus a rise in the temperature from Topt to a more extreme, hot temperature of

T+ resets the equilibrium to a lower number of hours worked, while the wage remains fixed

(Figure 1B). The gridded region in Figure 1B represents the increase in worker disutility

from the temperature increase — the object we estimate in this paper.

Importantly, our method to infer a change in disutility from a change in daily labor

supply assumes that wage rates do not adjust on a day-to-day basis in response to changing

work conditions. If instead wage rates do adjust daily, then our estimated change in

disutility will either be an underestimate or an overestimate, depending on whether the

relative elasticities and shifts in labor supply and demand cause the wage to increase or

decrease. Section VII.A describes both these cases and assesses the extent of the potential

under- or overestimate under a range of scenarios.12

The approach developed here enables us to monetize various forms of temperature-

induced disutility faced by workers by applying Equations 4 and 5. For instance, compar-

ing labor supply losses of high- and low-risk workers in the face of extreme temperatures

12Section VII also considers the sensitivity of our estimates to other assumptions about the labor
market.
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Figure 1: Effects of a temperature increase on labor supply and disutility. Intersection
of upward-sloping marginal disutility of labor (labor supply) and downward-sloping marginal product of
labor (labor demand) determines the equilibrium labor hours at a given temperature. Figure 1A illustrates
the equilibrium under the optimal temperature Topt (intersection of blue curves). Figure 1B illustrates
the new equilibrium when the temperature increases from Topt to T+ (intersection of red supply curve
and wage ω∗), with the old Topt equilibrium also shown for comparison. The gridded region corresponds
to the increased disutility faced by workers due to the temperature increase— the object we estimate in
this paper.

can provide a way to characterize the hedonic value of thermal comfort offered by a low-

risk job. The same procedure can also be used to calculate the disutility to high- and

low-risk workers due to future climate change. We present these applications in Sections

V and VI.

III Data

As described in the previous section, our approach to monetizing temperature-induced

worker disutility relies on variation in daily labor supply in response to temperature

exposure. For this purpose, we have assembled the most comprehensive dataset ever

compiled on historical daily or weekly labor supply, workforce composition, climate, and

weather data. We add to these data local future projections of climate, population, and

income until 2100. Section III.A describes the historical data we use to estimate the

relationship between labor supply and temperature. The results from this estimation are

used to project how workers will be impacted under future climate change, accounting for

changes in workforce composition in the future. Section III.B outlines the data we use for

these projections. Appendix B provides a more extensive description of all of these data

sources.

11



Figure 2: Labor statistics used to estimate the labor supply-temperature re-
lationship. Map shows the spatial distribution and resolution of labor statistics from all countries
used to generate regression estimates of the labor supply-temperature relationship. Temporal coverage
for each country is shown under the map.

III.A Data to estimate the labor supply-temperature relation-

ship

1. Labor supply data. We identified 7 countries for which representative labor or time-use

survey data were available and could be used to analyze the relationship between daily

temperature and labor supply. Specifically, for inclusion in our analysis, we required

that the datasets could be harmonized (i.e., the questions regarding time spent working

were similar across all included countries) and that they identify respondents’ subnational

geographic location (e.g., a county in the United States), their industry of employment,

and the exact calendar date(s) on which work hours were measured. Datasets meeting

these requirements were acquired for Brazil, France, India, Mexico, Spain, the United

Kingdom, and the United States, which together had a population of 2.2 billion in 2020.

The years of coverage vary across the countries but in total range from 1983 to 2010.13

Spatial and temporal coverage and resolution are shown in Figure 2A.

The estimation sample comprises over 6.5 million observations, where an observation

is a person-day or person-week. This sample is restricted to persons in the labor force who

are between the ages of 15 and 65. We classify all workers as high risk or low risk according

to the likelihood their industry requires a large share of the day to be spent outdoors,

or leaves them weather-exposed because of workplace conditions. Specifically, we define

workers in the agriculture, mining, construction, and manufacturing industries as high

risk.14 This categorization allows us to explore the differential effects of temperature by

13Some of the datasets include more recent years. However we constrain our analysis to end in 2010
in order to maintain consistency between historical and future climate datasets (see Appendix Section
B.2.2).

14The practical details of how workers are labeled high risk and low risk for each country’s dataset
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type of labor activity (high-risk vs. low-risk). Each data source is summarized in Table

1.

2. Historical climate and weather data. Historical data on daily maximum tempera-

ture and precipitation are obtained from the Global Meteorological Forcing Dataset, v1

(GMFD) (Sheffield, Goteti, and Wood, 2006), a global gridded (0.25◦ × 0.25◦) daily

weather record available from 1948 to 2010. We link climate and labor supply data by

aggregating gridded daily data to the temporal and spatial resolution provided in the la-

bor supply records. Appendix B.2.3 details the procedure for this linkage; importantly, it

preserves the full distribution of temperature exposures that makes it possible to recover

daily, grid-cell level nonlinearities in the labor supply-temperature relationship regardless

of the spatial and temporal resolution of the labor supply data. This is discussed further

in Section IV. We define weather as daily realizations of temperature and precipitation

and climate as longer run averages.

No. Labor Percent Mean Percent Mean household
Country observations Spatial scale Years Temporal scale Data source supply high-risk age male size (persons)
Brazil 3,519,564 municipality 2002-2010 weekly labor force survey 356.64 30.76 36.6 55% 3.75

France 5,325 NUTS2 1998-1999 daily time use survey 444.23 30.67 40.2 56% 3.10

India 48,646 district 1998-1999 daily time use survey 369.26 82.68 35.2 57% 4.75

Mexico 2,947,406 municipality 2005-2010 weekly labor force survey 376.07 43.47 36.2 63% 4.64

Spain 13,060 NUTS2 2002-2003 daily time use survey 470.19 31.83 39.7 60% 3.61

UK 11,714 NUTS1 1983-2001 daily time use survey 416.47 18.70 38.2 53% 3.19

USA 53,673 county 2003-2010 daily time use survey 425.23 22.22 40.6 52% 3.41

All Countries 6,599,388 – – – – 366.45 36.82 36.51 59% 4.16

Notes: Labor supply is recorded in minutes per day, averaged across the sample. In the Spatial scale column,
municipalities, counties, and districts refer to second administrative level divisions (ADM2) in their respective countries;
NUTS2 refers to the Nomenclature of Territorial Units for Statistics 2nd level, which is specific to the European Union
(EU) and falls between first and second administrative levels; and NUTS1 refers to the Nomenclature of Territorial Units
for Statistics 1st level, which is also specific to the European Union (EU) and falls between the first administrative level
and country. As a point of reference, a United States state corresponds to a first administrative level and a U.S. county to
a second administrative level.

Table 1: Labor supply data

III.B Data for projecting the labor disutility costs of climate

change

1. Climate and socioeconomic projections. To project the impacts of future climate

change, we use the infrastructure developed in Rode et al. (2021) and Carleton et al.

(2022). Damages from climate change are computed for each of 24,378 globally compre-

hensive geographic regions (hereafter, impact regions),15 using an ensemble of 33 climate

are in Appendix B.1. In addition, in Appendix D.2 we employ alternative classifications that take into
account occupation.

15Impact regions are constructed such that they are either identical to, or are a union of, existing
administrative regions. They (i) respect national borders, (ii) are roughly equal in population across
regions (approximately 300,000 persons in 2015), and (iii) display approximately homogenous within-
region climatic conditions. The algorithm used to create impact regions is detailed in Carleton et al.
(2022).
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projections that provide global gridded (0.25◦ × 0.25◦) daily temperature through the

year 2100 (Taylor, Stouffer, and Meehl, 2012; Thrasher et al., 2012) under two stan-

dardized emissions scenarios: Representative Concentration Pathways 4.5 (RCP4.5, an

emissions stabilization scenario) and 8.5 (RCP8.5, a scenario with high growth in fossil

fuel emissions) (Thomson et al., 2011; Van Vuuren et al., 2011). Full details on the cli-

mate projection data are in Appendix B.2.2. Projections of population and income are

also an essential ingredient in our computation of climate change’s influence on labor sup-

ply and the share of high risk workers. For the projections of these variables, we rely on

the Shared Socioeconomic Pathways (SSPs), which describe a set of plausible scenarios

of socioeconomic development over the 21st century.16 Full details on the income and

population projection data are in Appendix B.3.3 and B.3.4.

2. Projections of workforce composition. We empirically uncover substantial heterogenity

in the labor supply-temperature relationship based on whether workers are employed in

high- or low-risk jobs. To account for this heterogeneity in future projections of climate

change impacts, we first use historical data to estimate how the share of high-risk workers

in a given population depends on two key covariates: long-run average temperature and

income per capita. The share of high-risk workers (i.e., the dependent variable in this

regression) is obtained from census data covering every ADM1 unit (first-level admin-

istrative unit, e.g. state) in 48 countries (Minnesota Population Center, 2019).17 The

explanatory variables are also measured at the ADM1 unit level and come from GMFD

for climate data and Penn World Tables (PWT) and Gennaioli et al. (2014) for income

data.18 We then use the estimated historical relationship between high-risk workforce

share and income and climate to project an impact region- and year-specific workforce

composition for all future years through 2100 by relying on the climate and income pro-

jections described above.

IV Empirical approach

This section presents the regression equation used to recover the causal effect of daily

temperature realizations on labor supply of high- and low-risk workers. Specifically, we

exploit variation in daily weather to identify the response of labor supply to temperature,

estimating the following equation on the pooled sample from 7 countries:

16See Hsiang and Kopp (2018) for a description of these scenarios. Specifically, we use SSP2, SSP3, and
SSP4, which provide emissions in the absence of mitigation policy that fall between RCP4.5 and RCP8.5
in integrated assessment modeling exercises (Riahi et al., 2017). National population projections (IIASA
Energy Program, 2016) and national income per capita projections (Dellink et al., 2015; IIASA Energy
Program, 2016) are allocated to impact regions based respectively on current satellite-based within-
country population distributions from Bright et al. (2012) (see Appendix B.3.4) and current nighttime
light satellite imagery from the NOAA Defense Meteorological Satellite Program (DMSP) (see Appendix
B.3.3).

17This data source is described in Appendix B.3.1.
18The construction of the income variable requires an estimation procedure to downscale to ADM1

level, details of which are provided in Appendix B.3.2.
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Labori,r,j,t = fr(Tj,t) + gr(Pj,t) + λrXi + αj,r + ψk,y,r + δk,w,r + φd,r + εi,j,r,t, (6)

where i indexes a person, r denotes person i’s risk group (high, low), j denotes person

i’s subnational location,19 and t is the date of the observation, indexing either a day or

a week depending on the temporal resolution of the labor supply data. Thus, Labori,r,j,t

is the number of minutes worked by person i of risk group r, in subnational location

j, at date t, modeled as a function fr of a temperature vector (Tj,t) and function gr of

precipitation vector (Pj,t). We control for a vector of individual-level covariates (Xi) that

consist of age, age-squared, gender, and household size. The final term, εi,j,r,t, denotes

the stochastic error term.

We interpret the estimated effect of temperature on labor supply as plausibly causal,

because the specification includes a rich set of fixed effects so that the identifying variation

is restricted to weather shocks. Specifically, we include a series of risk group-specific fixed

effects for subnational location (αj,r), country k × year y (ψk,y,r), country k × week-of-

year w (δk,w,r), and day-of-week d (φd,r). The fixed effects for subnational locations isolate

within-location variation in labor supply and temperature exposure, and the country ×
year and country × week-of-year fixed effects flexibly account for long-term trends and

seasonality, respectively, at the national level. Additionally, the day-of-week fixed effects

allow for differences in work patterns throughout the week.20 The result is that we believe

it is valid to assume that the labor supply response to temperature is identified from the

plausibly random daily variation in temperature.

Our focus in Equation 6 is the effect of temperature on labor supply, represented by

the response function fr(·), which varies by risk group. Before describing the functional

form of this response, we note that the temperature data are provided at the grid-cell-by-

day level, and grid cells are much smaller than the subnational location units in the labor

supply data. To align these two datasets, we first take nonlinear functions of grid-level

daily maximum temperature (and in the case of weekly labor supply observations, sum

these values across days in the week). We then collapse across grid cells within each

subnational unit using population weights in order to represent temperature exposure

for the average person within a unit (see Appendix B.2.3 for details). This approach to

aggregation ensures that we accurately represent temperature extremes at the grid-cell-

by-day level.

We thus construct the daily (or weekly), subnational unit-level vector Tj,t and choose

fr(·) to be a linear function of the nonlinear elements of Tj,t. This construction allows us

to estimate a linear regression model while preserving the nonlinear relationship between

labor supply and temperature that takes place at the grid-cell-by-day level (Hsiang, 2016).

19For France and Spain, j denotes a NUTS2 unit, while for the UK j denotes a NUTS1 unit. For all
other countries, j denotes a second-level administrative unit (e.g., county). See Table 1.

20A separate fixed effect is included to indicate weekly observations, which span all days of the week.
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The nonlinear transformations captured by Tj,t determine, through their linear combina-

tion in fr(·), the functional form of the labor supply-temperature response function.

In our main specification, Tj,t is a three-knot restricted cubic spline in daily maximum

temperatures.21 Thus, we use 4 parameters to flexibly capture the relationship between

labor supply and daily temperature. We emphasize results from the restricted cubic spline

because it captures important nonlinearities while being relatively parsimonious. Results

for alternative functional form specifications are similar to the restricted cubic spline and

are provided in Appendix D.1. The r subscript on fr(·) and all the paramaters indicates

that Equation 6 allows all parameters to vary for high- and low-risk workers, although it

is estimated in a single equation.

Analogous to temperature, we summarize daily grid-level precipitation in the sub-

national unit-level vector Pj,t. We construct Pj,t as a second-order polynomial of daily

precipitation,22 and estimate a linear function of this vector, represented by gr(·).
In addition to aligning the resolution of the historical weather data with the outcome

data, we also implement a series of adjustments to all variables so that data at both

daily and weekly temporal resolutions can be pooled in a single regression. Specifically,

for daily observations, we include within-week values of temperature and precipitation in

the regression and also rescale the values of outcome, weather, and person-level control

variables by a factor of
√

7. These adjustments are necessary for our estimates to have a

consistent interpretation across different timescales, and are detailed in Appendix C. Thus,

for example, it is appropriate to interpret the parameters associated with temperature as

the impact of a day’s temperature on the number of minutes worked in a week.

We fit the multi-country pooled model in Equation 6 using weighted least squares, so

that the coefficients correspond to the average person in the relevant risk group. Within

each country, observations are weighted by the sample weights specified in that country’s

survey, while across countries, observations are differentially weighted according to the

country’s total population of workers in the particular risk group. This is necessary to

ensure that our results are representative for the average person, and not simply driven

by country datasets with the largest number of observations.23 Standard errors are clus-

tered at the ADM1 × month-of-sample level to account for spatial as well as temporal

correlation in error structure.24

An alternative approach would be to allow the labor supply-temperature response of

each risk group to vary across locations based on their income and climate, thus allowing

for differential adaptation choices.25 Such an approach has been used in other studies in

21In the case of weekly observations, these terms are summed across days in the week.
22In the case of weekly observations, the polynomial terms are summed across days in the week.
23The highly unequal sample sizes of the country surveys is reported in Table 1.
24In the case of France and Spain, we cluster at NUTS2 × month-of-sample, while for the UK, we

cluster by NUTS1 × month-of-sample (Table 1).
25For instance, the labor supply of workers in poorer locations may be more sensitive to temperature

than that of workers in richer locations, as greater wealth can afford workers and firms more access
to protective technologies (e.g., air-conditioning). Additionally, whether a location is warm or cold on
average may shape the degree to which hot or cold temperatures affect workers, because local long-
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the climate-economy literature (Carleton et al., 2022; Rode et al., 2021), but we do not

emphasize it here due to data and statistical limitations in this context. An important data

limitation is that some of the time use and labor force surveys are not representative at

subnational geographies.26 Nevertheless, Appendix G reports estimates from an individual

level labor supply model that includes interactions of daily temperature with measures of

income per capita and climate at the level that the surveys are representative. Further,

Section VII reports on how allowing for these interactions influences the hedonic value of

thermal comfort and the impacts of climate change.

V Estimates of the disutility of labor under extreme

temperatures

The revealed-preference style framework developed in Section II.D infers changes in disu-

tility based on observed changes in labor supply in response to daily temperatures. As

described in Equations 4 and 5, calculating the value of disutility requires multiplying

labor supply changes by a wage rate and dividing by the Frisch elasticity of labor supply.

This section estimates how high-risk and low-risk workers respond to daily tempera-

ture by altering their labor supply. It then uses these estimates to calculate the value of

temperature-induced disutility in a high-risk job relative to a low-risk job, or equivalently,

the hedonic value of thermal comfort offered by a low-risk job.

V.A Labor supply-temperature relationship: High- and low-

risk workers

Figure 3 reports the results from estimating versions of Equation 6 where temperature

is modeled with a restricted cubic spline in daily maximum temperature with knots at

27◦ C, 37◦ C, and 39◦ C.27 Panel A graphically illustrates the response function from the

global sample of all workers. Panels B and C plot the response functions that result from

estimating the equation separately for low-risk and high-risk workers. In these figures,

a day with a maximum temperature of 27◦ C is treated as the reference. Thus, each

point along the function reveals the effect of a day at the relevant temperature on weekly

minutes worked, relative to a 27◦ C day. Finally, the histograms at the bottom of these

figures reveal the distribution of daily maximum temperatures in the relevant samples,

with the differences in B and C reflecting differences in the geographic distribution of

run climatic conditions can influence heat- and cold-related adaptation choices (e.g., the availability of
air-conditioning and heating, protective clothing).

26Surveys for the United States, the United Kingdom, and France are only representative at the national
level, while surveys from Brazil, Mexico, India, and Spain are representative at the ADM1 level (e.g.,
state).

27Appendix D describes the procedure through which the knot locations were selected.
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Figure 3: Changes in weekly minutes worked per person due to daily tem-
perature. Labor supply-temperature response functions are estimated for all workers (A), low-risk
workers (B), and high-risk workers (C), corresponding to Columns 1, 2, and 3 in Table 2, respectively.
Points along each curve represent the effect on weekly labor supply of a single day at the daily maximum
temperature value shown on the x-axis, relative to a day with a maximum temperature of 27◦C (81◦F).
Shaded areas indicate 95% confidence intervals. Histograms show the distribution of daily maximum
temperatures in each sample.

high- and low-risk workers.28

In the global sample, there is an inverted U-shaped response of labor supply to tem-

perature that is consistent with prior literature from individual countries (Garg, Gibson,

and Sun, 2019; Graff Zivin and Neidell, 2014). However, this relationship is almost en-

tirely driven by workers in high-risk industries; for example, these workers work about 30

minutes less per week for each day when the temperature is 40◦ C or -10◦ C (although the

latter is estimated somewhat imprecisely), both relative to a day with a maximum of 27◦

C. Perhaps the most striking finding is that the low-risk response function is essentially

flat over the full range of observed temperatures. It is noteworthy that the higher end of

the temperatures in the response function plots is within the sample.29

Table 2 reports on some key features of these response functions, providing marginal

effects at various temperatures. Specifically, the estimates represent the change in weekly

minutes worked per worker resulting from one additional day at a given temperature,

compared to a reference day at 27◦ C. Column 1 reports estimates from the full sample

of workers, while columns 2 and 3 provide estimates from the low-risk and high-risk sub-

samples, respectively. Finally, column 4 has results from estimating a version of Equation

6 that tests whether the effects of temperature are different for high-risk workers.

The data statistically confirm that extreme temperature days affect high-risk workers.

Examining Column 1, we find that a day at 40◦ C, leads to a decrease in labor supply of

28The distribution shown in the histograms is weighted in the same manner as the regression. Within
each country, observations are weighted by the sample weights specified in that country’s survey, while
across countries, observations are differentially weighted according to the country’s total population of
workers in the particular risk group (see Section IV).

29The range of temperatures in sample is -19.2◦ C to 46.1◦ C for high-risk workers and -17.3◦ C to
45.7◦ C for low-risk workers.
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22.3 minutes per worker, relative to a day at 27◦ C. However, this pooled response masks

substantial heterogeniety across low- and high-risk workers, with virtually the entire effect

occuring among high-risk workers (see columns 3 and 4). We also note that even at 45◦ C,

the effect for high-risk workers is statistically significant and larger, with a weekly decline

in labor supply of almost 1 hour. High-risk workers are also affected at the other end

of the temperature distribution, with a day at -10◦ C leading to reduced labor supply of

about 30 minutes per worker compared to a day at 27◦ C, although the cold day estimates

would not be considered statistically signifcant by conventional criteria. As with the hot

days, there is virtually no response to a cold day for low-risk workers. Finally, the response

functions of high- and low-risk workers differ significantly (p = 9.8%).

Weekly minutes worked per worker

(1) (2) (3) (4)
Daily maximum All Low-risk High-risk High minus
temperature workers workers workers Low

45◦ -43.5 -11.0 -58.6 -47.6
(14.1) (11.8) (22.4) (26.4)

40◦ -22.3 -5.7 -28.7 -23.0
(7.4) (6.2) (12.1) (14.2)

35◦ -4.5 -1.2 -3.8 -2.6
(2.2) (2.1) (4.9) (5.4)

27◦ – – – –
– – – –

10◦ -3.8 -0.9 -12.3 -11.5
(4.0) (4.9) (12.0) (13.0)

5◦ -4.9 -1.1 -16.0 -14.9
(5.1) (6.3) (15.6) (16.8)

0◦ -6.1 -1.3 -19.6 -18.3
(6.3) (7.7) (19.1) (20.7)

-5◦ -7.2 -1.6 -23.2 -21.6
(7.5) (9.2) (22.7) (24.5)

-10◦ -8.3 -1.8 -26.9 -25.0
(8.7) (10.6) (26.2) (28.3)

Overall significance of Tj,t p = 10.0% p = 17.3% p = 11.1% p = 9.8%
Adj R-squared 0.56 0.56 0.56 0.56
N 6,599,335 4,175,377 2,423,958 6,599,335

Table 2: Weekly labor supply response to temperature. Column 1 of this table shows
estimates for a single labor supply-temperature response function estimated using all worker observations.
In this regression, observations within each country are weighted by the sample weights specified in that
country’s survey, while across countries, observations are differentially weighted according to the country’s
total population. Columns 2 and 3 show estimates for labor supply-temperature responses that differ
for low- and high-risk workers respectively, as specified in Equation 6. In this regression, observations
within each country are weighted by the sample weights specified in that country’s survey, while across
countries, observations are differentially weighted according to the country’s total population of workers
in the particular risk group. Column 4 shows estimates of the difference between the high- and low-risk
responses (Column 3 minus Column 2). All regression estimates are from a restricted cubic spline in daily
maximum temperature. Point estimates indicate the effect on weekly labor supply of a single day at each
daily maximum temperature value shown, relative to a day with a maximum temperature of 27◦C (81◦F).
Standard errors (in parentheses) are clustered at the ADM1 (e.g., state) × month-of-sample level.
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We probed these results in several ways and two qualitative findings emerged. First,

the evidence of an inverted U-shape response function for high-risk workers and little

evidence of a response among low-risk workers is broadly consistent across alternative

specifications of temporal controls in the estimating equation (Table 3) as well as to

alternative functional forms (i.e., different nonlinear functions of Tj,t), including a non-

parametric binned regression (Appendix D.1). Second, there is only quite modest evidence

of heterogeneity along observable dimensions. For example, we fail to reject that the labor

supply response to daily temperatures varies by either income or climate among low-risk

workers (Appendix Table G.1). Additionally for high-risk workers, we fail to reject that

the response to daily temperatures varies by climate, though do find, with borderline

statistical significance, that labor supply is less sensitive to daily temperatures in richer

locations than in poorer locations.

Lastly, in Appendix D.2, we show that the results are robust to alternative classifi-

cations of high- and low-risk workers that take into account occupation rather than just

industry. However, because our projection of the disutility costs of climate change re-

lies on an industry-based classification of high- and low-risk workers,30 we focus on the

industry-based classification in the subsequent analysis.

V.B Temperature-induced disutility in a high-risk job, relative

to a low-risk job

Section II.D outlined a revealed-preference approach to inferring changes in labor disutility

from observed changes in labor supply in response to daily temperatures. This subsection

develops estimates of the value of temperature-induced disutility in a high-risk job relative

to a low-risk job, or the hedonic value of thermal comfort in a low-risk job. Importantly,

because locations vary in their distribution of the differences between daily temperatures

and Topt over the year, the hedonic value of thermal comfort in a low-risk job will vary

by location. In the extreme case of a location in which the temperature is exactly Topt

on every day of the year, the hedonic value of thermal discomfort will be exactly zero for

both high-risk and low-risk workers. By contrast, in a location where daily temperatures

are far from Topt, this hedonic value will be large because of the shapes of the low-risk

(flat) and high-risk (inverted U) response functions.

To characterize the temperature-induced disutility in a high-risk job relative to a low-

risk job, in impact region c on a typical calendar date t (e.g., a typical January 23), we first

calculate how much each type of worker’s labor supply changes when experiencing region

c’s long-run average maximum temperature for date t, relative to experiencing the opti-

mum temperature. In implementing this calculation, we use the empirically determined

optimum temperatures for high- and low-risk labor supply, which are T highopt = 30.6◦C and

30This is because the census data sources used to estimate and project how the share of high-risk
workers is related to a location’s income and climate only contain detailed occupation information for a
limited set of countries.
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Weekly minutes worked per worker

Low-risk High-risk
workers workers

Daily maximum
(1) (2) (3) (4) (5) (6) (7) (8)

temperature

45◦ -8.4 -9.4 -4.3 -11.0 -50.4 -50.8 -48.0 -58.6
(11.6) (11.8) (11.4) (11.8) (23.8) (23.6) (21.8) (22.4)

40◦ -4.5 -4.9 -2.0 -5.7 -24.9 -25.2 -25.4 -28.7
(6.1) (6.2) (6.0) (6.2) (12.6) (12.5) (11.8) (12.1)

35◦ -1.3 -1.2 -0.2 -1.2 -3.7 -3.8 -6.2 -3.8
(2.0) (2.0) (2.0) (2.1) (5.0) (4.8) (5.0) (4.9)

27◦ – – – – – – – –
– – – – – – – –

10◦ 0.4 -0.1 -1.2 -0.8 -9.2 -9.1 -0.6 -12.3
(4.5) (4.5) (4.8) (4.9) (12.8) (12.2) (12.3) (12.0)

5◦ 0.6 -0.2 -1.6 -1.1 -12.0 -11.8 -0.7 -16.0
(5.8) (5.8) (6.2) (6.3) (16.6) (15.8) (15.9) (15.6)

0◦ 0.7 -0.2 -2.0 -1.3 -14.7 -14.5 -0.9 -19.6
(7.2) (7.2) (7.6) (7.7) (20.4) (19.4) (19.5) (19.1)

-5◦ 0.8 -0.3 -2.3 -1.6 -17.4 -17.2 -1.1 -23.2
(8.5) (8.5) (9.0) (9.2) (24.2) (23.0) (23.1) (22.7)

-10◦ 0.9 -0.3 -2.7 -1.8 -20.1 -19.9 -1.2 -26.9
(9.8) (9.8) (10.4) (10.6) (27.9) (26.6) 26.7 (23.2)

Adj R-squared 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
N 4,175,377 4,175,377 4,175,377 4,175,377 2,423,958 2,423,958 2,423,958 2,423,958
Subnational location FE Yes Yes Yes Yes Yes Yes Yes Yes
Country × Year FE Yes – – Yes Yes – – Yes
ADM1 × Year FE – – Yes – – – Yes –
Country × Month-of-year FE Yes – – – Yes – – –
Country × Week-of-year FE – – Yes Yes – – Yes Yes
Country × Month × Year – Yes – – – Yes – –

Table 3: Labor supply response to temperature: Alternative specifications of
temporal controls. This table shows estimates for labor supply-temperature responses that differ for
low-risk (Columns 1-3) and high-risk (Columns 4-6) workers. All regression estimates are from a restricted
cubic spline in daily maximum temperature; observations within each country are weighted by the sample
weights specified in that country’s survey, while across countries, observations are differentially weighted
according to the country’s total population of workers in the particular risk group. Point estimates
indicate the effect on weekly labor supply of a single day at each daily maximum temperature value
shown, relative to a day with a maximum temperature of 27◦C (81◦F). Standard errors (in parentheses)
are clustered at the ADM1 (e.g., state) × month-of-sample level. Each column shows estimates using a
different specification of temporal controls. Columns 4 and 8 employ the temporal controls specified in
Equation 6 (i.e., country × year fixed effects, country × week-of-year fixed effects). Columns 1 and 5
employ country × year fixed effects along with country × month-of-year fixed effects; Columns 2 and 6
employ country × month × year fixed effects; Columns 3 and 7 employ ADM1 × year fixed effects along
with country × week-of-year fixed effects. All regressions employ subnational location fixed effects and
day-of-week fixed effects.
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T lowopt = 29.3◦C.31 Let T c,t represent region c’s 1950-2010 average temperature vector for

each calendar date t, and let T r
opt denote the temperature vector corresponding to daily

temperature T ropt for r ∈ {high, low}.32 For a worker in risk group r, the annual difference

in average minutes worked per worker relative to a year where every day’s temperature is

T ropt is:

∑
t

[
f̂r(T c,t,y)− f̂r(T r

opt)
]
, (7)

where f̂r(·) denote estimates of the temperature response functions from Equation 6. The

additional change in minutes worked by a high-risk worker relative to a low-risk worker

is thus:

∑
t

([
f̂high(T c,t,y)− f̂high(T high

opt )
]
−
[
f̂low(T c,t,y)− f̂low(T low

opt )
])
. (8)

Valuing the temperature-induced disutility in a high-risk job relative to a low-risk job

requires us to multiply the labor supply change from Equation 8 by a wage rate and divide

by the Frisch elasticity of labor supply. We construct a wage rate for each impact region

(ωc) based on its average per capita income in 2010,33 and following Chetty et al. (2011),

we use a Frisch elasticity (ε) of 0.5.34 The annual disutility of a high-risk job in impact

region c is thus:

ωc
ε

∑
t

([
f̂high(T c,t,y)− f̂high(T high

opt )
]
−
[
f̂low(T c,t,y)− f̂low(T low

opt )
])
. (9)

Figure 4 maps each impact region’s annual temperature-induced disutility in a high-

risk job relative to a low-risk job, expressed as a percentage of the impact region’s 2010

per capita GDP. The map reveals that the hedonic value of thermal comfort in a low-risk

job is highest in regions that routinely experience a large number of extreme hot or cold

days in a year; for example, it is approximately 7.7% of per capita income in Alaska and

6.9% in Sudan.

31Although the model developed in Section II posits a single optimum temperature, Topt, for both
types of workers, our estimates of high- and low-risk temperature responses (Figure 3) reveal that the
temperatures at which labor supply is maximized differ slightly for the two worker types.

32In particular, the vector T c,t contains nonlinear transformations of daily maximum temperatures on
calendar date t (e.g., January 23) taken from GMFD, averaged across the years 1950-2010 and across
grid cells in c. The vector T ropt simply contains the nonlinear transformations of T ropt.

33Specifically, to obtain a wage rate, we multiply per capita income by the labor share of income
and divide by the number of minutes worked in a year. Per capita income for 2010 is taken from the
SSP3 socioeconomic scenario and downscaled to the impact region level (Appendix B.3.3). Following
Karabarbounis and Neiman (2014), we use 0.6 as the labor share of income. We assume 250 work days
in a year (i.e., 50 weeks, 5 days per week) with 6 work hours per day, which is roughly the average in our
data (Table 1). We assign the same wage rate for high- and low-risk workers because the SSPs do not
provide a breakdown of income by worker type.

34Chetty et al. (2011) recommend a value of 0.5, while reporting that estimates from previous studies
range from 0.37 to 0.7. Using values other than 0.5 in Equation 9 will simply scale the disutility estimates
proportionally.
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Figure 4: Hedonic value of thermal comfort in a low-risk job. Map displays the
value of annual temperature-induced disutility in a high-risk job relative to a low-risk job in 24,378 impact
regions. For each region, the value of disutility is calculated according to Equation 9 and then summed
over days of the year and expressed as a percent of each regions’s 2010 per capita income.

Table 4 summarizes the temperature disutility of high risk jobs across the world and

highlights its value in key regions (Panel A) and also lists the hedonic value of other work-

place amenities estimated in other studies as a basis of comparison (Panel B). Overall, it

is evident that the reduction in thermal discomfort offered by low-risk jobs is a meaning-

ful component of compensation in many parts of the world, with an average global value

of 2.9% percent of annual income. Comparisons between the entries in Panels A and B

reveal that thermal discomfort associated with high-risk jobs in many parts of the world

is similar in magnitude to other job amenities that have been researched extensively in

the workplace amenity literature. Perhaps, the most researched amenity is mortality risk;

Greenberg et al. (2021) finds that U.S. army soldiers would have paid 4.1% of annual

wages to avoid the increase in the occupational mortality rate between 2002 and 2007

(due to the Afghanistan and Iraq wars),35 which is comparable to the thermal benefits of

low-risk jobs in Chicago. Further, in many parts of the world, the hedonic value of ther-

mal comfort in a low-risk job is similar to the value of a smoke-free workplace estimated

in Wissmann (2022) and the value of employer-sponsored health insurance estimated in

Kolstad and Kowalski (2016). However, it is generally smaller than the value of amenities

related to job stability and convenient or predictable work schedules (Lanfranchi, Ohlsson,

and Skalli, 2002; Mahmud et al., 2021; Mas and Pallais, 2017).

35This value was calculated by subtracting the predicted 4-year enlistment bonus associated with the
2007 mortality rate from the predicted 4-year enlistment bonus associated with the 2002 mortality rate
(based on Figure 3, right panel, in Greenberg et al. (2021)), and then dividing this difference by mean
4-year income over the period.
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Workplace
Amenity

Location
Willingness-to-pay

(% of income)

A. Estimates of the value of thermal comfort in a low-risk job

Thermal comfort in a
low-risk job

Global average 2.9% (2.4%)
Thermal comfort in a
low-risk job

10th percentile 0.6%
Thermal comfort in a
low-risk job

25th percentile 1.2%
Thermal comfort in a
low-risk job

50th percentile 2.9%
Thermal comfort in a
low-risk job

75th percentile 4.0%
Thermal comfort in a
low-risk job

90th percentile 5.5%

Thermal comfort in a
low-risk job

Selected cities

Thermal comfort in a
low-risk job

Sao Paulo, Brazil 1.5% (1.9%)Thermal comfort in a
low-risk job Delhi, India 3.3% (1.7%)Thermal comfort in a
low-risk job Chicago, USA 4.8% (5.7%)Thermal comfort in a
low-risk job Oslo, Norway 6.6% (7.9%)Thermal comfort in a
low-risk job Baghdad, Iraq 8.3% (4.2%)

B. Estimates of the value of workplace amenities from prior studies

Study

Mortality risk USA army 4.1% Greenberg, et al., 2021

Smoke-free workplace Germany 2.4% Wissman, 2022

Employer-sponsored
health insurance

Massachusetts, USA 4.5% Kolstad and Kowalski, 2016

Work-from-home
option

USA 8% Mas and Pallais, 2017

Predictable work
schedule

USA 20% Mas and Pallais, 2017

Day shift vs. night
shift

France 16% Lanfranchi et al., 2002

1-year contract vs.
none

Bangladesh 12% Mahmud et al., 2021

30-day termination
notice vs. none

Bangladesh 27% Mahmud et al., 2021

Table 4: Estimates of the hedonic value of workplace amenities. Table displays
estimates of the value of thermal comfort in a low-risk job (standard errors in parentheses)
along with estimates of the hedonic value of other workplace amenities. All values are
expressed as a percent of annual income. Panel A highlights estimates of the hedonic
value thermal comfort in a low-risk job from the present study, including the global
average value, the value for percentiles of the global population, and the value for selected
cities. Panel B presents estimates from prior studies on the hedonic value of various other
workplace amenities.
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VI Worker disutility impacts of climate change

The previous section demonstrated that thermal comfort is an important job amenity.

At the same time, climate change is already influencing temperatures with larger changes

projected in the future. This section presents estimates of workers’ willingness to pay to

avoid on the job thermal disutility due to climate-change-induced changes in temperature.

Section VI.A reports on our efforts to estimate the ongoing structural transformations in

the global economy that will alter the shares of workers in high- and low-risk sectors over

the remainder of this century. Sections VI.B and VI.C outline our approach to calculat-

ing the labor disutility costs of climate change at the end of the century (accounting for

changes in the shares of high- and low-risk workers) and report on the results from imple-

menting it, respectively. Finally Section VI.D uses these ingredients to develop estimates

of the labor disutility partial social cost of carbon (SCC), which is the additional global

worker disutility due to the release of an additional ton of CO2 today.

VI.A Empirical estimates of the determinants of workforce com-

position

The very different responses of high- and low-risk workers to temperature means that any

estimates of future climate change impacts must account for the location-specific changes

in the shares of these workers between today and the future. We do this in two steps.

First, we use historical census data to estimate how workforce composition varies with

average income per capita (a key feature of structural transformation (Matsuyama, 2017))

and long-run average temperature (a driver of workforce composition in our stylized model

in Section II). We then apply these estimates to projected values of income per capita

and long-run average temperature to predict workforce composition in future years for all

locations around the world.

Using ADM1-level census data from 48 countries between 1980 and 2010 (Minnesota

Population Center, 2019), we estimate how the share of high-risk workers varies as a func-

tion of average income per capita and long-run average temperature.36 A large literature

on structural transformation establishes that higher income per capita is associated with

a lower share of high-risk workers,37 while the theoretical framework we lay out in Section

II indicates that a warmer climate can affect the share of high-risk workers (although

the direction of the effect is ambiguous). Moreover, a practical reason to focus on these

two explanatory variables is that credible, global projections of their future evolution are

readily available and can be used to predict the future share of high-risk workers.

36Appendix B.3.1 contains a description of these data sources.
37The prior literature has focused on two mechanisms for this association— a demand-side effect due

to low income elasticity for agricultural goods, pushing workers out of the agricultural sector, and a
supply-side effect from differential sectoral productivity growth rates, pulling workers into high-growth,
non-agricultural sectors (Alvarez-Cuadrado and Poschke, 2011; Buera and Kaboski, 2009; Dennis and
İşcan, 2009; Duarte and Restuccia, 2010; Echevarria, 1997; Matsuyama, 2017).
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Specifically, we estimate the following cross-sectional regression:

HighRiskShares = γLogGDPpcs + h(T s) + η + εs. (10)

where HighRiskShare is observed for each ADM1 unit s (first-level administrative unit;

e.g., state) in 48 countries (Minnesota Population Center, 2019) (1,073 ADM1 units).

These observations are drawn from national census microdata in the most recent census

year available for each country in the IPUMS database. Of the 1,073 ADM1 units in our

sample, 618 have only one census year from the 1980-2010 period, so we estimate this

equation cross-sectionally with the most recent census year for each country. The variable

LogGDPpcs denotes the natural logarithm of GDP per capita in ADM1 unit s averaged

over the 15 years prior to the census year and is taken from Penn World Tables and

Gennaioli et al. (2014),38 while h(·) is a function of a daily maximum temperature vector

in s averaged over the 30 years previous to the census year (T s). In particular, the vector

T s contains polynomials of daily maximum temperatures (up to fourth order) taken from

GMFD, averaged across the 30 years and across grid cells in s.39 The coefficient η denotes

a constant, and εs denotes the stochastic error term.

Results from the estimation of Equation 10 are shown in Figure 5, Panels A and B

(tabular results are reported in Table E.1 in Appendix E).40 Panel A plots the high-risk

share against LogGDPpc for all observations in the estimating sample, with the solid

black line depicting the estimated relationship between these two variables, evaluated at

the sample mean value of T . Consistent with the literature on structural transformation

(Matsuyama, 2017), we find that locations with a higher income have a lower share of

high-risk workers. A doubling of income is associated with roughly a 12 percentage point

fall in the share of high-risk workers and a corresponding rise in the share of low-risk

workers.

Panel B plots the high-risk share against long-run average daily maximum temperature

for all observations in the estimating sample, with the solid black curve depicting the

estimated relationship between these two variables, evaluated at the sample mean value

of LogGDPpc.41 The estimated high-risk share of employment generally falls as long-

38Appendix B.3.2 describes how we combine national income data from Penn World Tables with the
subnational distribution of income from Gennaioli et al. (2014). Because changes in income are unlikely
to immediately be reflected in the high-risk share, we take an average over incomes in the current year
and 14 previous years (equally weighted).

39As with the functions in Equation 6, we choose h(·) to be a linear function of the nonlinear elements
of T s. The duration of 30 years is chosen based on the standard definition of “climate” (Allen et al.,
2018).

40In Appendix E, we also describe and estimate alternative specifications of Equation 10, including one
that uses the full sample of census years and exploits the panel structure of the data with fixed effects for
census years and countries. Results from these specifications are qualitatively similar to the ones shown
here. However, specifications with country or census year fixed effects cannot be used to predict the
high-risk share outside the countries and years in the sample. Because our projection of climate change
impacts requires the prediction of high-risk share for all locations globally and in future years, we use
predictions based on Equation 10 for this purpose.

41Because T contains polynomials of daily maximum temperatures, the relationship between high risk
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run daily maximum temperatures rise, although there is some evidence of nonlinearity

at extremely hot temperatures. However, the economic significance of this association is

considerably less than that of high-risk share and income: an increase in the long-run

daily maximum temperature from 15◦C to 25◦C is associated with only a 7 percentage

point fall in the share of high-risk workers.

We use the estimated coefficients from Equation 10, along with projected future values

of income (LogGDPpc) and long-run average temperature (T ), to predict the share of

high-risk workers in each impact region c at each year y. We denote this predicted value

ρ̂c,y.
42 Figure 5 maps the predicted shares of high-risk workers in every impact region

in 2020 (Panel C) and 2099 (Panel D). At present, high-risk workers predominate in

developing countries. However, by end-of-century, the proportion of high-risk workers is

expected to decline in most parts of the world largely via ongoing economic development.

These projected changes to workforce composition influence the below estimates of climate

change’s impacts; a failure to account for them would tend to overstate the costs of climate

change, because it would be based on an overestimate of the share of workers in high-risk

jobs where the effects of high temperatures are largest.

VI.B Methods: Calculating future climate change impacts

To estimate future labor disutility costs of climate change at high resolution over the

coming century, we apply a set of probabilistic climate change projections to the labor

supply response functions shown in Figure 3. In so doing, we account for future changes

in workforce composition using the predicted high- and low-risk works shares illustrated

in Figure 5. We then value the disutility implied by these projected labor supply changes

based on Equation 4, analogous to the disutility calculations presented in Section V.

Specifically, let Tc,t,y represent the temperature vector for impact region c at a future

date t, under a warmer climate projected for year y. In contrast, let Tc,t,2015 represent

the counterfactual temperature vector for the same impact region and date, but under a

climate that is the same as that of 2015.43 Similarly, while ρ̂c,y indicates the predicted

share of high-risk workers in c and y under a warmer climate and future levels of income, we

let ρ̂c,ỹ denote the counterfactual share of high-risk workers that would occur in region c in

year y in the absence of climate change. This counterfactual reflects changes in workforce

employment and long-run climate depends on the full distribution of daily temperatures and cannot be
plotted on a two-dimensional coordinate plane. The solid curve in Figure 5, Panel B, can be interpreted
as the predicted high-risk share for a hypothetical location with the long-run temperature value on the
horizontal axis, but no day-to-day variance in this temperature. See Appendix E for more detailed results.

42To estimate ρ̂ at impact region level, we downscale national income projections from the Shared
Socioeconomic Pathways (SSPs) based on present-day nighttime lights (see Appendix B.3.3 for details).
For high-resolution climate projections, we use the climate simulations described in Section III. We impose
the restriction that ρ̂ ≤ 0.95, the highest share observed in the data used to estimate Equation 10. This
ensures that predicted shares ρ̂c,y and 1− ρ̂c,y never fall outside the unit interval.

43These vectors are constructed in exactly the same way as is done for the temperature vectors used
in estimating Equation 6, with nonlinear grid-cell level transformations of daily maximum temperature
aggregated to the impact region level.
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Figure 5: Workforce composition, income, and climate. The scatter of points in
Panels A depicts the association between the share of high-risk workers and log GDP per capita using
ADM1-level (e.g., state) data from 48 countries. The scatter of points in Panel B depicts the association
between the share of high-risk workers and long-run average temperature in the same data. Selected
ADM1 units in the sample are indicated in each plot. Histograms below each plot show the in-sample
distribution of log GDP per capita (Panel A) and long-run average temperature (Panel B). The black line
in Panel A illustrates the estimated relationship between the share of high-risk workers and log GDP per
capita, evaluated at the sample mean long-run average temperature; the black curve in Panel B illustrates
the estimated relationship between the share of high-risk workers and long-run average temperature,
evaluated at the sample mean log GDP per capita. Both results are obtained from estimating Equation
10 and shaded areas depict 95% percent confidence intervals (see Appendix E for detailed results). Using
these estimates, Panels C and D map the predicted share of high-risk workers across 24,378 impact
regions in 2020 and 2099 respectively. All values shown refer to the SSP3 socioeconomic scenario and the
RCP8.5 emissions scenario and represent climate model weighted mean predictions across Monte Carlo
simulations conducted on 33 climate models.

composition due to economic development, but not due to climate-driven adaptation. We

then calculate the labor supply impact of climate change in impact region c at future date

t in year y as:

Labor Supply Impact Of Climate Changec,t,y =
[
ρ̂c,yf̂high(Tc,t,y) + (1− ρ̂c,y)f̂low(Tc,t,y)

]
︸ ︷︷ ︸

Temperature-induced labor supply under climate change
(with economic development and climate-driven adaptation)

−
[
ρ̂c,ỹf̂high(Tc,t,2015) + (1− ρ̂c,ỹ)f̂low(Tc,t,2015)

]
︸ ︷︷ ︸

Temperature-induced labor supply without climate change
(with economic development)

,

(11)
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where f̂r(·) represents the fitted values from Equation 6 for each of the two risk groups r.

The first term in Equation 11 represents the total predicted labor supply under climate

change, averaging across risk groups using predicted high-risk employment shares ρ̂c,y.

In contrast, the second term represents the total predicted labor supply under a coun-

terfactual with no climate change, where effects in each risk group are averaged using

counterfactual high-risk employment shares ρ̂c,ỹ.

The difference between these two terms measures the impacts of climate change on

labor supply, accounting for climate change-induced shifts in workforce composition. The

disutility costs of climate change are then calculated with the same approach outlined in

Section V.B by multiplying the change in labor supply by the ratio of the impact region’s

projected wage rate and the Frisch elasticity of labor supply.

To highlight the importance of economic development and climate-driven adaptation,

we also construct two alternative projections of disutility costs that ignore one or both of

these mechanisms. The first of these is a “fixed workforce” projection in which each impact

region’s shares of high- and low-risk workers are held fixed through the century at their

2015 values. The second is a “no climate adaptation” projection in which each impact

region’s high- and low-risk shares are allowed to change due to economic development,

but not due to climate-driven adaptation. These alternative calculations are detailed in

Appendix F.

In all our projections, we account for uncertainty in climate projections as well as un-

certainty arising from econometric estimates of the labor supply-temperature relationship

(Equation 6) and risk-group shares (Equation 10). Following the procedure in Rode et al.

(2021) and Carleton et al. (2022), we construct labor supply impact and disutility cost es-

timates under each of 33 distinct climate projections (Section III.B) using a Monte Carlo

resampling of coefficient estimates from Equations 6 and Equation 10. When reporting

projected values in any given year, we report summary statistics (e.g., mean, quantiles) of

this entire distribution. These distributions can be used to develop certainty-equivalent

estimates of climate damages.

VI.C Results: Projected impacts of climate change

Here we present projected impacts of climate change on labor supply and disutility. Specif-

ically, Figure 6A maps changes to labor supply per worker for all impact regions at 2099,

under a very high emissions scenario (RCP8.5).44 For each impact region, the changes in

daily labor supply specified in Equation 11 are averaged over all days in 2099 and over

all Monte Carlo simulations from 33 climate models. Figure 6 reveals that the climate

44RCP8.5 is widely recognized to be an aggressive scenario for future increases in greenhouse gas
emissions, while RCP6.0 is believed to be a more plausible scenario (Hausfather and Peters, 2020).
However, the high spatial resolution future climate projections that we use (Appendix B.2.2) are only
available for RCP8.5 and an intermediate emissions scenario, RCP4.5. We therefore present results under
these 2 scenarios. Projected impacts of climate change on labor supply and disutility under RCP4.5 are
mapped in Appendix F.2.
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change-induced labor supply losses are distributed unevenly across locations around the

world. In the warmest parts of the world with a large share of high-risk workers (e.g.,

much of Africa), climate change is projected to cause declines in labor supply at 2099

amounting to over 20 minutes per worker per day. In contrast, temperate regions of the

world such as northern Europe are projected to experience negligible change or even slight

gains in labor supply, both due to the small share of high-share risk workers and a fewer

number of extreme cold days under climate change.

Figure 6: Projected impact of climate change on labor supply and disutility
at 2099 in a very high emissions scenario. Panel A maps the labor supply impacts of
climate change in the year 2099 (minutes per worker per day), across 24,378 impact regions. Panel B
maps the annual worker disutility costs of climate change in the year 2099. Costs are calculated based
on Equation 11 with a labor share of income = 0.6 (Karabarbounis and Neiman, 2014) and elasticity of
labor supply = 0.5 (Chetty et al., 2011), and are expressed as a percentage of each impact region’s 2099
GDP. Estimates account for changes to workforce composition as incomes grow and the climate warms,
and the maps show the climate model weighted mean estimate across Monte Carlo simulations conducted
on 33 climate models. Probability density functions in Panel B plot the full distribution of disutility
costs for selected cities, accounting for climate model and econometric uncertainty. In each density plot,
solid white lines indicate the mean estimate shown on the map. All values shown refer to the RCP8.5
emissions scenario and the SSP3 socioeconomic scenario.

Figure 6B maps the corresponding total annual labor disutility costs for each impact
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Figure 7: Climate change-induced worker disutility costs at 2099 by present-
day income and annual average temperature deciles. Annual worker disutility costs
of climate change in the year 2099 under the RCP8.5 emissions scenario and the SSP3 socioeconomic
scenario, by decile of 2015 per capita income and annual average daily maximum temperature. Income
and annual average temperature deciles are calculated across 24,378 global impact regions and are pop-
ulation weighted using 2015 population values; representative locations in selected deciles are indicated.
Estimates account for changes to workforce composition as incomes grow and the climate warms. Costs
are calculated under a labor share of income = 0.6 (Karabarbounis and Neiman, 2014) and elasticity of
labor supply = 0.5 (Chetty et al., 2011), and are expressed as a percentage of the combined 2099 GDP
of all regions within the decile. All box plots show statistics of the population-weighted distribution of
estimated mean impacts across impact regions within a decile, where means are taken for each impact
region across Monte Carlo simulations that account both for econometric and climate model uncertainty.
Solid vertical lines in each box plot extend to the 5th and 95th percentiles of this distribution, boxes
indicate the interquartile range, white horizontal lines indicate the median, and white circles indicate the
mean.

region at 2099, as a percentage of the impact region’s projected 2099 GDP. In the regions

most affected by warming (e.g., parts of Brazil and India), the costs of increased worker

disutility are projected to be as large as 12% of GDP. In contrast, in cool regions such as

northern Europe, workers are projected to experience modest utility benefits. While the

map displays each location’s mean projected costs across econometric and climate model

uncertainty, the density plots for select cities show the full distribution, with the white

line equal to the mean estimate shown on the map.

The unequal disutility costs of climate change mapped in Figure 6B systematically

correlate with present-day income and climate. Figure 7 reveals that today’s poorest and

hottest locations are projected to experience the largest disutility costs relative to their

GDP at end-of-century. This pattern emerges partly because today’s poorest locations

tend to already experience hot climates where additional warming leads to large changes

in high-risk labor supply. Furthermore, we estimate that today’s poorest locations will

continue to have a large share of their workforce employed in high-risk sectors, even at

end-of-century. In contrast, low-risk workers are dominant in today’s wealthiest locations,

which also tend to have temperate climates.

Aggregating globally over all impact regions, we project that by 2099, the disutility

costs of climate change under RCP8.5 will amount to nearly 1.8% of 2099 global GDP
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(Figure 8A, green line). Moreover, we find that projected changes in workforce com-

position do not mitigate much of the overall costs of climate change. Specifically, the

red line in Figure 8A plots the disutility costs of climate change under a fixed workforce

projection (Appendix Equation F.2). This shows that allowing workforce composition to

evolve following projected income and climate changes into the future only lowers the es-

timated disutility costs of climate change by 5%. This result arises due to high projected

population growth in the poorest and hottest regions of the world relative to richer and

cooler regions, as well as our empirical estimates that a warming climate can increase the

share of high-risk workers in locations that are already hot (see Figure 5B).45 Together,

these imply minimal sectoral reallocation of the workforce, particularly in the poorest and

hottest regions of the globe. However, we do find large returns to mitigation; under an

intermediate emissions scenario (RCP4.5), projected impacts of climate change on labor

disutility fall to less than 0.5% of 2099 global GDP (Figure 8B).

VI.D A social cost of carbon for labor disutility

In this subsection, we use the estimates of labor disutility under climate change from

Section VI.C to compute the global social cost of labor disutility generated by emitting

a marginal ton of CO2 today. We call this object a labor disutility partial social cost

of carbon (SCC), as it represents one component of the total SCC, which accounts for

all climate change damages, including impacts on firm productivity, human health, and

many others.

To compute the labor disutility costs imposed by a marginal ton of CO2, we follow

the approach developed in Rode et al. (2021) and Carleton et al. (2022). This involves

first constructing global “damage functions” for labor disutility, which describe global

aggregate disutility costs as a function of the change in global mean surface temperature

(∆GMST).46 The procedure for estimating damage functions is detailed in Appendix H.

The Finite Amplitude Impulse Response simple climate model (FAIR,117) is then used to

simulate future warming trajectories that result from the marginal emission today (Smith

et al., 2018). These warming trajectories, when combined with our estimated damage

functions, imply a trajectory of global costs whose present discounted value represents

the labor disutility component of the SCC.

45These estimates are reflected in the larger projected disutility costs under changing workforce com-
position due to economic development and climate adaptation (green line in Figure 8A), than under
changing workforce composition due to economic development only (orange line in Figure 8A). Nath
(2020) and Liu, Shamdasani, and Taraz (2023) also find that warming can increase the share of high-risk
workers. The mechanism in the former is that a warming climate makes it harder to meet subsistence
food requirements in developing countries, thereby increasing the share of workers employed in agricul-
ture. In the latter, declining agricultural productivity under warmer temperatures reduces the demand
for nonagricultural goods and services, thereby lowering nonagricultural labor demand.

46Global mean surface temperature is defined as the global area-weighted average of surface air tem-
perature over the whole globe. We define ∆GMST as global mean surface temperature relative to the
2001-2010 average level, the years over which our climate change damage estimates are defined to be zero
(e.g., see Figure 8).
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Figure 8: Time series of projected climate change-induced worker disutility
costs. Costs in each year are calculated under a labor share of income = 0.6 (Karabarbounis and
Neiman, 2014) and elasticity of labor supply = 0.5 (Chetty et al., 2011) and are expressed as a percentage
of that year’s global GDP. All estimates refer to the SSP3 socioeconomic scenario. In Panel A, lines show
globally aggregated worker disutility costs of climate change under the RCP8.5 emissions scenario. The
green line shows estimates that account for changes in each impact region’s workforce composition as
incomes grow and the climate warms (Equation 11). The orange line accounts for changes in workforce
composition in association with income growth but not climate change (Appendix Equation F.3). The
red line shows estimates in which each impact region’s workforce composition at 2015 is held fixed
into the future (Appendix Equation F.2). In Panel B, lines show globally aggregated worker disutility
costs of climate change under the RCP8.5 and RCP4.5 emissions scenarios, accounting for changes to
workforce composition as incomes grow and the climate warms. Lines represent a mean estimate across
a set of Monte Carlo simulations accounting for both climate model and statistical uncertainty; shaded
areas indicate the range between 10th and 90th percentiles. Boxplots show full distribution of costs
in 2099 (boxes= inter-quartile range; solid whiskers= 10th-90th percentiles; dashed whiskers= 5th-95th

percentiles).

While details of the calculation are described in Appendix H, Figure 9 graphically

depicts its steps. An exogenous “pulse” of 1 gigaton C (equivalent to 3.66Gt CO2) emitted

in the year 2020 is shown in Panel A. The pulse alters the future trajectory of atmospheric

CO2 concentrations (Panel B), with the near-term decrease and long-term increase driven

by the ocean’s initial storage and subsequent release of CO2. This results in temperature

changes over multiple centuries (Panel C), which in turn cause a stream of labor disutility

damages (Panel D).

The sum of the discounted stream of labor disutility damages due to the marginal pulse

is the labor disutility partial SCC. Table 5 reports labor disutility partial SCC estimates

under various baseline emissions scenarios and annual discount rates. Columns represent

discount rates that align with those used in recent U.S. government SCC estimates (1.5%,

2%, and 2.5%) (U.S. Environmental Protection Agency, 2022) or prior estimates (2.5%,
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Figure 9: Effects of a marginal emission of CO2 in 2020. Panel A depicts a 1 GtC
emissions pulse (equivalent to 3.66 Gt CO2) in 2020 for a very high baseline emissions scenario (RCP8.5).
Panel B displays the response of atmospheric CO2 concentrations, relative to baseline. Panel C shows
the impact of the pulse on temperature, with the levels indicating the change in global mean surface
temperature relative to baseline. Panel D plots the stream change in discounted flow of labor disutility
costs (2% annual discount rate) using damage functions estimated in Appendix H.1. Solid lines represent
the median trajectory from sampling the joint distribution of FAIR climate model parameters (Panels B
and C) and also damage function quantiles (Panel D); shading indicates interquartile ranges (Appendix
H.3).

3%, and 5%) (Interagency Working Group on Social Cost of Carbon, 2010; National

Academies of Sciences, Engineering, and Medicine, 2017). All values in the table represent

the global sum of each impact regions marginal willingness-to-pay today (2019 USD) to

avoid the additional labor disutility caused by the release of an additional metric ton of

CO2 in 2020.47

In Panel I of Table 5 we report central estimates of the partial SCC that use the

median values of FAIR's four key parameter distributions and the mean global damage

function estimate. The 1st-99th percentile ranges [in brackets] reflect uncertainty in climate

sensitivity and in the damage function (Appendix H.3). Under a 2% discount rate, the

central estimate of the labor disutility partial SCC is $10.6 for the intermediate emissions

scenario and $16.7 for the very high emissions scenario. We highlight a 2% discount rate

because it is the midpoint of the range of discount rates used in recent U.S. government

estimates (U.S. Environmental Protection Agency, 2022).

The SCC values in Panel I of Table 5 assume that individuals are risk-neutral. In Panel

II of Table 5 we report “certainty equivalent” values of the partial SCC that account for

risk aversion.48 To calculate these certainty equivalent values, we follow the method in

Nath et al. (2024), adopting a standard parameterization for the shape of the utility

function, i.e., a constant relative risk aversion utility function with a coefficient of relative

risk aversion equal to 2. (Appendix H.3.2 details the specific procedure.) The partial

47Appendix H.5 displays SCC estimates under alternative baseline socioeconomic scenarios. Section
VII displays SCC estimates from an empirical model that allows the effect of temperature on labor supply
to differ both across and within risk groups.

48Recent U.S. government SCC estimates explicitly incorporate the fact that individuals are risk-averse
and value reducing uncertainty (Climate Impact Lab, 2022; Howard and Sterner, 2017; Rennert et al.,
2022a; U.S. Environmental Protection Agency, 2022).
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SCC increases substantially when valuing the econometric and climatological uncertainty

behind it. For example, under a very high emissions scenario and 2% discount rate, the

certainty equivalent partial SCC is $29.1, compared to the central estimate of $16.7 in

Panel I.

Panel III of Table 5 presents labor disutility partial SCC values from recent U.S. gov-

ernment estimates (U.S. Environmental Protection Agency, 2022). While these estimates

are based on the empirical relationships estimated in this paper, they incorporate addi-

tional dimensions of uncertainty, making use of probabilistic socioeconomic and emissions

scenarios from Rennert et al. (2022b) and a Ramsey-like discounting procedure that ac-

counts for the relationship between economic growth and the discount rate (Newell, Pizer,

and Prest, 2022).49 Accounting for these uncertainties further increases the partial SCC.

Discount rate δ = 1.5% δ = 2% δ = 2.5% δ = 3% δ = 5%

I. Partial SCC estimates

RCP 8.5
$28.8 $16.7 $10.6 $7.2 $2.4

[$0.2,$215.3] [-$0.5,$125.1] [-$0.9,$77.7] [-$1.1,$50.6] [-$1.4,$12.1]

RCP 4.5
$17.5 $10.6 $7.0 $5.0 $1.9

[-$2.4,$229.8] [-$2.3,$125.5] [-$2.3,$74.4] [-$2.2,$46.9] [-$2.0,$10.7]

II. Partial SCC estimates
(certainty equivalent)

RCP 8.5 $50.8 $29.1 $18.0 $11.9 $3.2
RCP 4.5 $39.7 $22.5 $13.9 $9.3 $2.7

III. Partial SCC estimates
(U.S. government approach, certainty equivalent)

Probabilistic scenarios
$72.7 $38.5 $22.0

(Rennert et al. 2022b)

Table 5: Estimates of a partial social cost of carbon for labor disutility. All partial
SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, assuming a Frisch elasticity of
labor supply of 0.5 (Chetty et al., 2011) and a labor share of income of 0.6 (Karabarbounis and Neiman,
2014). Estimates in Panels I and II are calculated using constant annual discount rates ranging from
1.5% to 5%, either a very high (RCP8.5) or intermediate (RCP4.5) baseline emissions scenario, and
socioeconomic scenario SSP3 (alternative values using other SSP scenarios are shown in Appendix H.5).
Point estimates displayed in Panel I rely on the median values of the four key input parameters into the
climate model FAIR and a conditional mean estimate of the damage function; 1st-99th percentile ranges
[in brackets] reflect climate sensitivity and damage function uncertainty (see Appendix H.3 for details).
Panel II displays certainty equivalent values of the partial SCC, which account for risk aversion using a
constant relative risk aversion utility function with a coefficient of relative risk aversion equal to 2 (see
Appendix H.3.2). Estimates in Panel III follow the approach used in recent U.S. government estimates
(U.S. Environmental Protection Agency, 2022), using probabilistic socioeconomic and emissions scenarios
(Rennert et al., 2022b) and Ramsey discounting parameters calibrated such that the average certainty
equivalent discount rate over the first ten years is equal to either 1.5%, 2%, or 2.5% (Newell, Pizer, and
Prest, 2022).

49Under this discounting procedure, the Ramsey parameters (i.e., the pure rate of time preference and
the elasticity of marginal utility of consumption) are calibrated such that the average certainty equivalent
discount rate over the first ten years is equal to either 1.5%, 2%, or 2.5%.
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VII Robustness to alternative labor market assump-

tions

This section probes the sensitivity of our hedonic value and climate change impact esti-

mates to alternative labor market assumptions.

VII.A Inflexible daily wages

Our approach to infer changes in disutility from changes in daily hours worked (Equation

4) assumes that wage rates do not adjust on a daily basis. This assumption would be valid

if, for example, labor contracts are set annually. However, if wages are flexible at daily

frequency, the paper’s expression for the labor disutility costs of extreme temperatures

(i.e., Equation 4) that relies on changes in labor supply is incorrect, because it would

confound the disutility costs with changes in labor supply due to changes in wages. We

do not observe wage rates in our data, so we cannot directly test whether daily wages

respond to daily temperature shocks.

This subsection graphically and mathematically demonstrates that temperature shocks

that raise labor disutility and reduce productivity would have an ambiguous effect on the

estimates of labor disutility when wage rates adjust at daily frequency. Consider a change

in equilibrium labor supply caused by a daily temperature shift on day d. The overall

labor supply change ( dL
dTd

) can be divided into two components: a change that occurs from

a shifting supply curve, holding the wage fixed (∂L|ω
∂Td

), and a change that occurs due to a

shifting wage (∂L∆ω

∂Td
).50 The true labor disutility caused by the temperature shift should

be calculated using only the first component.

Figure 10’s two panels depict the cases where, in response to a daily temperature shock,

the relative elasticities of the demand and supply curves cause the equilibrium wage to

decrease (Panel A) and increase (Panel B), respectively. In both panels, the gridded areas

correspond to the true change in worker disutility, which is based on the change in labor

supply holding the wage constant (∂L|ω
∂Td

). In Panel A, where the wage declines, Equation

4’s approach of inferring changes in disutility from changes in labor supply will overstate

the effects of temperature on disutility, because labor supply reflects the true disutility of

higher temperatures (i.e., the gridded area) and the reduction in hours due to the decline

in the wage (i.e., orange area). In the case where the wage rises (Panel B), Equation 4

will lead to an underestimate of the total disutility costs (i.e., gridded area) because the

increase in hours due to the higher wage (i.e., orange area) obscures some of the utility

loss.51 Thus, the sign and magnitude of the potential bias in estimated disutility caused

50These components are depicted graphically in Appendix Figure A.1.
51It is also worth noting that in the case where the wage falls and the calculation overstates the disutility

change, the overestimate partially consists of a different economic cost— producer surplus loss from terms
A/B of the WTP expression (Equation 2) that is mislabeled as a disutility cost. This overlap is seen in
Figure 10A as the orange triangle that lies within the diagonal shaded area.
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by the assumption of a fixed daily wage rate depends on the extent of the labor supply

and demand shifts and the relative elasticities of labor supply and demand.52

Figure 10: Effects of a temperature increase on labor supply and disutility in presence of
wage change. Intersection of upward-sloping marginal disutility of labor (labor supply) and downward-
sloping labor demand determines the equilibrium labor hours at a given daily temperature, either Topt
or T+ > Topt. Figure 10A illustrates a case where the temperature increase from Topt to T+ results in a
decrease in the equilibrium wage. In this case, our calculation of the change in worker disutility based on
the change in equilibrium labor supply overestimates the actual change in worker disutility. The gridded
area denotes the actual change in disutility, while our estimate corresponds to gridded area plus the
orange area. Figure 10B illustrates a case where the temperature increase from Topt to T+ results in an
increase in the equilibrium wage. In this case, our calculation of the change in worker disutility based
on the change in equilibrium labor supply underestimates the actual change in worker disutility. The
gridded area denotes the actual change in disutility, while our estimate corresponds to the gridded area
that is not shaded in orange.

The potential bias in the calculation of labor disutility due to temperature shocks

when using the observed change in labor supply (as in Equation 4) can be expressed

formally. Equation 12 divides the true temperature-induced change in disutility into the

estimated change in disutility when using observed labor supply changes, and the bias

due to the change in labor supply from the wage change (i.e., the orange area in Figure

10):

ω
(
∂L|ω
∂Td

)
ε︸ ︷︷ ︸

True temperature-induced disutility

=
ω
(
dL
dTd

)
ε︸ ︷︷ ︸

Temperature-induced disutility
calculated from observed

labor supply changes

−
ω
(
∂L∆ω

∂Td

)
ε︸ ︷︷ ︸

Bias due to
temperature-induced

wage change

.
(12)

With some manipulation, we can use the Frisch elasticity of labor supply ε to write the

52It is possible that the temperature-induced shifts in daily labor demand and labor supply curves
perfectly offset, such that the wage rate remains unchanged. In this special case, the estimated disutility
would not be biased.
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bias term as:

ω
(
∂L∆ω

∂Td

)
ε

=
Lω
(
ε(∂ω/ω)
∂Td

)
ε

. (13)

We use Equation 13 and two assumptions to characterize the potential bias in the

paper’s estimates of labor disutility from daily temperature shocks. The first assumption

is that the wage rate fluctuates in response to daily temperature conditions for a fraction

of workers r. The second one is that for these workers, we assume that the wage response

to daily temperature is related in a fixed proportion, x, to the labor supply response.

Specifically, we assume dω/ω
dTd

= x(dL/L)
dTd

.53 This assumption is consistent with estimates

of the relationship between temperature and worker productivity (Seppanen, Fisk, and

Faulkner, 2004; Stevens, 2019), which find larger effects for more extreme temperatures,

just as we find for temperature and labor supply.

With these two assumptions, the true disutility caused by a shift in the daily tem-

perature for workers with a flexible wage is equal to the disutility calculated from the

observed change in labor supply multiplied by a scaling factor (1− εx). For the remaining

1 − r fraction of workers, x = 0, and no adjustment is necessary. Thus, to obtain the

true temperature-induced disutility for all workers, the disutility calculated from the ob-

served labor supply change is multiplied by a scaling factor (1 − εxr). The construction

of the corresponding hedonic value of thermal comfort in a low-risk job and the impacts

of future climate change on labor disutility requires multiplying the formulas described in

Equations 9 and 11, respectively, by this scaling factor.

Table 6 explores the sensitivity of the paper’s estimates of the hedonic value of thermal

comfort on the job (Row 1) and the estimated impacts of climate change on measures of

climate damages (Rows 2 - 5) to allowing the wage rate to fluctuate with daily temperature

for some workers. The scaling factor, (1 − εxr), is constructed using ε = 0.5 again,

r = 0.35, and a range of values for x based on our data and other prior surveys and

studies. Appendix A.4 describes in detail our data, the prior surveys, and the previous

literatures that govern the choices for x and r. The baseline estimates that assume

inflexible daily wages and were reported above are repeated in Column 1, while Columns

2 - 5 consider the alternative scenarios that allow for daily wage adjustments.

Across the range of parameter values, daily flexibility in the wage rate has a relatively

modest impact on the paper’s measures of labor disutility. For example, the baseline

point estimate for the global average value of thermal comfort in a low-risk job is 2.9%

and ranges between 1.4% and 3.2% with the alternative assumptions. Additionally, the

5th to 95th percentile ranges all have considerable overlap. It is also apparent in Rows 2 -

5 that relaxing the assumption of daily inflexibility in the wage rate does not qualitatively

alter the paper’s conclusions about the labor disutility costs of climate change.

53Note that x will be positive in the case of a wage decrease (as illustrated in Figure 10A) and negative
in the case of a wage increase (as illustrated in Figure 10B).
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VII.B Other assumptions

Here we explore the implications of allowing for heterogeneous labor supply-temperature

responses within risk groups. It is possible that workers of the same risk group may

respond differently to temperature, based on income and climate. However, as described

in Section IV, an important data limitation in this context is that some of the time

use and labor force surveys are only nationally representative, and not representative at

subnational levels.

Nevertheless, we estimate an augmented version of Equation 6 that includes interac-

tions of the nonlinear temperature response functions for each risk group with location-

specific measures of income per capita and climate (Carleton et al., 2022; Rode et al.,

2021) at the level that the surveys are representative. Under this model, which is pre-

sented in Appendix G, we fail to find statistically significant differences in the labor

supply-temperature response of low-risk workers by income or climate. We also do not

find statistically significant evidence that the labor supply-temperature response of high-

risk workers differs by climate, though do find evidence that high-risk labor supply is less

sensitive to daily temperatures in richer locations. This could be explained by occupa-

tional safety rules that require breaks, access to water, or other compensatory responses

to extreme temperatures in richer locations.

Table 6 explores the consequences of allowing for income to be protective for high-risk

workers. Column 6, Row 1 finds that the estimate of the hedonic value of thermal comfort

would fall from 2.9% to 1.8% of annual income globally. It is noteworthy that the 5th to

95th percentile ranges for these estimates overlap. Similarly, the end-of-century disutility

costs of climate change under RCP8.5 decrease from 1.8% to 0.7% of 2099 global GDP

when the model allows for income-driven adaptation for high-risk workers (Column 6, Row

2). These estimates also have wide 5th to 95th percentile ranges with considerable overlap

(0.2% to 5.1% and -0.3% to 2.5%, respectively).54 Estimates of the partial social cost

of carbon for labor disutility reduce by roughly half, again with wide and substantially

overlapping uncertainty ranges (Column 6, Rows 4 and 5).

A separate assumption in our stylized model is that workers are homogeneous in their

preferences for thermal comfort in the workplace. However, if workers differ in their prefer-

ences, the employment composition of the high- and low-risk sectors will be endogenously

determined by preference-based selection of workers into each sector. The result is that

estimates of the population average hedonic value of thermal comfort in a low-risk job

would be biased.55 The bias would arise because the temperature responses of high- and

low-risk labor supply are estimated on the set of workers who selected into each sector,

and not the full population of workers. To correct for this potential bias, we estimate high-

54Correspondingly, the end-of-century disutility costs of climate change under RCP4.5 reduce from
0.5% to 0.2% of 2099 global GDP, with 5th to 95th percentile ranges 0.0% to 1.3% and -0.1% to 0.7%,
respectively (Column 6, Row 3).

55In Appendix A.5, we develop a version of the stylized model with heterogeneous worker preferences
and illustrate how this biases our hedonic value estimates.
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and low-risk labor supply-temperature responses using the Heckman (1979) two-stage es-

timator, and calculate the hedonic value using these estimates, following Equation 9.56

Because we do not identify a potentially valid exclusion restriction, our application of the

Heckman approach is only identified through functional form assumptions. Appendix A.5

describes the estimation procedure in detail and shows that the hedonic value estimate

remains very similar to the one from our main specification.

VIII Conclusion

Using a new theoretical framework and novel data representing one-third of the world’s

population, this paper finds that worker thermal comfort is an important non-wage work-

place amenity and projects that it will become a substantial share of the costs of climate

change. Specifically, the empirical results suggest that the value of a weather-protected

job’s thermal comfort is about 2.9% of annual income on average but it varies widely

across the globe depending on the local climate. Additionally, we project that climate

change will increase worker thermal discomfort by 1.8% of global GDP at the end of the

century under a very high emissions scenario and 0.5% under an intermediate scenario.

This cost has not previously been accounted for in analyses of climate damages and is

distinct from the effects of climate change on labor productivity.

Several caveats and limitation are worth noting. First, we believe that we have col-

lected the most comprehensive data set ever compiled on daily or weekly worker labor

supply and weather, but, at the same time, these data are incomplete because they are

missing two-thirds of the world’s population. This is a particular concern in sub-Saharan

Africa and other places where exposure to extremely hot temperatures and high-risk jobs

are both common. Another data limitation is that the paper does not shed light on other

ways in which climate change may affect worker utility. For example, it is unable to

directly measure the impacts of humidity and storms.

Second, the analysis assumes that daily weather realizations provide a setting where

wages are fixed and, as we show, this is useful for inferring the disutility costs of ex-

treme temperatures. In many respects this is the other side of the coin, compared to

the workhorse hedonic model that assumes that labor is supplied inelastically (generally

over longer time horizons). We attempt to quantify the bias that arises if daily wages

respond to daily temperature and find that it is likely small. Nevertheless, richer data

would allow for a further investigation of the relative roles of labor supply and demand

in the particular contexts where this can occur.

Third, it is possible that we have understated the degree to which adaptation will

reduce the costs of climate change. The finding that there are not differences in the labor

56If workers endogenously select into sectors based on preferences both today and under future climate
change, correcting the selection bias is not appropriate for calculating the impacts of climate change on
worker disutility. We therefore only apply the selection correction when calculating the hedonic value of
thermal comfort.
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supply responsiveness of high-risk workers across climate zones suggests that these work-

ers’ adaptation opportunities are limited currently. However, climate change is likely to

cause innovation that protects people against the heat (e.g., personal cooling devices) and

such climate-biased innovation will work to reduce the costs of worker thermal comfort.

Relatedly, there may exist forms of adaptation like migration from areas where thermal

comfort is a challenge to more temperate locations that are outside the paper’s analysis.

There are two broader implications of this research. The paper’s conceptual approach

demonstrates that labor supply can be used to value other workplace disamenities, in-

cluding air pollution, noise pollution, and power outages. Further this paper adds to

growing literature that finds that the non-market effects of climate change are likely to

account for an important, if not predominant, share of its costs. For example, Carleton

and Greenstone (2022) demonstrate that the mortality costs of climate change are much

larger than had been understood and Rennert et al. (2022a) show that they dominate

current estimates of damages. Other areas where the economic impacts of climate cli-

mate are largely unquantified include biodiversity, morbidity, migration, and conflict. An

important area for future research is to develop new theoretical and empirical approaches

to quantify willingness-to-pay for these and other non-market impacts of climate change,

just as this paper has tried to do with on-the-job thermal comfort.
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A A stylized model of labor demand and supply un-

der extreme temperatures: Derivations and sensi-

tivity to assumptions

In this appendix, we provide mathematical details for the worker and firm decision prob-

lems and the equilibrium conditions of the model described in Section II. We then show

the steps for deriving the components of the total willingness-to-pay (WTP) for a change

in climate. Finally, we illustrate the implications for our disutility calculation in the case

where wages can adjust in response to daily temperature shocks, and in the case where

workers differ in their preferences for thermal comfort in the workplace.

A.1 Worker and firm decisions

A.1.1 Worker sectoral choice

We denote the indirect utility functions of a high- and low-risk worker as V h(T , p, κ;ωh, ωl)

and V l(T , p, κ;ωh, ωl), respectively. These functions represent the maximum utility a

worker can achieve in each sector, given daily temperature realizations (T ), prices (p),

asset income (κ), and wages (ωh, ωl). Because the daily temperatures are not yet realized

at the time of the worker’s sectoral choice, and the price p and amount of asset income κ

will depend on their realized values, a worker chooses the sector s ∈ {l, h} that yields the

higher expected utility given wages ωh and ωl, conditional on the climate τ :

max
s∈{l,h}

{
ET
[
V s
(
T (τ ), p(T (τ )), κ(T (τ ));ωh, ωl

) ∣∣∣ τ]}. (A.1)

A.1.2 Firm sectoral choice and wage determination

Prior to the realization of daily temperatures, a firm j must choose which sector to operate

in and the wage rate to offer in that sector. Firm j’s expected profit maximization problem

(conditional on the climate τ ) thus nests a wage offer decision within a sectoral choice

decision, where the wage offer decision is subject to a participation constraint that the

worker does not choose the other sector:

max
s∈{l,h}

{
max
ωh

ET
[
p(T )af1(

365∑
d=1

Lhd(Td),T )− ωh
365∑
d=1

Lhd(Td)
∣∣∣ τ],max

ωl
ET
[
af2(

365∑
d=1

Lld(Td), T̃ )− ωl
365∑
d=1

Lld(Td)
∣∣∣ τ]− βj}

such that ET
[
V h
(
T , p(T ), κ(T );ωh, ωl

) ∣∣∣ τ] ≥ ET
[
V l
(
T , p(T ), κ(T );ωh, ωl

) ∣∣∣ τ] if s = h,

such that ET
[
V l
(
T , p(T ), κ(T );ωh, ωl

) ∣∣∣ τ] ≥ ET
[
V h
(
T , p(T ), κ(T );ωh, ωl

) ∣∣∣ τ] if s = l.

(A.2)
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When deciding the wage within a sector, the firm takes into account its expected ef-

fect on the worker’s labor supply, which a worker chooses after the realization of daily

temperature.

A.1.3 Worker labor supply and consumption

The worker’s daily labor supply decision is described in the main text Equation 1. At

the end of the year, after all daily temperatures, goods prices, and annual wage and asset

income are realized, workers choose how much to consume of the 2 goods, C1 and C2.

The consumption decision of a worker in sector s ∈ {h, l} is thus:

max
Cs1 ,C

s
2

U(Cs
1 , C

s
2),

such that pCs
1 + Cs

2 = ωs
365∑
d=1

Lsd + κ,
(A.3)

A.2 Equilibrium conditions

Our model of labor supply and demand under extreme temperatures has several important

conditions that hold in equilibrium. The first two of these conditions relate to equilibrium

wages and employment shares across sectors, determined prior to the realization of daily

temperature. The next four conditions relate to equilibrium goods consumption, labor

supply, and asset income after daily temperatures are realized.

First, prior to the realization of daily temperature, expected worker utility is equal-

ized across the two sectors to guarantee employment in both sectors with homogeneous

workers. This equalization necessarily arises from the participation constraints for high-

and low-risk workers in Equation A.2:

ET
[
V h
(
T , p∗(T ), κ∗(T );ωh∗(τ ), ωl∗(τ )

) ∣∣∣ τ] = ET
[
V l
(
T, p∗(T ), κ∗(T );ωh∗(τ ), ωl∗(τ )

) ∣∣∣ τ], (A.4)

where p∗(T ) and κ∗(T ) respectively denote the equilibrium good 1 price and asset income

(with an expectation taken over the daily temperature realizations), and ωh∗(τ ) and

ωl∗(τ ) are the equilibrium wages in the high-risk and low-risk sectors (determined prior

to the daily temperature realizations, based on the climate τ ). It is apparent that there

is a compensating differential of higher wages for workers at high-risk firms (Rosen, 1974,

1986).57

57Equation A.4 can be equivalently expressed as ET
[
U(Ch∗1 (T ), Ch∗2 (T ))−

∑365
d=1D(Lh∗d (Td), Td)

∣∣∣ τ] =

ET
[
U(Cl∗1 (T ), Cl∗2 (T ))−

∑365
d=1D(Ll∗d (Td), T̃d)

∣∣∣ τ], where Cs∗1 (T ), Cs∗2 (T ), and Ls∗d (Td) denote equilib-

rium good 1 and good 2 consumption and daily labor supply of a worker in sector s ∈ {h, l} (with an
expectation taken over the daily temperature realizations).
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Second, it is also possible to derive an expression that governs the equilibrium shares

of employment in the low- and high-risk sectors. These shares are determined by the

distribution across firms of the βj costs of protection from extreme temperatures. Firms

with a sufficiently low βj will choose the low-risk sector as their expected profits are

greater there than in the high-risk sector. Let ∆∗(τ ) denote the equilibrium cross-sector

differential in expected revenues less labor costs:

∆∗(τ ) = ET
[
af2(

365∑
d=1

Ll∗d (Td), T̃ )−ωl∗(τ )

365∑
d=1

Ll∗d (Td)

∣∣∣ τ]−ET [p∗(T )af1(

365∑
d=1

Lh∗d (Td),T )−ωh∗(τ )

365∑
d=1

Lh∗d (Td)

∣∣∣ τ],
(A.5)

where Ll∗d (Td) and Lh∗d (Td) denote the equilibrium daily labor supply of a low- and high-risk

worker respectively (with an expectation taken over the daily temperature realizations).

From Equation A.2, it is evident that in equilibrium, only firms with βj < ∆∗(τ ) will

choose to operate in the low-risk sector. Thus the equilibrium shares of employment in

the low- and high-risk sectors are respectively G(∆∗(τ )) and 1−G(∆∗(τ )). Equations A.4

and A.5 reveal that the climate τ influences both the equilbrium wages and composition of

the economy across sectors by affecting expected disutility and output in the two sectors.

Third, combining the worker’s first-order conditions from the consumption decision

in Equation A.3 reveals that the marginal rate of substitution between C1 and C2 is set

equal to the relative equilibrium price of C1 (p∗):

U1(Ch∗
1 (T ), Ch∗

2 (T ))

U2(Ch∗
1 (T ), Ch∗

2 (T ))
=
U1(C l∗

1 (T ), C l∗
2 (T ))

U2(C l∗
1 (T ), C l∗

2 (T ))
= p∗(T ). (A.6)

Fourth, this equilibrium relative price clears the markets for the 2 goods, such that

total consumption is equal to total production of each good:

G(∆∗(τ ))C l∗
1 (T ) + [1−G(∆∗(τ ))]Ch∗

1 (T ) = [1−G(∆∗(τ ))]af 1(
∑365

d=1 L
h
d(Td),T );

G(∆∗(τ ))C l∗
2 (T ) + [1−G(∆∗(τ ))]Ch∗

2 (T ) = G(∆∗(τ ))af 2(
∑365

d=1 L
l
d(Td), T̃ )−

∫ ∆∗(τ )

0
βg(β) dβ.

(A.7)

The integral
∫ ∆∗(τ )

0
βg(β) dβ represents the lost output of low-risk firms due to the costs

of protection from extreme temperature.

Fifth, the marginal disutility of labor and the pre-determined wage are equalized within

each sector after each daily temperature realization:

DL(Lh∗d (Td),Td)

E
[
U2(Ch∗1 (T ),Ch∗2 (T ))

∣∣∣ τ] = ωh∗(τ );

DL(Ll∗d (Td),T̃d)

E
[
U2(Cl∗1 (T ),Cl∗2 (T ))

∣∣∣ τ] = ωl∗(τ ).

(A.8)
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Sixth, firms in each sector realize zero profits after payments to shareholders (i.e.,

workers, who own the firms):

κ∗(T ) = [1−G(∆∗(τ ))][p∗(T )af 1(
365∑
d=1

Lh∗d (Td),T )− ωh∗(τ )
365∑
d=1

Lh∗d (Td)]

+G(∆∗(τ ))[af 2(
365∑
d=1

Ll∗d (Td), T̃ )− ωl∗(τ )
365∑
d=1

Ll∗(Td)]−
∫ ∆∗(τ )

0

βg(β) dβ.

(A.9)

A.3 Total willingness-to-pay

Equation 2 in the main text provides an expression for the total willingness-to-pay (WTP)

for a change in τ , which comprises the WTP for (1) changes in output of high- and low-

risk goods and (2) the disutility effects to workers. Here we provide details of how these

components of total WTP are derived.

Our starting point is the indirect utility functions of high- and low-risk workers, V h

and V l respectively. For an individual worker (high- or low-risk), the WTP for a change

in τ is obtained by totally differentiating the negative of indirect utility with respect to

τ , dividing by the marginal utility of income (i.e., marginal utility of the numeraire good,

C2) to convert utils to dollars, and taking the expectation over daily temperatures T .

The total WTP, summed across all high- and low-risk workers, is thus:

Total WTP = (1−G(∆∗(τ )))ET
[
− ∂V h/∂τ

U2(Ch∗
1 , Ch∗

2 )

∣∣∣ τ]+G(∆∗(τ ))ET
[
− ∂V l/∂τ

U2(C l∗
1 , C

l∗
2 )

∣∣∣ τ].
(A.10)

Applying the budget constraints of high- and low-risk workers (from Equation A.3)

and the envelope theorem, we can rewrite Equation A.10 as:

Total WTP = (1−G(∆∗(τ )))ET
[ 365∑
d=1

( DT (Lh∗d , Td)

U2(Ch∗1 , Ch∗2 )

∂Td
∂τ

)
+
∂p∗

∂T

∂T

∂τ
Ch∗1 −

∂ωh∗

∂τ

365∑
d=1

Lh∗d

∣∣∣ τ]︸ ︷︷ ︸
Temperature-induced disutility and price and wage changes for high-risk workers

+G(∆∗(τ ))ET
[ 365∑
d=1

(
(1− γ)

DT (Ll∗d , T̃d)

U2(Cl∗1 , C
l∗
2 )

∂Td
∂τ

)
+
∂p∗

∂T

∂T

∂τ
Cl∗1 −

∂ωl∗

∂τ

365∑
d=1

Ll∗d

∣∣∣ τ]︸ ︷︷ ︸
Temperature-induced disutility and price and wage changes for low-risk workers

− ET
[ ∂κ
∂T

∂T

∂τ

∣∣∣ τ]︸ ︷︷ ︸
Effect of temperature on firm profits

.

(A.11)

Equation A.11 decomposes the total WTP into WTP for temperature-induced worker
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disutility, price and wage changes faced by workers, and changes in firm profits.58 Ex-

panding the final term in Equation A.11 (i.e., the derivative of firm profits with respect

to temperature) and applying the envelope theorem leads to:

Total WTP = (1−G(∆
∗
(τ)))ET

[ 365∑
d=1

( DT (Lh∗
d , Td)

U2(Ch∗
1 , Ch∗

2 )

∂Td

∂τ

)
+
∂p∗

∂T

∂T

∂τ
C

h∗
1 −

∂ωh∗

∂τ

365∑
d=1

L
h∗
d

∣∣∣ τ]︸ ︷︷ ︸
Temperature-induced disutility and price and wage changes for high-risk workers

+G(∆
∗
(τ))ET

[ 365∑
d=1

(
(1− γ)

DT (Ll∗
d , T̃d)

U2(Cl∗
1 , Cl∗

2 )

∂Td

∂τ

)
+
∂p∗

∂T

∂T

∂τ
C

l∗
1 −

∂ωl∗

∂τ

365∑
d=1

L
l∗
d

∣∣∣ τ]︸ ︷︷ ︸
Temperature-induced disutility and price and wage changes for low-risk workers

+ (1−G(∆
∗
(τ)))ET

[(
− p∗af1

T (
365∑
d=1

L
h∗
d ,T )−

∂p∗

∂T
af

1
(
365∑
d=1

L
h∗
,T )

) ∂T
∂τ
−

365∑
d=1

(
p
∗
af

1
L(

365∑
d=1

L
h∗
d ,T )− ωh∗

) ∂Lh∗
d

∂Td

∂Td

∂τ
+
∂ωh∗

∂τ

365∑
d=1

L
h∗
d

∣∣∣ τ]︸ ︷︷ ︸
Effect of temperature on firm profits (high-risk sector)

+G(∆
∗
(τ))ET

[(
− (1− γ)af

2
T (

365∑
d=1

L
l∗
d , T̃ )

∂T

∂τ
−

365∑
d=1

(
af

2
L(

365∑
d=1

L
l∗
d , T̃ )− ωl∗

) ∂Ll∗
d

∂Td

∂Td

∂τ

)
+
∂ωl∗

∂τ

365∑
d=1

L
l∗
d

∣∣∣ τ] +
∂

∂τ

∫ ∆∗(τ)

0
βg(β) dβ

︸ ︷︷ ︸
Effect of temperature on firm profits (low-risk sector)

− ∆
∗
(τ)g(∆

∗
(τ))

∂∆∗(τ)

∂τ︸ ︷︷ ︸
Effect of temperature on firm profits

(net effects of sectoral shifts)

.

(A.12)

A change in τ affects firm profits in the high- and low-risk sectors through multi-

ple channels. These include a change in expected output in both high- and low-risk

sectors,59 a change in the total costs of protection for firms in the low-risk sector (i.e,
∂
∂τ

∫ ∆∗(τ )

0
βg(β) dβ), and price and wage changes.60 Furthermore, a change in τ also af-

fects total profits by altering the share of employment in high- and low-risk sectors (i.e.,
∂G(∆∗(τ ))

∂τ
). This effect is captured in the last line of Equation A.12.

At this point, we observe in Equation A.12 that the WTP for climate-induced price

and wage changes is zero on net, as the sets of terms containing ∂p∗

∂T
∂T
∂τ

, ∂ωh∗

∂τ
, and ∂ωl∗

∂τ
each

sum to zero.61 Price and wage changes amount to transfers between workers and firms

and thus have no net effect on total WTP. Furthermore, applying the Leibniz integral

rule reveals that the change in the total costs of protection for firms in the low-risk sector

58As specified by the zero profit condition (Equation A.9), changes in firm profits are equivalent to
changes in the asset income of workers, κ.

59The change in output includes a direct effect of temperture in each sectors (i.e., af1
T (
∑365
d=1 L

h∗
d ,T )

and af2
T (
∑365
d=1 L

l∗
d , T̃ )), and an effect driven by changes in labor supply in each sector (i.e.,∑365

d=1(p∗af1
L(
∑365
d=1 L

h∗
d ,T ) − ωh∗)

∂Lh∗
d

∂Td
and

∑365
d=1(af2

L(
∑365
d=1 L

l∗
d , T̃ ) − ωl∗)

∂Ll∗
d

∂Td
). This latter effect is

not eliminated by an envelope condition due to the timing of when firms set wages and also due to worker
participation constraints in the firms’ profit maximization problem (Equation A.2 in main text). In set-
ting wages before the daily temperature is realized, firms take into account how the wage will influence
the worker’s labor supply decision after the daily temperature is realized. Thus, even if not facing con-
straints for worker participation, firms would not equate their expected marginal revenue product of labor
with the wage, and would instead equate expected marginal revenue product with the wage multiplied
by 1 + 1

ε , where ε denotes the wage elasticity of labor supply. However, even this first-order condition
will not hold with equality since firms must set wages that satisfy worker participation constraints.

60All these effects are captured in the third and fourth lines of Equation A.12.
61The sets of terms containing ∂ωh∗

∂τ and ∂ωl∗

∂τ each directly sum to zero, while the market clearing

condition for the high-risk good (stated in Equation A.7) ensures that the set of terms containing ∂p∗

∂T
∂T
∂τ

sums to zero.
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(i.e., ∂
∂τ

∫ ∆∗(τ )

0
βg(β) dβ) exactly offsets the change in total profits due to the altered

sectoral composition (i.e., the last line of Equation A.12). Thus cancelling out all terms

in Equation A.12 that sum to zero leads to:

Total WTP = (1−G(∆∗(τ )))ET
[
− p∗af1

T (

365∑
d=1

Lh∗d ,T )
∂T

∂τ
−

365∑
d=1

(
p∗af1

L(

365∑
d=1

Lh∗d ,T )− ωh∗
)∂Lh∗d
∂Td

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(A) Output loss for high-risk sector (good 1)

+G(∆∗(τ ))ET
[
− (1− γ)af2

T (

365∑
d=1

Ll∗d , T̃ )
∂T

∂τ
−

365∑
d=1

(
af2
L(

365∑
d=1

Ll∗d ,T )− ωl∗
)∂Ll∗d
∂Td

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(B) Output loss for low-risk sector (good 2)

+ (1−G(∆∗(τ )))ET
[ 365∑
d=1

DT (Lh∗d , Td)

U2(Ch∗1 , Ch∗2 )

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(C) Disutility effects for high-risk workers

+G(∆∗(τ ))ET
[
(1− γ)

365∑
d=1

DT (Ll∗d , T̃d)

U2(Cl∗1 , C
l∗
2 )

∂Td
∂τ

∣∣∣ τ]︸ ︷︷ ︸
(D) Disutility effects for low-risk workers

.

(A.13)

which is identical to Equation 2 in the main text.

A.4 Implications of flexible daily wages for disutility calculation

In the main text Section VII.A, we illustrate how our approach to inferring a change in

disutility from a change in daily labor supply (i.e., Equation 4 in main text) is affected

by relaxing the assumption that wage rates do not fluctuate on a day-to-day basis in

response to changing work conditions. Figure A.1 graphically depicts the implications for

our disutility calculation, demonstrating that the amount by which the change in disutility

is under- or over-estimated depends on the extent of the wage increase or decrease, re-

spectively. In this situation, the overall labor supply change in the event of a temperature

increase from Topt to T+ > Topt (i.e., L∗(T+)−L∗(Topt) in Figure A.1) can be divided into

two components: a change that occurs from a shifting supply curve, holding the wage fixed

(i.e., L|ω−L∗(Topt)), and a change that occurs due to a shifting wage (i.e., L∗(T+)−L|ω).

The true labor disutility caused by the temperature shift (corresponding to the gridded

area in Figure A.1) should be calculated using only the first component. Calculating the

disutility based on the overall observed change in labor supply (i.e., L∗(T+) − L∗(Topt))
introduces a bias (orange area in Figure A.1) whose direction and magnitude depend on

the second component, i.e., the change in labor supply due to the wage shift.

Equations 12 and 13 in the main text formalize a procedure for correcting this bias,

which involves multiplying the disutility calculated from the observed labor supply change

by a scaling factor. The value of the scaling factor depends on the Frisch elasticity of labor

supply and two other parameters— i.e., the fraction of workers for whom the wage rate

can fluctuate in response to daily temperature conditions (r), and the percentage change

in wage due to a marginal change in daily temperature as a proportion of the percentage
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Figure A.1: Effects of a temperature increase on labor supply and disutility in presence of
wage change. Intersection of upward-sloping marginal disutility of labor (labor supply) and downward-
sloping labor demand determines the equilibrium labor hours at a given daily temperature, either Topt
or T+ > Topt. Figure A.1A illustrates a case where the temperature increase from Topt to T+ results
in a decrease in the equilibrium wage. In this case, our calculation of the change in worker disutility
based on the change in equilibrium labor supply (i.e., L∗(T+)−L∗(Topt)) overestimates the actual change
in worker disutility, which should be calculated based on the labor supply change that occurs from a
shifting supply curve, holding the wage fixed (i.e., L|ω − L∗(Topt)). The gridded area denotes the actual
change in disutility, while the estimate based on the change in equilibrium labor supply corresponds to
gridded area plus the orange area. Figure A.1B illustrates a case where the temperature increase from
Topt to T+ results in an increase in the equilibrium wage. In this case, calculating the change in worker
disutility based on the change in equilibrium labor supply underestimates the actual change in worker
disutility. The gridded area denotes the actual change in disutility, while the estimate based on the
change in equilibrium labor supply corresponds to the gridded area that is not shaded in orange.
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change in labor supply due to a marginal change in daily temperature, which we assume

to be a constant x.

In order to implement the scaling, it is necessary to calibrate plausible values of r and

x. To characterize r, we note that there are certain types of workers for whom wage rates

implicitly adjust at high frequency in response to productivity shocks. These include

self-employed workers and piece rate workers. Approximately 20% of the workers in our

data are self-employed. While it is not possible to identify piece rate workers in our data

and globally comprehensive data do not exist, survey evidence suggests that piece rate

compensation is rare in advanced industrial economies (Hart, 2016). Although it is more

common in developing economies, survey evidence suggests that even in these countries,

the vast majority of workers are not piece rate workers (Guiteras and Jack, 2018). Coun-

tries with the largest documented share of piece rate workers include India and Indonesia,

where under 15% of the workforce is compensated by piece rate.62 Based on these values,

we conservatively set r to 35% (i.e., assuming 15% of workers are compensated by piece

rate, plus 20% of workers recorded as self-employed in our data).

One way to obtain values for x is to look to prior studies on how extreme temperature

conditions affect productivity per worker hour. In a perfectly competitive labor market

free of wage rigidities, such changes in productivity will be directly reflected in the wage

rate. Although these type of studies are limited to specific workplace or laboratory set-

tings, they provide a range of values for x that can be used to adjust for potential bias in

our calculated disutility. For instance, in his study on blueberry picking on 2 California

farms, Stevens (2019) finds a roughly 5% decrease in productivity at the most extreme

temperatures relative to moderate temperatures, while metastudies of laboratory experi-

ments find up to a 15% decrease at the most extreme temperatures (Seppanen, Fisk, and

Faulkner, 2004). Productivity decreases of roughly 30% are found by Sahu, Sett, and

Kjellstrom (2013) in their study on rice harvesters in India. When combined with our

estimates equivalent to a reduction of roughly 10% of a day’s labor supply at 40◦C for

weather-exposed workers, these three estimates of productivity effects imply x values of

0.5, 1.5, and 3, respectively.63

While prior studies provide a basis for considering positive values of x (i.e., a due

62India’s National Sample Survey (National Sample Survey Organisation, 2005) and the Indonesia
Family Life Survey (Center for Population and Policy Studies, Gadjah Mada University (Indonesia),
RAND Corporation, SurveyMETER, 2007-2008) reveal that roughly 12% of workers in each country are
compensated by piece rate. In both countries, piece rate compensation is prevalent both in industries we
classify as high-risk and low-risk, with slightly higher rates (up to 15%) in high-risk industries.

63We estimate that for high-risk workers, a 40◦C day causes roughly a 30 minute decline in labor supply
relative to a 27◦C (Table 2, Column 3). This represents roughly 10% of a day’s labor supply, based on
300 average minutes worked in a day in our data (Table 1). Because the highest temperatures considered
in the productivity studies do not exceed 40◦C, we use our estimated labor supply reduction at 40◦C to
calibrate values of x, even though we estimate larger reductions from days higher than 40◦C. Moreover,
it should be noted that the productivity studies do not consider effects that persist beyond a single day,
while we estimate the effect of daily temperature on labor supply over a week. Our construction of values
for x assumes that the productivity effects beyond the day of exposure are zero.
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to a decrease in the wage rate in the numerator and a decrease in labor supply in the

denominator), Figure A.1B illustrates that moving to a more extreme temperature may

increase the wage rate while reducing labor supply, resulting in a negative value for x. In

this case, our calculated disutility is biased downwards and the adjustment by a factor

of (1 − εxr) would increase it. Estimating the response of labor supply to temperature

separately for self-employed and non-self-employed workers in our data suggests that

negative values of x are not implausible. In particular, the point estimates in Table A.1

reveal that extreme hot days cause a smaller decline in labor supply for self-employed

workers than for non-self-employed workers.64 If wages of non-self-employed workers are

assumed to not vary in response to daily temperature fluctuations, then the smaller labor

supply reduction of self-employed workers indicates that their implied wage rate must have

increased, as illustrated in Figure A.1B.65 For instance, relative to a 27◦C day, a 45◦C

day causes roughly an hour reduction in labor supply for a high-risk non-self-employed

worker, but only a 45 minute reduction for a high-risk self-employed worker (Table A.1,

Columns 3-4). The 15 minutes of additional labor supply represent a 5% increase in daily

labor supply, which corresponds to a 10% increase in the wage rate when assuming a

Frisch elasticity of 0.5. With the 45 minute labor supply reduction for a self-employed

worker representing a 15% reduction in labor supply, this implies x = −2/3. We therefore

consider a value of x = −2/3, in addition to the values of 0.5, 1.5, and 3 derived from the

productivity studies.

A.5 Heterogeneous worker preferences for thermal comfort

The stylized model presented in the main text and previous sections of this appendix as-

sumes that workers are identical in their preferences for thermal comfort in the workplace.

Here we derive an expression for the WTP to avoid the disutility effects of daily temper-

ature when this assumption is relaxed. We also develop estimates of the hedonic value

of thermal comfort in a low-risk job that account for the endogenous, preference-based

selection of workers into high- and low-risk sectors.

A.5.1 Stylized model with heterogeneous worker preferences

Let zi denote a multiplier on the labor disutility function D that is specific to worker i.

The probability density function h(·) and cumulative distribution function H(·) specify

the distribution of zi values across firms. For a given day of the year d = d, the daily

labor supply of worker i if working in the high-risk sector is thus:

64This pattern is reversed on cold days, which would justify positive x values as derived from the
productivity studies.

65The downward effect on the wage of the demand curve shifting inwards is more than offset by the
upward effect of supply curve shifting inwards.
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Weekly minutes worked per worker

Low-risk High-risk
workers workers

Daily maximum
(1) (2) (3) (4)

temperature

Non-self Self- Non-self Self-
employed employed employed employed

45◦ -16.9 10.7 -61.1 -45.5
(13.2) (14.2) (23.3) (42.7)

40◦ -9.0 7.4 -30.1 -21.3
(6.9) (7.4) (12.4) (22.3)

35◦ -2.2 4.3 -4.2 -1.5
(2.3) (2.4) (4.7) (8.6)

27◦ – – – –
– – – –

10◦ 0.0 -8.7 -11.9 -14.0
(5.3) (5.7) (11.6) (23.3)

5◦ 0.0 -11.3 -15.3 -18.1
(6.8) (7.4) (15) (30.1)

0◦ 0.0 -13.9 -18.8 -22.2
(8.4) (9.1) (18.4) (36.9)

-5◦ -0.1 -16.5 -22.3 -26.3
(9.9) (10.8) (21.8) (43.8)

-10◦ -0.1 -19.0 -25.8 -30.5
(11.5) (12.5) (25.2) (50.6)

Adj R-squared 0.59 0.59 0.59 0.59
N 3,442,813 732,454 1,876,287 547,560

Table A.1: Labor supply response to temperature: Self-employed vs. non-
self-employed workers. This table shows estimates for labor supply-temperature responses that
differ self-employed and non-self-employed workers within each risk group. All regression estimates are
from a restricted cubic spline in daily maximum temperature; observations within each country are
weighted by the sample weights specified in that country’s survey, while across countries, observations
are differentially weighted according to the country’s total population of workers in the particular risk
group. Point estimates indicate the effect on weekly labor supply of a single day at each daily maximum
temperature value shown, relative to a day with a maximum temperature of 27◦C (81◦F). Standard errors
(in parentheses) are clustered at the ADM1 (e.g., state) × month-of-sample level. Regressions employ
the fixed effects specified in main text Equation 6, but separated by risk group × self-employment status.
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max
Lh,id

ETd>d
[
U(Ch,i

1 , Ch,i
2 )

∣∣∣ τ]− ziD(Lh,id , Td),

such that p(T (τ ))Ch,i
1 (T (τ )) + Ch,i

2 (T (τ )) = ωh
[ d∑
d=1

Lh,id +
365∑

d=d+1

Lh,id (Td(τ ))
]

+ κ(T (τ )),

(A.14)

This expression is similar to main text Equation 1, except that the choices are now specific

to worker i. Worker i’s labor supply is chosen similarly if working in the low-risk sector,

except that the worker experiences daily temperatures T̃d instead of Td.

Let V h,i(T , p, κ;ωh, ωl) and V l,i(T , p, κ;ωh, ωl) respectively denote worker i’s indirect

utility in the high- and low-risk sectors. At the beginning of the year, worker i chooses the

sector s ∈ {l, h} that yields the higher expected utility given wages ωh and ωl, conditional

on the climate τ :

max
s∈{l,h}

{
ET
[
V s,i

(
T (τ ), p(T (τ )), κ(T (τ ));ωh, ωl

) ∣∣∣ τ]}. (A.15)

In equilibrium, only workers with a sufficiently low zi, will choose to work in the high-risk

sector, with wages ωh∗ and ωl∗ providing a compensating differential to ensure that the

share of workers in each sector is equal to the share of firms in each sector.66

The WTP to avoid the disutility effects of daily temperature on workers is similar to

that in main text, except it now differs not only across high- and low-risk sectors but also

across individual workers in each sector. As in the main text, we derive an expression

for the wage change necessary to keep worker’s utility constant, given a change in labor

disutility caused by a marginal change in daily temperature, holding all else equal. For a

high-risk worker i on day d, we denote this compensatory wage change ∂ωh∗

∂Td

∂Td
∂τ
|V h,i0

, where

V h,i
0 represents worker i’s initial, pre-temperature change utility level. The compensatory

wage change is obtained by taking the total derivative of worker i’s indirect utility with

respect to τ , while holding constant all other prices and income, and setting this derivative

equal to zero. This results in the following expression:

DT (Lh,i∗d , Td)

U2(Ch,i∗
1 , Ch,i∗

2 )

∂Td
∂τ

= Lh,i∗d

[∂ωh∗
∂Td

∂Td
∂τ

∣∣∣
V h,i0

]
. (A.16)

Using the Frisch elasticity of labor supply (ε), we can rearrange Equation A.16 to

obtain an expression of the disutility cost to high-risk worker i in terms of changes in

66Specifically, in equilibrium there exists a z̄∗(τ ) such that the shares of workers in the low- and high-
risk sectors (1 − H(z̄∗(τ )) and H(z̄∗(τ )),respectively) are equal to the shares of firm’s in the low- and
high-risk sectors (G(∆∗(τ )) and 1−G(∆∗(τ )), respectively).
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worker i’s daily labor supply:

DT (Lh,i∗d , Td)

U2(Ch,i∗
1 , Ch,i∗

2 )

∂Td
∂τ

=
ωh∗
(
∂Lh,i∗d

∂Td

∂Td
∂τ

)
ε

. (A.17)

A similar expression can be derived for a low-risk worker i:

(1− γ)
DT (Ll,i∗d , T̃d)

U2(C l,i∗
1 , C l,i∗

2 )

∂Td
∂τ

=
ωl∗
(
∂Ll,i∗d
∂Td

∂Td
∂τ

)
ε

. (A.18)

Developing estimates of the value of labor disutility (i.e., the left-hand side of Equa-

tions A.17 and A.18) would require worker-specific estimates of the labor supply response

to daily temperature (i.e.
∂Lh,i∗d

∂Td
,
∂Ll,i∗d
∂Td

). These are impossible to construct given our data.

In the main text Section V.A, we only estimate an average response for the workers who

have selected into the high-risk sector or low-risk sector. This introduces a selection bias

in our estimates of the hedonic value of thermal comfort in a low-risk job (main text

Equation 9), because the labor-supply temperature responses (f̂high and f̂low) used to

calculate the hedonic value are estimated not on the overall population of workers but on

the set of workers who selected into each sector based on preferences.

A.5.2 Correcting for selection bias in hedonic value estimates

To correct for the selection bias in the estimates of labor supply temperature responses

of high- and low-risk workers, we apply the two-stage estimator developed in Heckman

(1979). Let HighRiski,j,t denote an indicator variable that takes on a value of 1 if worker i

(observed in subnational location j on date t) works in the high-risk sector. The worker’s

sectoral choice is determined by the latent variable HighRisk∗i,j,t, which we model as

follows:

HighRisk∗i,j,t = λ1Xi + α1j + ψ1k,y + δ1k,w + φ1d + ε1i,j,t, (A.19)

where the explanatory variables consist of a vector of individual-level covariates (Xi)

along with fixed effects for subnational location (α1j), country k × year y (ψ1k,y), country

k × week-of-year w (δ1k,w), and day-of-week d (φ1d). Worker i chooses the high-risk sector

only when HighRisk∗i,j,t takes on a positive value:

HighRiski,j,t =

1 if HighRisk∗i,j,t > 0

0 if HighRisk∗i,j,t ≤ 0.
(A.20)

We assume that the daily temperature and precipitation realization only affects a

worker’s labor supply decision and not sectoral choice— an assumption that is consistent

with the the timing of decisions in our stylized model. Let Laborhigh∗i,j,t denote a latent
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variable of worker i’s labor supply in the high-risk sector, which we model as follows:

Laborhigh∗i,j,t = fhigh(Tj,t) + ghigh(Pj,t) + λ2Xi + α2j + ψ2k,y + δ2k,w + φ2d + ε2i,j,t. (A.21)

The observed labor supply of worker i in the high-risk sector, which we denote Laborhighi,j,t ,

is equal to Laborhigh∗i,j,t only if worker i chose the high-risk sector, and zero otherwise:

Laborhighi,j,t =

Labor
high∗
i,j,t if HighRiski,j,t = 1

0 if HighRiski,j,t = 0.

Assuming the error terms (ε1, ε2) have a joint normal distribution, we can apply the

Heckman two-stage procedure to correct for the potential bias in the estimates of fhigh,

and similarly flow. However, the set of variables that determine sectoral choice is entirely

contained in the set of variables that determine labor supply, so identification in our

application of the Heckman procedure depends crucially on its parametric assumptions,

in particular the normality of the error terms.67

Table A.2 displays estimates of fhigh and flow and Table A.3 displays estimates of

the hedonic value, when using the Heckman two-stage procedure. The estimates are

qualitatively similar to those based on our main specification, suggesting that our results

are not driven by endogenous selection of workers into sectors.

67The first stage of the two-stage procedure involves estimating a probit model of Equation A.19 and
using these estimates to calculate the inverse Mills ratio. The second step involves estimating Equation
A.21 with Labori,high,j,t as the dependent variable while including the inverse Mills ratio as an additional
regressor. Because the inverse Mills ratio is a function of the other regressors in the second stage,
identification is possible only because of its nonlinear functional form, arising from the assumption of
normally distributed errors.
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Weekly minutes worked per worker

(1) (2) (3) (4)
Daily maximum Low-risk High-risk Low-risk High-risk
temperature workers workers workers workers

45◦ -11.0 -58.6 -16.7 -60.6
(11.8) (22.4) (13.2) (23.5)

40◦ -5.7 -28.7 -8.9 -29.4
(6.2) (12.1) (6.9) (12.4)

35◦ -1.2 -3.8 -2.3 -3.6
(2.1) (4.9) (2.3) (4.7)

27◦ – – – –
– – – –

10◦ -0.9 -12.3 0.1 -13.7
(4.9) (12.0) (5.3) (11.8)

5◦ -1.1 -16.0 0.2 -17.7
(6.3) (15.6) (6.8) (15.2)

0◦ -1.3 -19.6 0.2 -21.8
(7.7) (19.1) (8.4) (18.7)

-5◦ -1.6 -23.2 0.2 -25.8
(9.2) (22.7) (9.9) (22.2)

-10◦ -1.8 -26.9 0.3 -29.8
(10.6) (26.2) (11.5) (25.6)

Heckman 2-stage No No Yes Yes
Adj R-squared 0.56 0.56 0.56 0.56
N 4,175,377 2,423,958 4,175,377 2,423,958

Table A.2: Labor supply response to temperature: Accounting for selection
into high- and low-risk sectors Columns 1 and 2 show estimates for labor supply-temperature
responses that differ for low- and high-risk workers respectively, as specified in main text Equation 6
(reproducing Columns 2 and 3 from main text Table 2). Columns 3 and 4 show estimates that correct for
endogenous selection of workers into high- and low-risk sectors using the Heckman two-stage estimator as
specified in Equations A.19-A.5.2. In all regressions, observations within each country are weighted by the
sample weights specified in that country’s survey, while across countries, observations are differentially
weighted according to the country’s total population of workers in the particular risk group. All estimates
are from a restricted cubic spline in daily maximum temperature. Point estimates indicate the effect on
weekly labor supply of a single day at each daily maximum temperature value shown, relative to a day
with a maximum temperature of 27◦C (81◦F). Standard errors (in parentheses) are clustered at the
ADM1 (e.g., state) × month-of-sample level.

Baseline Heterogeneous thermal
model comfort preferences

(1) (2)

Global average value of thermal comfort 2.9% 3.2%
in a low-risk job (% annual income) [-1.0%,6.8%] [-0.7%,7.1%]

Table A.3: Sensitivity of hedonic value estimate to heterogeneous worker pref-
erences for thermal comfort. Column 1 reproduces our baseline estimates for the global average
hedonic value of thermal comfort in a low risk job (Table 4, Panel A). Column 2 presents an estimate
that accounts for preference-based selection of workers into high- and low-risk sectors through a Heckman
(1979) selection correction (Appendix A.5). Brackets display 5th-95th percentile ranges.

63



B Data sources

B.1 Work hours data

In this section, we describe the multiple time use surveys and labor force surveys from

which we obtain worker-level observations of time spent working. These surveys together

cover observations from Brazil, France, India, Mexico, Spain, UK, and USA.

B.1.1 Brazil: Pesquisa Mensal de Emprego

The Pesquisa Mensal de Emprego (PME) is a monthly employment survey conducted

in six major metropilitan areas (Belo Horizonte, Porto Alegre, Recife, Rio de Janiero,

Salvador, and Sao Paulo), each of which covers multiple municipalities. The survey is

used by the government to track the status of the labor force in Brazil, including monthly

unemployment rates and earnings. Data collection for the PME began in 1994 but the

survey was significantly altered in 2002 into its current format so only post-2002 data is

used for this study.

Data on weekly work hours of individual workers are collected for four weeks per

month, meaning there are a total of 48 weeks of responses per year.68 We assign temper-

ature exposure at the municipality level. Respondents are asked about how many hours

they worked in the previous week where a week is defined as Saturday-Sunday. A two

stage sampling process is used to select respondents at the city level. A city is divided

into sub-regions and then these regions are randomly sampled with probability weighted

by the population in that region. Once sub-regions are selected, households from within

that sub-region are sampled randomly based on current lists of local residents.

The dataset is structured as a rotating panel such that each respondent is interviewed 8

times across the course of the survey. A respondent enters the survey on a particular week

of the month and is surveyed again on that same week of the month for four consecutive

months and then again for those same months one year later. For instance, someone may

enter the survey on the third week in February 2002 and would then be surveyed again on

the third week in March, April, May 2002 and the third week in February, March, April,

May 2003. We restrict our sample to all respondents aged 15-65 who reported working

more than zero hours in a particular week.

The survey asks respondents about their primary source of employment. There are

multiple detailed occupational categories. For purposes of our analysis, we classify agri-

culture, mining, construction and manufacturing as high risk and all others as low risk.

68As there are 52 weeks in a year this means that 4 weeks are not surveyed annually. The rationale for
removing those four weeks is to create comparable employment statistics for each month. The weeks that
are chosen to represent a month are those with the maximum number of days overlapping that month.
The weeks that are dropped are the remainder.
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B.1.2 France, Spain, and UK: Multinational Time-Use Survey

Time use data from France, Spain, and the UK were drawn from the Multinational Time

Use Study (MTUS). The MTUS consists of data from time diary surveys conducted by 23

individual national governments and harmonized into a single dataset by the Centre for

Time Use Research at the University of Oxford. To collect these time diaries, researchers

asked participants to record the days activities in 5-30 minute intervals.69 As part of the

harmonization process, responses were classified into 69 standardized activity categories.70

The number of hours worked was computed by summing the time reported under all

activity codes within the category paidwork (activity codes 7-14).

Although the surveys that were harmonized for inclusion in the MTUS span 23 coun-

tries and range over several decades, we only include observations from surveys that report

the respondent’s subnational location, occupation, and exact date of the time diary. This

leaves us with observations from 3 countries: France (1998-1999), Spain (2002-2003), and

the UK (various years from 1974-2001).71 The analysis is restricted to those individuals

15-65 years of age who report having worked in their diary or who self-identify as em-

ployed.72 Observations falling on national holidays, or observations which were identified

as ”bad cases” by the Centre for Time Use Research, are also excluded from the analysis.

Temperatures are assigned to individuals based on subnational regions (the highest tier

administrative unit in each of the three countries) as more granular location identifiers

are not available. High-risk workers are defined to be those employed in either of two

categories: Farming, forestry, and fishing; or Construction, assembly and repair, moving

goods, transport, and extraction. Low-risk workers are anyone not in these categories.

B.1.3 India: India Time-Use Survey

The India Time-Use Survey was conducted from July 1998 through June 1999 across the

six states of Gujarat, Haryana, Madhya Pradesh, Meghalaya, Orissa, and Tamil Nadu.

Indias Ministry of Statistics and Programme Implementation (MOSPI) conducted the sur-

vey in conjunction with state-level agencies. The survey used a 3-stage stratified design at

the levels of district (i.e. second administrative unit), village/urban block, and household.

Six sub-strata in both rural and urban sectors were used to ensure sample representation

across a range of land-holding classes (rural) and per capita expenditure levels (urban).

Enumeration occurred over four sub-rounds of 3-months duration to address seasonality

69For the UK 1995 survey, respondents were asked to recall their activities from the previous day. For
all other surveys included in this study, respondents recorded their activities on the day of the survey.

70For details on the harmonization process, see the MTUS Users Guide and Documentation Version 9
(2016) from the Centre for Time Use Research at http://www.timeuse.org/MTUS-User-Guide.

71US data from the American Time Use Survey (ATUS) are also part of the MTUS and contain the
necessary information. However, for this analysis, we obtain the US data directly from the ATUS

72In France and Spain, individuals are observed only once. In the UK, depending on the survey year
individuals may have been observed once (1995), twice (2000-01), or over seven consecutive days (1974-75,
1983-84, and 1987).
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in time-use patterns.

Time-use records were collected on a one-day recall basis. Enumerators would spend

multiple days in a location, inform respondents for which date data would be collected,

and then meet the respondent the following day to itemize the number of minutes the

respondent spent in each activity for each hour of the day. MOSPIs data team ensured that

the total time spent across all categories in a day summed to 24 hours.73 Our analysis

is restricted to respondents aged 15-65 who either performed some work in the survey

period, or who claimed a primary status as a worker or someone seeking and available

for work. We calculate total time worked as the sum of minutes engaged in any activity

falling under the three top-level categories of primary production, secondary production,

or trade, business, and services. Temperatures are assigned to individuals at the district

level. Risk status is assigned based on the National Classification of Occupations 3-

digit industry code reported for each respondent. Individuals engaged in agriculture,

agricultural services, mining, manufacturing, or construction were all defined as high-

risk, with the remainder defined as low-risk.

B.1.4 Mexico: National Survey of Occupation and Employment

Work hours data are available from Mexicos National Survey of Occupation and Employ-

ment or La Encuesta Nacional de Ocupacion y Empleo (ENOE). This survey has been

conducted on a quarterly basis by the Mexican statistical agency, INEGI, since 2005.

While prior labor force surveys focused on metropolitan areas, ENOE covers rural and

urban areas throughout Mexico.

The survey is nationally representative with a stratified, two-stage clustered design.

INEGI creates primary sampling units (PSUs) of groups of roughly 100 households split

into types: urban, semi-urban, and rural. Stratification of PSUs is based on sociode-

mographic and physical characteristics of the houses, and their physical location. After

sampling the PSUs, clusters of households are sampled for interview. The timing of the

survey occurs throughout the year, with the only restriction being that a specific house-

hold must be surveyed at some point during the quarter. Once in the survey, households

are interviewed in 4 subsequent quarters.

We obtain weekly hours worked for individuals within sampled households. While the

survey provides a measure of time use for each day of the week prior to the survey date,

we aggregate these days to the weekly level to reduce the potential for recall bias as the

survey may have taken place more than a week after the date in question. Our analysis

73As time-use patterns vary by type of day, the survey collected records on ”normal”, ”weekly variant”,
and abnormal days to account for variation in behavior across typical workdays, rest days, and infrequent
days associated with festivals or some disruption to ones typical schedule. Accordingly, slightly under a
third of respondents were interviewed on multiple days, to generate a view of their activity behavior across
different day types. Most of these repeat respondents were interviewed twice, usually on a ”normal” day
and ”weekly variant” day. Less than two percent of the full sample were interviewed more than twice.
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includes individuals aged 15-65 employed at the time of the survey. Temperatures are

assigned according the municipality of the respondent’s location.74 Workers employed

in agriculture-related industries, mining, construction, and manufacturing are defined as

high risk, with all others defined as low risk.

B.1.5 USA: American Time-Use Survey

The American Time-Use Survey (ATUS) has been conducted by the US Census Bureau

since 2003 as a follow-up survey administered to a subset of respondents surveyed in the

Current Population Survey. For each selected household, a randomly-selected member

age 15 or above is selected for participation. Respondents are notified in advance by mail

that they have been selected for participation and provide time-use data for a 24 hour

period through computer-assisted telephone interviewing.

The survey employs a three-stage, stratified sampling design. The first stage stratifies

by state and aims for representation which is proportional to state population. Second-

stage stratification is at the household level, with Hispanic and non-Hispanic black house-

holds, and households with children all oversampled. The third stage involves random

selection of any civilian household member aged 15 or older. We restrict attention to

individuals 65 or younger who claim to be in the workforce. Temperatures are assigned

at the county level. However, the ATUS only identifies county location for individual

residing in Metropolitan Statistical Areas.75 We thus exclude observations from outside

these areas.

Total work is calculated as the sum of all time spent engaged in sub-activities listed

under Category 5, Work and Work-Related Activities. Relevant sub-categories include

time spent in work itself, income-generating activities, socializing as a part of work, job

searching, and other miscellaneous work-related activities. Respondents are categorized

as low-risk or high-risk based on their main jobs major industry. Following Graff Zivin

and Neidell (2014), workers engaged in agriculture/forestry/fishing/hunting, mining, con-

struction, manufacturing, and transportation/utilities are coded as high-risk. All remain-

ing workers are coded as low-risk.

B.2 Climate data

This section describes the climate data that we use in this analysis as well as the methods

employed to make these data consistent with the spatial and temporal resolution of the

work hours data. Broadly speaking, we use two classes of climate data, the first being

historical data to estimate labor supply-temperature responses, and the other being future

74There are more than 2400 municipalities in Mexico.
75According to the US Census Bureau, over 80 percent of the US population resided in Metropolitan

Statistical Areas in 2010.
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climate data which are used to project the damages of climate change into the future under

various emissions scenarios. We begin by describing the historical data, followed by the

future projection data, and finally we detail the method we use to spatially and temporally

aggregate these outputs to match the resolution of the work hours data.

B.2.1 Historical climate data

Data on historical climate exposure is used to estimate the labor supply-temperature

response as well as the heterogeneity in the share of high-risk workers by average clima-

tology. For these purposes, we use the Global Meteorological Forcing Dataset, v1 (GMFD)

(Sheffield, Goteti, and Wood, 2006). These data provide surface temperature and precip-

itation information using a combination of both observations and reanalysis. The reanal-

ysis process uses a weather forecasting model to assimilate observational weather data in

order to establish a gridded dataset of meteorological variables. The particular reanalysis

used is the NCEP/NCAR reanalysis, which is downscaled and bias-corrected using a num-

ber of station-based observational datasets to remove biases in monthly temperature and

precipitation while retaining daily variability from the NCEP/NCAR reanalysis product

(Sheffield, Goteti, and Wood, 2006).76 Data are available on a 0.25◦×0.25◦ resolution grid

from 1948-2010. The temporal frequency is up to 3-hourly, but the daily data are used

for this analysis. We obtain daily average temperatures and daily total precipitation for

all grid cells globally. A primary reason for using GMFD in our regression analysis is that

GMFD is used to bias-correct the climate model projections (described below).77

B.2.2 Climate projection data

Data on the future evolution of the climate is obtained from a multi-model ensemble of

Global Climate Model (GCM) output. However, two important limitations arise when

integrating GCM outputs into the current analysis. First, the relatively coarse resolution

(∼ 1◦ of longitude and latitude) of GCMs limits their ability to capture small-scale climate

patterns, which renders them unsuitable for climate impact assessment at high spatial

resolution. Second, the GCM climate variables exhibit large local bias when compared

with observational data.

To address both of these limitations, we use a high-resolution (0.25◦ X 0.25◦) set of

global, bias-corrected climate projections produced by NASA Earth Exchange (NEX):

the Global Daily Downscaled Projections (GDDP) (Thrasher et al., 2012).78 The NEX-

76These observational datasets are generally available at finer spatial resolutions, but coarser temporal
resolutions (e.g., monthly) than the reanalysis product. Therefore, while the observational datasets are
used to downscale the reanalysis in space, they are employed for bias correction on a monthly temporal
scale, with submonthly temporal variation provided by the reanalysis (Sheffield, Goteti, and Wood, 2006).

77Because GMFD only contains climate data up to 2010, we are necessarily limited to using labor
supply data only up to 2010 in this analysis.

78Climate projections used were from the NEX-GDDP dataset, prepared by the Climate Analytics
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GDDP dataset comprises 21 climate projections, which are downscaled from the output of

GCM runs in the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive (Tay-

lor, Stouffer, and Meehl, 2012). The statistical downscaling algorithm used to generate

the NEX-GDDP dataset is the Bias-Correction Spatial Disaggregation (BCSD) method

(Thrasher et al., 2012; Wood et al., 2004), which was developed to address the aforemen-

tioned two limitations. This algorithm first compares the GCM outputs with observational

data on daily maximum temperature, daily minimum temperature, and daily precipitation

during the period 1950-2005. NEX-GDDP uses a climate dataset from GMFD for this

purpose (Sheffield, Goteti, and Wood, 2006). A daily, quantile-specific relation between

GCM historical period outputs and historical observations is derived from this compar-

ison. This relation is then used to adjust the GCM outputs in historical and in future

time periods so that the systemic bias of the GCM is removed. To disaggregate the bias-

corrected GCM outputs to higher resolution, this algorithm interpolates the daily changes

relative to climatology in GCM outputs into the spatial resolution of GMFD, and merges

the fine-resolution changes with the climatology of the GMFD data.79

For each GCM, three different datasets are generated. The first uses historical emis-

sions to simulate the response of the climate to historical forcing from 1850 to 2005. The

second and third use projected emissions from Representative Concentration Pathways

4.5 and 8.5 (RCP4.5 and RCP8.5) to simulate emissions under those two emissions sce-

narios up to 2100. RCP 4.5 represents a “stabilization” scenario in which total radiative

forcing is stabilized around 2100 (Riahi et al., 2011; Van Vuuren et al., 2011); RCP8.5

simulates climate change under intensive growth in fossil fuel emissions from 2006 to the

end of the 21st century. We use daily average temperature in the RCP4.5 and RCP8.5

scenarios from these datasets, where the daily average temperature is approximated as

the mean of daily maximum and daily minimum temperatures.

The CMIP5 ensemble of GCMs described above is an “ensemble of opportunity”, not a

systematic sample of possible futures. Thus, it does not produce a probability distribution

of future climate change. Moreover, relative to “simple climate models” designed for prob-

abilistic sampling of the global mean surface temperature (GMST) response to radiative

forcing, the CMIP5 ensemble systematically fails to sample tail outcomes (Rasmussen,

Meinshausen, and Kopp, 2016; Tebaldi and Knutti, 2007). To provide an ensemble of cli-

mate projections with a probability distribution of GMST responses consistent with that

estimated by a probabilistic simple climate model, we use the surrogate model mixed

ensemble (SMME) method (Rasmussen, Meinshausen, and Kopp, 2016) to assign proba-

bilistic weights to climate projections produced by GCMs and to improve representation

of the tails of the distribution missing from the ensemble of GCMs. Generally speaking,

Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the
NASA Center for Climate Simulation (NCCS).

79Details are available in Appendix A of the NEX-GDDP documentation: https://gdo-dcp.ucllnl.
org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf
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Figure B.1: Future climate projections used in generating the projected im-
pact of climate change on labor disutility. Graph shows the 21 climate models (outlined
maps) and 12 model surrogates (maps without outlines) that are weighted in climate change projections
so that the weighted distribution of the 2080 to 2099 global mean surface temperature anomaly (∆GMST)
exhibited by the 33 total models matches the probability distribution of estimated ∆GMST responses
(blue-gray curve) under RCP8.5. For this construction, the anomaly is relative to values in 1986-2005.

the SMME uses (1) a weighting scheme based on a probabilistic projection of global mean

surface temperature from a simple climate model (in this case, MAGICC6) (Meinshausen,

Raper, and Wigley, 2011) and (2) a form of linear pattern scaling (Mitchell, 2003) that

preserves high-frequency variability to construct model surrogates to fill the tails of prob-

ability distribution that are not captured by the GCM ensembles. This method, details

of which are provided in Rode et al. (2021), provides us with an additional 12 model

surrogates.

The 21 models and 12 model surrogates are treated identically in our calculations and

we describe them collectively as the surrogate/model mixed ensemble (SMME). Figure 2B

shows the resulting weighted climate model distribution across the 33 models for the 2080

to 2099 global mean surface temperature anomaly (relative to 1986-2005) under RCP8.5.

B.2.3 Aggregation of gridded climate data to administrative boundaries

Although we have access to gridded daily climate data, the location of individual workers

in the work hours data is recorded at the level of an administrative unit (e.g., county)–

a coarser spatial resolution than the grid cell. Moreover, in some of our work hours data

sources, work hours are recorded at a coarser temporal resolution than daily (e.g., weekly).

Thus it is necessary to link the gridded daily historical climate data to work hours data by

aggregating grid-cell-by-day information to the spatial and temporal scale reported in each
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work hours data source (see Table 1). Similarly, to generate future climate change impact

projections for workers in each of our 24,378 custom impact regions (Section III.B), it is

necessary aggregate grid cell climate projections to impact region scale. In both cases,

nonlinear transformations of temperature or precipitation are computed at the grid-cell-

by-day level before averaging values across space using population weights and, in cases

where work hours data are at weekly scale, summing over days within a week.

To see how this calculation is operationalized, consider, for example, a second-order

polynomial specification for temperature.80 In this case, we begin with data on maximum

temperatures for each day d at each grid cell z in administrative unit j indicated in the

work hours data source (e.g., county). Let such grid-cell-level daily maximum tempera-

tures be denoted by Tzjd. These grid-cell-level values must then be aggregated to the level

of administrative unit j. To do this, we first raise grid-cell-level temperature to the power

k, computing (Tzjd)
k for k ∈ {1, 2}. Let Tzjd denote the grid cell-by-day temperature

vector [(Tzjd)
1, (Tzjd)

2]. We then take a spatial average over administrative unit j for

each element in Tzjd, weighting the average by grid-cell-level population.81 The vector of

administrative unit-by-day temperature variables is thus:

Tjd =
∑
z∈j

wzjTzjd =

[∑
z∈j

wzj(Tzjd)
1,
∑
z∈j

wzj(Tzjd)
2

]
, (B.1)

where wzj is the share of j’s population that falls into grid cell z, and where superscripts

indicate exponents. In future projections, all daily gridded climate projection data from

each of the 33 members of the SMME are analogously aggregated to the impact region

level.

When linking historical climate data to data sources where work hours are recorded

at weekly scale, we further sum over all days d within a week w:

Tjw =
∑
d∈w

∑
z∈j

wzjTzjd =

[∑
d∈w

∑
z∈j

wzj(Tzjd)
1,
∑
d∈w

∑
z∈j

wzj(Tzjd)
2

]
. (B.2)

This order of operations, in which nonlinear transformations are computed before aggre-

gating across space and time, recovers nonlinearities in the response of daily labor supply

to daily temperature.

80For ease of illustration, we demonstrate the calculation here using a second-order polynomial speci-
fication for temperature, which is estimated in Appendix D. The calculation can be similarly carried out
for any nonlinear transformation, including the restricted cubic spline specification for temperature used
in our main estimating equation 6.

81Because we do not know the specific grid cell at which an individual worker is located within adminis-
trative unit j, this spatial averaging assigns each worker within j the temperature exposure of the average
person in j. Population weights are time-invariant and calculated from the 2010 Gridded Population of
the World dataset. Data are available here: https://sedac.ciesin.columbia.edu/data/collection/
gpw-v4. We account for fractional grid cells that fall partially within administrative units.
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Apart from constructing the temperature and precipitation vectors as described above,

we also implement a series adjustments so that data at both daily and weekly temporal

resolutions can be pooled in a single regression. These adjustments, which are necessary

for our estimates to have a consistent interpretation across different timescales, include

rescaling and incorporating within-week lags and leads of temperature and precipitation

vector terms for daily observations. Details are provided in Appendix C.

B.3 Socioeconomic data and downscaling methodologies

This section provides details of the socioeconomic data used throughout our analysis,

which includes historical subnational incomes and workforce compositions, future projec-

tions of incomes, and future projections of population counts. Additionally, because we

require certain variables at high spatial resolution both for econometric estimation and for

future projections, we detail the downscaling procedures we use to disaggregate available

socioeconomic data, which is generally provided at relatively low resolution.

B.3.1 Workforce composition data

We obtain data on workforce composition in every ADM1 unit (first-level administrative

unit, e.g., state) in 48 countries using census microdata from IPUMS (Minnesota Pop-

ulation Center, 2019). This information is contained in the “Industry, general recode”

variable, which defines industry categories in a way that is comparable across censuses

from different countries.82 Industry categories are reported for each person-level observa-

tion. We aggregate across all persons to obtain the number of workers in each industry

in each ADM1 unit × year.83 For each ADM1 unit × year, the share of high-risk workers

is calculated by dividing the number of workers in the Agriculture, fishing, and forestry;

Mining and extraction; Manufacturing; and Construction categories by the total number

of workers across all categories.84 The share of low-risk workers is calculated as one minus

the share of high-risk workers.

B.3.2 Historical income data

Equation 10 estimates how the share of high-risk workers varies as a function of income

and long-run average temperature in each location. In order to obtain income data for

82The categories are: Agriculture, fishing, and forestry; Mining and extraction; Manufacturing; Elec-
tricity, gas, water and waste management; Construction; Wholesale and retail trade; Hotels and restau-
rants; Transportation, storage, and communications; Financial services and insurance; Public adminis-
tration and defense; Services, not specified; Business services and real estate; Education; Health and
social work; Other services; Private household services; and Other industry, not elsewhere classified.

83Person weights provided in the data are used when aggregating across persons.
84To obtain the total number of workers we aggregate across persons in all industry categories, ex-

cluding persons where the industry category is missing, or is reported as “Not in universe”, “Response
suppressed”, or “Unknown”.
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each subnational region in our workforce compositon data, we draw subnational incomes

from two main sources, using a combination of subnational GDP datasets as well as

globally-comprehensive national GDP data:

• Penn World Tables (PWT) national GDP.85 This dataset provides national

level incomes from 1950 to 2014 for most of the countries in the world. We use

Penn World Tables version 9.0 to obtain national level income for countries in the

workforce composition data.

• Gennaioli et al. (2014) subnational GDP. This dataset provides national and

sub-national income data for 1,503 administrative regions from 83 countries. We use

this dataset to obtain subnational level income data for all countries in the workforce

composition data. Data are provided by the authors at the first administrative

subdivision for each country (i.e., ADM1).

Using these data, we construct a consistent multi-country panel of subnational incomes

at ADM1 level, which we use for estimation of Equation 10. To do so, we use Gennaioli

et al. (2014) to downscale the PWT national-level incomes. We prefer this approach to

using the subnational data directly, as there are known inconsistencies in measurement

of subnational GDP across countries. Thus, we make the assumption that the within-

country distributions of GDP recorded in Gennaioli et al. (2014) are accurate, but the

exact levels may not be. We rely on the PWT data as a consistent measure of GDP

levels for all countries; thus, our subnational GDP estimates sum to national GDP from

PWT for all countries in the sample. For administrative region s in country k in year t

we calculate a weight, νskt that will apportion national income to subnational regions as

follows:

νsct =
GDPpcGennaioliskt∑
s∈kGDPpc

Gennaioli
skt

GDPpcskt =νsct ×GDPpcPWT
kt

where GDPpcPWT corresponds to per capita GDP drawn from the PWT dataset. Using

these estimates of administrative-level GDP per capita, we construct the time-invariant

income covariate LogGDPpcs used for estimation of Equation 10 as follows. First, we

take the log of our GDP per capita estimate for year t and region s. Second, for each year

t, we compute a average over 15 years of lagged values to obtain LogGDPpcst. Finally,

we fix the year t to match the year for which workforce composition exists for region s,

thereby obtaining the variable LogGDPpcs used in Equation 10.

85Penn World Tables (PWT) database: https://www.rug.nl/ggdc/productivity/pwt/.
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The data collected by Gennaioli et al. (2014) are drawn from disparate sources, often

using census data, which are typically not annual, leading to an unbalanced panel. To

construct annual values of income per capita using the Gennaioli et al. (2014) data, we

linearly interpolate between years, before constructing the moving average values across

all years.

B.3.3 Income projections

Future projections of national incomes are derived from the Organization for Economic

Co-operation and Development (OECD) Env-Growth model (Dellink et al., 2015) and

the International Institute for Applied Systems Analysis (IIASA) GDP model (Samir and

Lutz, 2014), as part of the “socioeconomic conditions” (population, demographics, ed-

ucation, income, and urbanization projections) of the Shared Socioeconomic Pathways

(SSPs). The SSPs propose a set of plausible scenarios of socioeconomic development over

the 21st century in the absence of climate impacts for use by the Integrated Assessment

Modeling (IAM) and Impacts, Adaptation, and Vulnerability (IAV) scientific communi-

ties.

While there are many models within the SSP database, only the IIASA GDP model

and OECD Env-Growth model provide GDP per capita projections for a wide range of

countries. The IIASA GDP model describes incomes that are lower than the OECD

Env-Growth model, so we produce results for both of these models to capture uncertainty

within each socioeconomic scenario (we compute results for three socioeconomic scenarios:

SSP2, SSP3, and SSP4). To construct annual estimates, we linearly interpolate between

the logged time series data in the SSP database, which are provided in 5-year increments.

For each 5-year period, we calculate the average annual growth rate, and apply this growth

rate to produce each year’s estimate of GDP per capita.86

Although the SSP scenarios provide national-level income projections, our high-resolution

analysis requires estimates of location-specific GDP within country borders. To generate

values of income for each of our 24,378 impact regions over time, we allocate national

GDP per capita values from the SSPs across impact regions within a country through a

downscaling procedure that relies on nightlights imagery from the NOAA Defense Me-

teorological Satellite Program (DMSP). This approach proceeds in two steps. First, we

use available subnational income data from Gennaioli et al. (2014) in combination with

higher-resolution income data from the U.S., China, Brazil, and India, to empirically es-

timate the relationship between GDP per capita and nightlight intensity.87 Second, we

86OECD estimates of income are provided for 184 countries and IIASA’s GDP projections cover 171
countries. For the remaining countries, we apply the average GDP per capita from the available countries
for the baseline period, and allow this income to grow at the globally averaged growth rate.

87Due to cross-country inconsistencies in subnational income data, the income data for the US are
primarily used to estimate the relationship between GDP per capita and nightlights intensity; other
countries’ data provide validation only.
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use this estimated relationship to allocate national-level GDP data across impact regions

within each country, based on relative intensity of night lights in the present. While this

approach models heterogeneity in income levels across impact regions, each region grows

in the future at the same rate as the national country projection from the SSPs. We detail

these two steps below.

Estimation of the GDP-nightlights relationship While there exists a growing

literature linking economic output to nightlights intensity, we take an unconventional re-

gression approach to recovering this relationship because our goal is to apportion national

income within a country, as opposed to predicting the level of income at any given lo-

cation. In particular, we are interested in the ratio GDPpcck∑
c∈k GCPpcck

for impact region c in

country k, which will allow us to predict income at the impact region level, given projec-

tions of national GDP per capita from the SSPs,
∑

c∈kGDPpcck = GDPpcSSPk . Thus,

we estimate a regression relating relative GDP per capita to relative nightlights inten-

sity, where each administrative region’s values are calculated as relative to the country

mean. The dependent variable for administrative region j in country k and year t is thus
GDPpcikt∑
j∈k GDPpcikt

.88 To construct a measure of location-specific relative nightlight intensity, we

calculate a z-score of nightlights (ZNL) for each administrative region j within a country

k using:

ZNLjkt =
NLjkt −NLkt
σ(NLkt)

where NLkt is the country average nightlights intensity, σ(NLkt) is the standard deviation

of nightlights intensity across all administrative regions within country k, and the stable

nightlights data product from 1992-2012 is used to construct time-varying measures of

average nightlights intensity across an administrative region, NLjkt.

The regression we estimate is as follows:

GDPpcjkt∑
i∈cGDPpcjkt

= α + βZNLjkt + εjkt (B.3)

where β represents the impact of a one standard deviation increase in a region’s nightlights

intensity, relative to its country average, on that region’s relative GDP per capita.

Allocation of national GDP to impact regions using relative nightlight in-

tensity We use the estimated coefficients from Equation B.3 to compute income at the

impact region level. To do so, we construct values ZNLckt = NLckt−NLkt
σ(NLkt)

for each impact

region c using the average of stable nightlights from DMSP across the years 2008-2012.

We then estimate GDPpcckt as follows:

ĜDPpcckt =
[
α̂ + β̂ZNLckt

]
×GDPpcSSPkt

88The income data available from Gennaioli et al. (2014) are at the first administrative level (i.e.,
ADM1).

75



where GDPpcSSPkt comes from one of the SSP projected income scenarios. The result of

this approach is that the subnational downscaled incomes will sum to the national income

from the SSPs, as these ratios sum to one, by construction.

B.3.4 Population projections and downscaling methodology

Future projections of national populations are derived from the International Institute for

Applied Systems Analysis (IIASA) (Samir and Lutz, 2014) population projections as part

of the Shared Socioeconomic Pathways (SSPs).89 The IIASA SSP population projections

provide estimates of population by age cohort, gender, and level of education for 193

countries from 2010 to 2100 in five-year increments. Each projection corresponds to one

of the five SSPs, as defined in O’Neill et al. (2014).

To assemble population projections for each of our 24,378 impact regions, we down-

scale the country-level projections from the SSPs using 2011 high-resolution LandScan

estimates of populations (Bright et al., 2012). Populations for impact regions in coun-

tries or areas not given in the SSP database are held constant at the values estimated by

LandScan in 2011. Thus, for any given impact region c in year t, population for scenario

v (popctv) is estimated as:

p̂opctv =

 popSSPctv

(
popLandScanc,2011∑
c∈k pop

LandScan
c,2011

)
, if c ∈ K

popLandScanc,2011 , if c /∈ K
(B.4)

where popSSPktv is the SSP population given for country k and year t for scenario v,

popLandScanc,2011 is the LandScan estimate for impact region r, and K is the set of 193 countries

available in the SSP Database. Note that while this approach distributes country-level

projections of population heterogeneously to impact regions within a country, it fixes the

relative population distribution within each country at the observed distribution today.

89The population data are accessed from the SSP database (IIASA Energy Program, 2016).
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C Combining labor supply data at daily and weekly

resolutions

The labor supply data used in our analysis are measured at the daily level in certain

countries (USA, UK, France, Spain, India) and at the weekly level in others (Mexico,

Brazil). In order to conduct a global analysis that encompasses data from all these

countries, it is necessary to harmonize data measured at different temporal resolutions.

In this appendix, we demonstrate that estimates of the labor-temperature response derived

from daily data differ fundamentally from those derived from weekly data (Proposition

C.1). While daily estimates reflect the effect of a daily temperature shock on that day’s

labor supply, weekly estimates reflect the net effect of all within-week repercussions to

labor supply as a result of a daily temperature shock. In Propositions C.2, C.3, and C.4, we

outline the adjustments necessary to make daily and weekly estimates comparable. These

include incorporating within-week lags and leads of temperature for daily observations,

and also appropriately rescaling outcome, climate, and person-level control variables in

the regression.

In the propositions that follow, we consider an outcome Yi,d,w (e.g., labor supply)

observed for person i on date d falling in a Sunday-Saturday week w. The weekly outcome

for person i in week w is thus obtained by summing over all 7 days in the week: Yi,w ≡∑
d∈w Yi,d,w.90 Let Ti,d,w denote the K-element temperature vector experienced by person

i on date d in week w, and let Ti,w denote the temperature vector for week w. Each

element of the vector Ti,w is obtained by summing the corresponding element in the daily

vector over all days in the week. Formally Ti,w = (
∑

d∈w T
1
i,d,w, . . . ,

∑
d∈w T

K
i,d,w), where

T ki,d,w denotes the kth element of Ti,d,w ∀ k ∈ {1, . . . , K}.
Suppose there exist Ndaily person-day observations, and Nweekly = Ndaily/7 observa-

tions if aggregated to the weekly level. For notational parsimony, we define Ydaily as the

Ndaily × 1 vector of daily observations and Yweekly as the Nweekly × 1 vector of weekly

observations. Similarly, let Tdaily denote the Ndaily × K matrix of temperature vectors

for all person-day observations and Tweekly denote the Nweekly ×K matrix of temperature

vectors for all person-week observations.

We refer to the least squares regression of Ydaily on Tdaily as the “daily regression”,

with β̂daily denoting the K × 1 vector of estimated coefficients on Tdaily. In contrast, the

least squares regression of Yweekly on Tweekly is referred to as the “weekly regression”, with

β̂weekly denoting the K × 1 vector of estimated coefficients on Tweekly.

Proposition C.1. Coefficient estimates on the temperature vector from the daily regres-

sion do not equal those from the weekly regression (i.e., β̂daily 6= β̂weekly).

90For exposition, we define a week to span Sunday to Saturday. However, it can be defined to start on
any day-of-week and end 7 days later.
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Proof. Let 11×7 denote a seven-element row vector of ones and let INweekly×Nweekly denote

the Nweekly × Nweekly identity matrix. Define Ψ ≡ 11×7 ⊗ INweekly×Nweekly . Note that

Tweekly = ΨTdaily and Yweekly = ΨYdaily.

Thus by the formula for the least squares estimate,

β̂daily = (T ′
dailyTdaily)

−1(T ′
dailyYdaily), (C.1)

and

β̂weekly = (T ′
dailyΨ

′ΨTdaily)
−1(T ′

dailyΨ
′ΨYdaily). (C.2)

From (C.2), it can be seen that estimating the weekly regression is equivalent to estimating

the daily regression using Ψ′Ψ as a weighting matrix. Noting that

Ψ′Ψ =(11×7 ⊗ INweekly×Nweekly)′(11×7 ⊗ INweekly×Nweekly)

=(17×1 ⊗ INweekly×Nweekly)(11×7 ⊗ INweekly×Nweekly)

=(17×7 ⊗ INweekly×Nweekly),

it is evident that Ψ′Ψ contains ones along the diagonal but has non-zero off-diagonal

elements. Thus estimating β̂weekly, from the weekly regression, does not yield the same

coefficient estimates as estimating β̂daily, from the daily regression.

Although the coefficient estimates from the daily regression do not match those from

the weekly regression, in Proposition C.2, we show that weekly regression coefficient

estimates can be recovered by estimating a regression with daily data that controls for

within-week lag and lead temperatures.

To implement this regression, we define for each k ∈ {1, . . . , K}, 7 within-week lag

and lead temperature variables, T ki,d0,w, . . . , T
k
i,d6,w:

for l = 0 T ki,dl,w = T ki,d,w

for l = {1, . . . , 6} T ki,dl,w =

T ki,d+l,w if d+ l ∈ w

T ki,d−(7−l),w if d+ l /∈ w.
(C.3)

Aside from the variable T ki,d0,w that caputures the contemporaneous temperature expe-

rienced by person i on date d, these variables are constructed to encompass lags and leads

of temperature within the Sunday-Saturday week w. For instance, the variable T ki,d1,w

either takes on the value of T k experienced the next day (d+ 1), or the value experienced

6 days prior (d−6), whichever of the two falls in the same week w as date d. As a concrete
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example, suppose date d is the Friday in week w. In that case, the following date (d+ 1,

Saturday) also falls in week w, while the 6th lag date falls on the Saturday of the previous

week, w−1. Therefore T ki,d1,w = T ki,d+1,w in the case of a Friday observation. Alternatively,

suppose date d is the Saturday in week w. In that case, the following date is the Sunday

in week w+ 1, while the 6th lag date is the Sunday of week w. Therefore T ki,d1,w = T ki,d−6,w

in the case of a Saturday observation. All variables T ki,d1,w, . . . , T
k
i,d6,w are similarly defined

depending on the day-of-week of date d, according to (C.3).

Let T̃ k
l denote the Ndaily × 1 vector of T k

i,dl,w
for all person-day observations, and

define the Ndaily × 7 matrix T̃ k ≡ [T̃ k
0 , . . . , T̃

k
6 ]. For notational parsimony, we define the

Ndaily × 7K matrix:

T̃ ≡ [T̃ 1, . . . , T̃K ].

We refer to the least squares regression of Ydaily on T̃ as the “daily regression with within-

week lags and leads”, with
̂̃
β representing the 7K × 1 vector of estimated coefficients on

T̃ .

Proposition C.2. The coefficient estimates on the temperature vector from the weekly

regression (i.e., β̂weekly) can be exactly recovered by estimating the daily regression with

within-week lags and leads and summing across each set of within-week lag and lead coef-

ficient estimates. Specifically, the kth element of β̂weekly is equal to the sum over the kth

set of 7 elements in
̂̃
β. In matrix notation:

Φ
̂̃
β = β̂weekly, (C.4)

where Φ ≡ 11×7 ⊗ IK×K.

Proof. We will prove the claim by contradiction. Suppose Φ
̂̃
β 6= β̂weekly, which implies

the following sequence of expressions:

Φ
̂̃
β 6= β̂weekly ⇒

Φ(T̃ ′T̃ )−1(T̃ ′Ydaily) 6= (T ′
weeklyTweekly)

−1(T ′
weeklyYweekly) ⇒

Φ(T̃ ′T̃ )−1(T̃ ′Ydaily) 6= 7(ΦT̃ ′T̃Φ′)−1(ΦT̃ ′Ydaily) ⇒

Φ(T̃ ′T̃ )−1 6= 7(ΦT̃ ′T̃Φ′)−1Φ ⇒

ΦΦ′ 6= 7(ΦT̃ ′T̃Φ′)−1Φ(T̃ ′T̃ )Φ′ ⇒

ΦΦ′ 6= 7IK×K ,

where the second line uses the formula for the least squares estimate, and the third line

is obtained by noting that T ′
weeklyTweekly = 1

7
(ΦT̃ ′T̃Φ′) and T ′

weeklyYweekly = ΦT̃ ′Ydaily.
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Noting that

ΦΦ′ =(11×7 ⊗ IK×K)(11×7 ⊗ IK×K)′

=(11×7 ⊗ IK×K)(17×1 ⊗ IK×K)

=(7⊗ IK×K)

=7IK×K ,

we reach a contradiction. Therefore Φ
̂̃
β = β̂weekly.

Having established that the coefficients from the weekly regression can be recovered

through the daily regression with within-week lags and leads, we now consider a situation

resembling our data structure, where labor supply for a part of the sample is reported at

the daily level while labor supply for the rest of the sample is only reported as a weekly

aggregate. Proposition C.3 demonstrates how the coefficient estimates from the weekly

regression can be recovered in this situation by appropriately rescaling observations to

account for the different temporal resolutions, in addition to including within-week lags

and leads in the regression. Before stating and proving the proposition, we first explain

the basic constructs needed for a “mixed daily/weekly” regression that combines daily

and weekly observations.

Suppose that daily labor supply is reported for Ndaily of the Ndaily person-days in the

sample. For the remaining Ndaily−Ndaily person-days, labor supply is only reported as an

aggregate over the 7 days of the Sunday-Saturday week, resulting in Nweekly ≡ (Ndaily −
Ndaily)/7 person-week observations. The econometrician thus has N ≡ Ndaily + Nweekly

observations to use in the mixed daily/weekly regression, which are a mix of person-days

and person-weeks.

Define Ydaily as the Ndaily × 1 vector of daily labor supply observations, and Yweekly

as the Nweekly × 1 vector of weeky labor supply observations. From these vectors, we

construct the N × 1 vector Y , containing the labor supply values for all N observations:

Y =

[√
7Ydaily

Yweekly

]
.

Note that the outcome variable (i.e., labor supply) for daily observations is rescaled

through multiplying by
√

7, a step that is necessary to recover the same coefficient esti-

mates as the weekly regression.

For daily observations, 7K temperature regressors are defined as in (C.3) based on

within-week lag and lead temperatures. Let T k
l,daily denote the Ndaily × 1 vector of T k

i,dl,w
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for all daily observations, and define the Ndaily × 7 matrix T k
daily ≡ [T k

0,daily, . . . ,T
k
6,daily].

For notational parsimony, we then define the Ndaily × 7K matrix:

Tdaily ≡ [T 1
daily, . . . ,T

K
daily].

In order to implement the mixed daily/weekly regression, it is necessary to also define

values of the 7K temperature regressors for the weekly observations. For person i and

week w of the weekly observations, we define these values, T ki,0,w, . . . , T
k
i,6,w for each k ∈

{1, . . . , K}, as simply the sum of the kth element in the daily temperature vector over all

days of the week. Formally:

for l = {0, . . . , 6} T ki,l,w =
∑
d∈w

T ki,d,w.

Let T k
l,weekly denote the Nweekly × 1 vector of T ki,l,w for all weekly observations, and define

the Nweekly × 7 matrix T k
weekly ≡ [T k

0,weekly, . . . ,T
k
6,weekly].

91 For notational parsimony, we

then define the Nweekly × 7K matrix:

Tweekly ≡ [T 1
weekly, . . . ,T

K
weekly].

From the matrices Tdaily and Tweekly, we construct the N × 7K matrix T , containing

the temperature regressors for all N observations:

T =

[√
7Tdaily

Tweekly

]
.

As with the outcome variable, note that the temperature regressors for daily observations

are rescaled through multiplying by
√

7, a step that is necessary to recover the same

coefficient estimates as the weekly regression. Let β̂ represent the 7K × 1 vector of

estimated coefficients on T from the least squares regression of Y on T (i.e., mixed

daily/weekly regression).

Proposition C.3. The coefficient estimates on the temperature vector from the weekly

regression (i.e., β̂weekly) can be exactly recovered by estimating the mixed daily/weekly

regression. Specifically, the kth element of β̂weekly is equal to the sum over the kth set of

7 elements in β̂. In matrix notation:

Φβ̂ = β̂weekly, (C.5)

where Φ ≡ 11×7 ⊗ IK×K.

91This construct is analogous to T kdaily. The only difference is that the 7 elements within a row of

T kweekly are identical.
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Proof. As with Proposition C.2, we will prove the claim by contradiction. Suppose Φβ̂ 6=
β̂weekly, which implies the following sequence of expressions:

Φβ̂ 6= β̂weekly ⇒

Φ(T ′T )−1(T ′Y ) 6= (T ′
weeklyTweekly)

−1(T ′
weeklyYweekly) ⇒

Φ(T ′T )−1(T ′Y ) 6= 49(ΦT ′TΦ′)−1(1
7
)(ΦT ′Y ) ⇒

Φ(T ′T )−1 6= 7(ΦT ′TΦ′)−1Φ ⇒

ΦΦ′ 6= 7(ΦT ′TΦ′)−1Φ(T ′T )Φ′ ⇒

ΦΦ′ 6= 7IK×K ,

where the second line uses the formula for the least squares estimate, and the third line

is obtained by noting that T ′
weeklyTweekly = 1

49
(ΦT ′TΦ′) and T ′

weeklyYweekly = 1
7
(ΦT ′Y ).

Noting that ΦΦ′ = 7IK×K (see proof of Proposition C.2), we reach a contradiction.

Therefore Φβ̂ = β̂weekly.

While Proposition C.3 demonstrates the necessary adjustments to the outcome and

temperature variables when combining daily and weekly observations, Propositions C.4

and C.5 demonstrate the necessary adjustments for person-level control variables (e.g.,

age). Unlike temperature, these variables are not additive over days in the week.92 In

Proposition C.4 we show that coefficients on such control variables are 7 times larger

in magnitude in a regression with weekly observations than in a regression with daily

observations. This necessitates a rescaling adjustment when combining daily and weekly

observations in a single regression (Proposition C.5).

Let Xi denote an L-element vector of control variables for person i. For notational

parsimony, we define Xdaily as the Ndaily × L matrix of Xi vectors for all person-days

and Xweekly as the Nweekly × L matrix of Xi vectors when observations are aggregated

to person-weeks. Note that both Xdaily and Xweekly are built from numerically identical

Xi vectors, but these vectors are repeated over 7 observations in Xdaily for every one

observation in Xweekly.

Let λ̂daily refer to the L× 1 vector of estimated coefficients from the least squares re-

gression of Ydaily onXdaily, and let λ̂weekly refer to the L×1 vector of estimated coefficients

from the least squares regression of Yweekly on Xweekly.

Proposition C.4. Coefficient estimates on the vector of person-level control variables

from a regression with weekly observations are 7 times larger in magnitude than those

92For example, suppose a 30 year old’s labor supply is observed on each of 7 days in a week. If
aggregated to the weekly level, the individual’s age remains 30 and does not become 210.
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from a regression with daily observations. (i.e., λ̂weekly = 7λ̂daily).

Proof. Note that Yweekly = ΨYdaily andXdaily = Ψ′Xweekly, where Ψ ≡ 11×7⊗INweekly×Nweekly .
By the formula for the least squares estimate.

λ̂weekly = (X ′
weeklyXweekly)

−1(X ′
weeklyΨYdaily), (C.6)

and

λ̂daily = (X ′
weeklyΨΨ′Xweekly)

−1(X ′
weeklyΨYdaily). (C.7)

Noting that

ΨΨ′ =(11×7 ⊗ INweekly×Nweekly)(11×7 ⊗ INweekly×Nweekly)′

=(11×7 ⊗ INweekly×Nweekly)(17×1 ⊗ INweekly×Nweekly)

=(7⊗ INweekly×Nweekly)

=7INweekly×Nweekly ,

it is evident that λ̂weekly = 7λ̂daily.

Having established that the estimated coefficients on the person-level controls are equal

up to a constant of proportionality in regressions with daily vs. weekly observations, we

now consider a situation where labor supply for a part of the sample is reported at the

daily level while labor supply for the rest of the sample is only reported as a weekly

aggregate (as in Proposition C.3).

Define Xdaily as the Ndaily×L matrix of Xi vectors for all observations reporting daily

labor supply, and Xweekly as the Nweekly × L matrix of Xi vectors for all observations

reporting weekly labor supply. From these matrices, we construct the N × L matrix X,

containing the labor supply values for all N observations:

X =

[
1√
7
Xdaily

Xweekly

]
.

Note that the vector of person-level controls for observations reporting daily labor supply

is rescaled through multiplying by 1√
7
, a step that is necessary to recover coefficients

that are proportional to those in Proposition C.4.93 Let λ̂ represent the L × 1 vector of

93Instead rescaling by 1√
7

for observations reporting daily labor supply, one may instead rescale by
√

7

for observations reporting weekly labor supply. This alternative rescaling also maintains proportionality
of coefficient estimates.
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estimated coefficients on X from the mixed daily/weekly regression of Y on X.

Proposition C.5. The coefficient estimates on the vector of person-level controls from

the weekly regression (i.e., λ̂weekly) can be recovered by estimating the mixed daily/weekly

regression of Y on X. Specifically, λ̂ = λ̂weekly.

Proof. Note that (X ′X)−1 = (X ′
weeklyXweekly)

−1 and that X ′Y = X ′
weeklyYweekly. From

the least squares formula, it is thus evident that λ̂ = λ̂weekly.
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D Labor supply-temperature relationship: Robust-

ness

In this appendix, we demonstrate that labor-supply temperature relationships for high-

and low-risk workers (Table 2 and Figure 3) are robust to alternative functional forms as

well as to alternative classifications of high- and low-risk workers.

D.1 Robustness to alternative functional forms

Figure D.1 displays the results of estimating Equation 6 using a set of different functional

forms of temperature (i.e., different formulations of the temperature vector Tj,t). The

functional forms displayed are bins of daily maximum temperature,94 restricted cubic

spline (with knots at 27◦ C, 37◦ C, and 39◦ C), and polynomials of second, third, and

fourth order.95
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Figure D.1: Changes in weekly minutes worked per person due to daily tem-
perature: Robustness to alternative functional forms. Labor supply-temperature
response functions are estimated according to Equation 6 for low-risk workers (top row) and high-risk
workers (bottom row). Each panel displays an estimate for a different parametric functional form of
temperature (blue), along with the binned estimate (cyan). Points along each parametric curve represent
the effect on weekly labor supply of a single day at the daily maximum temperature value shown on the
x-axis, relative to a day with a maximum temperature of 27◦C (81◦F). Points in the binned estimate are
relative to a day with a maximum temperature in the 24◦C-27◦C bin.

Table D.1 provides a quantitative comparison between the non-parametric, binned

response and the parametric responses from the restricted cubic spline and polynomial.

94Bins are defined for temperatures below 0◦C, above 42◦, and for 3◦C intervals between 0◦C and 42◦C.
95We estimated 3-knot restricted cubic splines with 336 sets of knot placements. Placing knots at 27◦C,

37◦C, and 39◦C yielded the best fit to the data, as measured by the adjusted R2.
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We construct a root mean square error (RMSE) metric that compares each parametric

response with the binned response. Specifically, for each bin’s midpoint temperature, we

take the square difference of the binned response and the parametric response. We then

take a weighted average of the square differences across all bins, with weights determined

by the global distribution of temperatures either in 2010 or 2099. Table D.1 shows the

square root of this weighted average for each parametric functional form. For both high-

and low-risk workers, the restricted cubic spline response has either the lowest or second

lowest RMSE, depending on the weighting. Based on this evidence, we use the restricted

cubic spline functional form for our main results, as it captures important nonlinearities

recovered by the non-parametric binned response, while being parsimonious.

Root mean square error relative to
non-parametric, binned labor supply-temperature response

Low-risk High-risk
workers workers

Weighted by Weighted by Weighted by Weighted by

Functional form 2010 temperature 2090 temperature 2010 temperature 2090 temperature

Second-order polynomial 9.01 7.49 29.51 21.27
Third-order polynomial 9.16 7.38 16.49 17.02
Fourth-order polynomial 10.07 7.68 9.73 15.82
Restricted cubic spline 8.73 7.44 13.53 14.57

Table D.1: Comparison of labor supply-temperature response estimates under
various parametric functional forms to non-parametric, binned estimates. This
table displays values of a root mean square error (RMSE) metric that compares labor supply tempera-
ture response estimates of various functional forms with the non-parametric, binned response estimate.
Specifically, for each bin’s midpoint temperature, we take the square difference of the binned response and
the parametric response at that temperature. We then take the square root of the weighted average of
the square differences across all bins, with weights determined by the global distribution of temperatures
either in 2010 or 2099.

D.2 Robustness to alternative classifications of high- and low-

risk workers

In the labor supply-temperature responses shown in main text Figure 3 and Table 2,

we classify whether workers are high or low risk based on the industry in which they are

employed, with workers in agriculture, mining, construction, and manufacturing defined as

high risk and all others as low risk. Here, we estimate labor supply-temperature responses

using alternative classifications of high- and low-risk workers that take into account a

worker’s occupation. Specifically, we define protective services, maintenance, farming,

fishing, forestry, construction, production, and transportation as high-risk occupations,

and all others classified as low risk.
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Based on these occupational categories, we consider two alternative classifications of

workers by risk. In the first alternative, we classify workers as high or low risk based

on whether their occupation is high or low risk. In the second alternative, we classify

workers as high risk if both their industry and occupation is high-risk; all other workers

are considered low risk. Table D.2 reports on the high-risk and low-risk labor supply-

temperature responses estimated using the industry-based classification (Columns 1 and

4), and the two alternative classifications (by occupation in Columns 2 and 5, by industry

and occupation in Columns 3 and 6). Responses are qualitatively similar under all three

classifications.

Weekly Minutes worked per worker

Low-risk workers High-risk workers

Daily maximum
Industry Occupation

Industry &
Industry Occupation

Industry &
temperature Occupation Occupation

45◦ -11.0 -13.5 -15.8 -58.6 -75.3*** -63.4***
(11.8) (12.6) (12.3) (22.4) (19.6) (22.7)

40◦ -5.7 -7.2 -8.3 -28.7 -37.3*** -30**
(6.2) (6.6) (6.5) (12.1) (10.6) (12.7)

35◦ -1.2 -1.8 -1.9 -3.8 -5.7 -2.5
(2.1) (2.1) (2.1) (4.9) (3.7) (6.0)

27◦ – – – – – –
– – – – – –

10◦ -0.9 0.0 -0.7 -12.3 -13.2* -18.1
(4.9) (4.8) (4.8) (12.0) (7.7) (14.8)

5◦ -1.1 0.1 -0.9 -16.0 -17.1* -23.4
(6.3) (6.2) (6.2) (15.6) (10) (19.2)

0◦ -1.3 0.1 -1.1 -19.6 -20.9* -28.7
(7.7) (7.7) (7.6) (19.1) (12.3) (23.6)

-5◦ -1.6 0.1 -1.3 -23.2 -24.8* -34.1
(9.2) (9.1) (8.9) (22.7) (14.5) (27.9)

-10◦ -1.8 0.1 -1.6 -26.9 -28.7* -39.4
(10.6) (10.5) (10.3) (26.2) (16.8) (32.3)

Adj R-squared .56 .55 .56 .56 .55 .56
N 4,175,377 4,152,555 4,753,289 2,423,958 2,446,784 1,846,018

Table D.2: Labor supply response to temperature: Alternative classifications
of high- and low-risk workers. This table shows estimates for labor supply-temperature re-
sponses that differ for low-risk (Columns 1-3) and high-risk (Columns 4-6) workers. All regression esti-
mates are based on main text Equation 6 using a restricted cubic spline in daily maximum temperature;
observations within each country are weighted by the sample weights specified in that country’s survey,
while across countries, observations are differentially weighted according to the country’s total popula-
tion of workers in the particular risk group. Point estimates indicate the effect on weekly labor supply
of a single day at each daily maximum temperature value shown, relative to a day with a maximum
temperature of 27◦C (81◦F). Standard errors (in parentheses) are clustered at the ADM1 (e.g., state) ×
month-of-sample level. Each column shows estimates using a different classification of high- and low-risk
workers. Columns 1 and 4 use a classification by industry and reproduce the estimates from main text
Table 2. Columns 2 and 5 use a classification by occupation, while Columns 3 and 6 limit the definition
of high risk to workers who are employed in both a high-risk industry and occupation, with all other
workers deemed low risk.
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E Workforce composition in the present-day cross

section of locations

In main text Equation 10, we estimate how the share of high-risk workers varies as a

function of income and long-run average temperature in the present-day cross section of

locations. In this appendix, we estimate alternative specifications of this regression that

include different spatial and temporal fixed effects. The estimates and predictions from

these alternative specifications are qualitatively similar to those from Equation 10.

Table E.1 reports the results for all specifications. Column 1 shows estimates from

main text Equation 10; Column 2 adds fixed effects for census years; Column 3 adds

fixed effects for continents;96 Column 4 adds fixed effects for continents and census years;

Column 5 adds fixed effects for countries; and Column 6 add fixed effects for countries

and census years. The sample for Columns 1-5 only uses the most recent census year

available for each country, while the sample for Column 6 uses all available years from

1980-2010.

The purpose of these estimates is to make out-of-sample predictions of the high-risk

share, including in locations and (future) years that are not part of the estimation sample.

As such, certain specifications are unsuitable for this purpose. For instance, models with

country or year fixed effects cannot be used to predict the high-risk share in countries or

years outside the estimation sample. Nevertheless, in Figure E.1 we show that the in-

sample predictions of all specifications are similar to those of the Column 1 specification

without fixed effects. Each scatter plot in Figure E.1 plots the in-sample high-risk share

predictions from Table E.1 Columns 2, 3, 4, 5, or 6, against the predictions from Column

1, with the 45◦ line shown for comparison. In each panel, the pairs of predictions are

generally aligned with the 45◦ line.

96Countries are grouped into four continents: Americas, Europe, Africa, and Asia. Our data contain
one country in Oceania– Fiji. However, for purposes of defining the continent-specific fixed effects, we
classify Fiji under Asia.
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Figure E.1: Predicted share of high-risk workers from different empirical spec-
ifications. Each scatter plot compares the predicted share of high-risk workers from the empirical
specification in one of the Columns 2-6 in Table E.1 (vertical axis), against the predicted share of high-
workers from the empirical specification in Column 1 of Table E.1 (horizontal axis). The 45◦ line is
indicated for reference. Each point corresponds to an in-sample observation (i.e., ADM1 unit).
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F Worker disutility impacts of climate change: the

role of economic development, climate-driven adap-

tation, and emissions mitigation

In this appendix, we first describe a set of calculations that illustrate how economic de-

velopment and climate-driven adaptation shape the projected impacts of climate change.

We then present results that illustrate the effect of emissions mitigation on the projected

impacts of climate change.

F.1 Economic development and climate-driven adaptation

Our primary calculation is based on projected changes in labor supply due to a warmer

future climate, accounting for projected future changes in the shares of high- and low-risk

workers as economies develop and the climate warms. For an impact region c and future

date t, this is expressed in Equation 11 in the main text:

Labor Supply Impact Of Climate Changec,t,y =
[
ρ̂c,yf̂high(Tc,t,y) + (1− ρ̂c,y)f̂low(Tc,t,y)

]
︸ ︷︷ ︸

Temperature-induced labor supply under climate change
(with economic development and climate-driven adaptation)

−
[
ρ̂c,ỹf̂high(Tc,t,2015) + (1− ρ̂c,ỹ)f̂low(Tc,t,2015)

]
︸ ︷︷ ︸

Temperature-induced labor supply without climate change
(with economic development)

,

(F.1)

The labor supply-temperature response function estimate for each risk group r (f̂r(·)) is

evaluated at the daily temperature vector under a warmer climate projected for year y

(Tc,t,y), as well as a counterfactual daily temperature vector under a climate that is the

same as that of 2015 Tc,t,2015. The first bracketed term represents the total predicted

labor supply under climate change, averaging across risk groups using predicted high

and low-risk employment shares (ρ̂c,y and 1− ρ̂c,y respectively) that account for shifts in

workforce composition due to economic development and climate-driven adaptation.97 In

contrast, the second bracketed term represents the total predicted labor supply under a

counterfactual with no climate change, where effects in each risk group are averaged using

counterfactual employment shares in the absence of climate change. These counterfactual

shares (ρ̂c,ỹ and 1 − ρ̂c,ỹ) reflect changes in workforce composition due to economic de-

velopment, but not due to climate-driven adaptation.98 The difference between the two

97We predict the high-risk share in region c at year y using the fitted values of Equation 10, evaluated
at the projected GDP per-capita and climate of year y: ρ̂c,y = γ̂LogGDPpcc,y + ĥ(T c,y).

98We predict the counterfactual high-risk share in region c at year y using the fitted values of Equation
10, evaluated at the projected GDP per-capita of year y, but the climate of 2015: ρ̂c,ỹ = γ̂LogGDPpcc,y+
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bracketed terms in Equation F.1 expresses the impact of climate change on labor supply,

accounting for shifts in workforce composition due to both economic development- and

climate change-induced adaptation.

To illustrate the contribution of economic development and climate-driven adaptation,

we also construct two alternative projections that ignore one or both of these mechanisms.

The first of these is a “fixed workforce” (FW ) projection in which each impact region’s

shares of high- and low-risk workers are held fixed through the century at their 2015 values

(i.e., ρc,2015 and 1− ρc,2015):

Labor Supply Impact Of Climate ChangeFWc,t,y =
[
ρ̂c,2015f̂high(Tc,t,y) + (1− ρ̂c,2015)f̂low(Tc,t,y)

]
︸ ︷︷ ︸

Temperature-induced labor supply under climate change
(without economic development or climate-driven adaptation)

−
[
ρ̂c,2015f̂high(Tc,t,2015) + (1− ρ̂c,2015)f̂low(Tc,t,2015)

]
︸ ︷︷ ︸

Temperature-induced labor supply without climate change
(without economic development)

.

(F.2)

To decompose the contribution of economic development vis-a-vis climate-driven adap-

tation, we construct a second alternative, “no climate adaptation” (NCA) projection

in which each impact region’s high- and low-risk shares are allowed to change due to

economic development but not due to climate-driven adaptation:

Labor Supply Impact Of Climate ChangeNCAc,t,y =
[
ρ̂c,ỹf̂high(Tc,t,y) + (1− ρ̂c,ỹ)f̂low(Tc,t,y)

]
︸ ︷︷ ︸

Temperature-induced labor supply under climate change
(with economic development but no climate-driven adaptation)

−
[
ρ̂c,ỹf̂high(Tc,t,2015) + (1− ρ̂c,ỹ)f̂low(Tc,t,2015)

]
︸ ︷︷ ︸

Temperature-induced labor supply without climate change
(with economic development)

.

(F.3)

All three projections of labor supply impacts can be converted to disutility costs by

multiplying by the ratio of the impact region’s projected wage rate and the Frisch elasticity

of labor supply.99 Figure 8A in the main text plots these three projections of disutility

costs of climate change under a very high emissions scenario (RCP8.5).

ĥ(T c,2015).
99In the map in main text Figure 6 Panel B, disutility estimates are aggregated over all workers and

over all days in 2099, and expressed as a percentage of the impact region’s projected 2099 GDP. We use
impact region populations for this purpose. While an impact region’s population would be larger than
its number of workers, this does not affect our final calculation of total disutility costs, as these costs are
valued using a wage that is calculated based on average per capita labor income rather than average per
worker labor income. The larger number of individuals over which we are calculating the disutility costs
(i.e. total population vs. workers) is exactly offset by the smaller wage value used for valuing the costs.
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F.2 Emissions mitigation

Figure 8B in the main text illustrates that the projected impacts of climate change on

labor disutility amount to 1.8% of 2099 global GDP under a very high emissions scenario

(RCP8.5) but fall to 0.5% of 2099 global GDP under an intermediate scenario (RCP4.5).

Here we present spatially disaggregated impacts under each of these emissions scenarios.

Specifically, Figure F.1, Panels A and C, map changes to labor supply per worker for all

impact regions at 2099 under RCP8.5 and RCP4.5 respectively. Figure F.1, Panels B and

D map the total annual labor disutility costs for each impact region under RCP8.5 and

RCP4.5 respectively, as a percentage of the impact region’s projected 2099 GDP.100

Figure F.1: Projected impact of climate change on labor supply and disutility
at 2099, by emissions scenario. Panels A and C map the labor supply impacts of climate
change in the year 2099 (minutes per worker per day) under a very high emissions scenario (RCP8.5) and
an intermediate scenario (RCP4.5) respectively, across 24,378 impact regions. Panel B and D map the
annual worker disutility costs of climate change in the year 2099, under a very high emissions scenario
(RCP8.5) and an intermediate scenario (RCP4.5) respectively. Costs are calculated based on Equation
F.1 with a labor share of income = 0.6 (Karabarbounis and Neiman, 2014) and elasticity of labor supply =
0.5 (Chetty et al., 2011), and are expressed as a percentage of each impact region’s 2099 GDP. Estimates
account for changes to workforce composition as incomes grow and the climate warms, and the maps
show the climate model weighted mean estimate across Monte Carlo simulations conducted on 33 climate
models. All values shown refer to the SSP3 socioeconomic scenario.

100Figure F.1, Panels A and B, respectively reproduce main text Figure 6, Panels A and B
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G Heterogeneous labor supply-temperature responses

within risk groups

In this appendix, we estimate a model in which the effect of temperature on labor supply

can differ both across high-risk and low-risk workers as well as within each risk group.

We then apply this model as a robustness check when estimating the hedonic value of

thermal comfort offered by a low risk job and projecting the impacts of climate change

on worker disutility.

G.1 Within-risk group differences in labor supply-temperature

responses

Equation 6 in the main text allows the effect of temperature on labor supply to differ for

high- and low-risk workers. Here we also allow the effect to vary across workers within

the same risk group, allowing for the possibility that location-specific characteristics may

influence the temperature sensitivity of each risk group’s labor supply. Specifically, we

estimate a richer version of main text Equation 6 that includes interactions of the nonlinear

temperature response functions for each risk group with location-specific measures of

income per capita and climate:101

Labori,r,j,t = fr(Tj,t, LogGDPpcu, TMEANu) + gr(Pj,t) + λrXi + αj,r + ψk,y,r + δk,w,r + φd,r + εi,j,r,t.

(G.1)

In Equation G.1, the labor supply-temperature response function for risk group r, fr(·),
depends on TMEANu, the sample period average annual daily maximum temperature in

location u, and the natural logarithm of GDPpcu, the sample period average of annual

GDP per capita in location u. Importantly, the spatial units u for which we define these

variables differ by country, because the surveys from which we obtain labor supply vary

in the geographical resolution at which they are representative of the population. For

the United States, the United Kingdom, and France, surveys are only representative at

the national level. We therefore use national level measures of average income per capita

and average annual temperature for these countries. For all other countries, surveys are

representative at the ADM1 level, and we use ADM1 level measures of average income per

capita and average annual temperature. To estimate Equation G.1, we interact TMEAN

101Income and long-run climate are widely used in the climate-economy literature to model heterogenous
responses to temperature (Auffhammer and Aroonruengsawat, 2011; Carleton et al., 2022; Davis and
Gertler, 2015; Heutel, Miller, and Molitor, 2021; Hsiang, Meng, and Cane, 2011; Moore and Lobell, 2014;
Rode et al., 2021). A practical reason to focus on these two explanatory variables is that credible, global
projections of their future evolution are readily available and can be used to predict the temperature
sensitivity of labor supply across locations in the future.
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and LogGDPpc with each of the elements of the temperature vector Tj,t, which contains

terms of the three-knot restricted cubic spline.102

When estimating Equation G.1, we model the labor supply-temperature relationship as

a restricted cubic spline in daily maximum temperature with knots at 27◦ C, 37◦ C, and 39◦

C. Table G.1 reports on some key features of the results, with each value representing the

change in the temperature-sensitivity of labor supply associated with a marginal increase

in the relevant covariate (i.e., LogGDPpc or TMEAN), evaluated at the daily maximum

temperature shown. All temperature sensitivities are shown relative to a day with a

maximum temperature of 27◦ C. For example, a doubling of per capita income is associated

with a lower sensitivity of high-risk labor supply to both cold temperatures (14.6 fewer lost

weekly minutes per high-risk worker on a -10◦C day), and to hot temperatures (7.0 fewer

lost weekly minutes per high-risk worker on a 40◦C day).103 For climate, a 10◦ C increase

in annual average daily maximum temperature is associated with a lower sensitivity of

high-risk labor supply to cold temperatures (4 fewer lost weekly minutes per high-risk

worker on a -10◦C day) and to hot temperatures (14 fewer lost weekly minutes per high-

risk worker on a 40◦C day). Neither income nor climate are associated with substantial

differences in the temperature sensitivity of low-risk labor supply.

Table G.1 does not provide clear evidence of within risk group heterogeneity that

can robustly be statistically isolated, as the estimates are not found to be statisti-

cally significant by coventional criteria. In particular, we fail to reject that the labor

supply-temperature response of low-risk workers differs by income or annual average tem-

perature (p = 59.0% and 51.6%, respectively). We also fail to reject that the labor

supply-temperature response of high-risk workers differs by annual average temperature

(p = 22.1%). The only borderline statistically significant difference is that high risk work-

ers’ labor supply responses to temperature vary with income (p = 16.0%). In particular,

the results in Table G.1 suggest that the labor supply losses from extreme temperatures

may be mitigated in higher income locations.104 To account for the possibility that this

102The exact form of the function fr(Tj,t, LogGDPpcu, TMEANu) is: βr ·Tj,t+γ1,r ·Tj,t ·LogGDPpcu+
γ2,r · Tj,t · TMEANu, where βr denotes the vector of coefficients on the uninteracted elements of the
temperature vector Tj,t, and γ1,r and γ2,r denote the vectors of coefficients on the elements of Tj,t
interacted with LogGDPpcu and TMEANu, respectively. Note that there are no uninteracted terms for
LogGDPpcu and TMEANu because they would be collinear with the fixed effects. When estimating
Equation G.1, observations within each country are weighted by the sample weights specified in that
country’s survey, while across countries, observations are weighted such that each representative spatial
unit u × year carries equal weight. Unlike in Equation 6, we do not use populations weights because we
are explicitly modeling heterogeneity in treatment effects rather than integrating over it.

103Because our covariates are linearly interacted with the full vector of temperature variables describing
the nonlinear labor supply-temperature response, the effect of each covariate depends on the realized
daily temperature.

104We also probed these results further by estimating separate responses by 4 subsamples of income
times climate (above and below sample median income × above and below sample median annual aver-
age temperature), and the pattern of income-based heterogeneity in the high-risk response remains the
same as in Table G.1. In contrast, while Table G.1 show some (imprecisely estimated) evidence that
warmer locations suffer more high-risk labor supply losses on hot days, this pattern does not hold in the
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Daily maximum Low-risk High-risk
temperature workers workers

LogGDPpc TMEAN LogGDPpc TMEAN

45◦ 2.3 0.3 15.6 -2.7
(9.7) (1.5) (9.0) (1.5)

40◦ 0.4 0.3 7.0 -1.4
(4.9) (0.8) (4.6) (0.8)

35◦ -1.1 0.2 -0.1 -0.3
(1.4) (0.3) (1.8) (0.3)

27◦ - - - -
- - - -

10◦ 4.2 -0.6 6.7 -0.2
(3.6) (0.6) (5.2) (0.8)

5◦ 5.4 -0.8 8.7 -0.3
(4.7) (0.8) (6.8) (1.0)

0◦ 6.6 -1.0 10.7 -0.3
(5.7) (1.0) (8.3) (1.2)

-5◦ 7.8 -1.2 12.6 -0.4
(6.8) (1.2) (9.9) (1.5)

-10◦ 9.0 -1.3 14.6 -0.4
(7.9) (1.3) (11.4) (1.7)

Overall significance p = 59.0% p = 51.6% p = 16.0% p = 22.1%
Adj R-squared 0.33 0.33 0.33 0.33
N 4,175,377 4,175,377 2,423,958 2,423,958

Table G.1: Marginal effect of covariates on temperature sensitivity of labor
supply. Estimates (standard errors) from Equation G.1 represent the marginal effect of increasing each
covariate by one unit on the temperature sensitivity of labor supply, evaluated at each of the shown daily
maximum temperatures. Temperature sensitivity is defined as the impact of a particular temperature on
weekly labor supply, relative to a day with a maximum temperature of 27◦C. The covariate LogGDPpc is
the logarithm of the average annual GDP per capita over the sample period, measured in constant 2005
dollars PPP, while the covariate TMEAN is defined as the average annual daily maximum temperature
over the sample period. All response functions are estimated jointly in a stacked regression model that
is fully saturated with risk-group specific fixed effects. Regression is a restricted cubic spline in daily
maximum temperature with knots at 27◦ C, 37◦ C, and 39◦ C; each term of the spline is interacted with
each covariate.
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result recovers true heterogeneity in the labor supply-temperature relationship, we con-

duct a robustness test where we estimate a modified version of Equation G.1, in which the

labor supply-temperature response for low-risk workers does not differ by income or an-

nual average temperature, while the response for high-risk workers differs by income only.

Specifically, this modified estimating equation only includes interactions of the nonlinear

temperature response function for high-risk workers with a location-specific measure of

income per capita:

Labori,r,j,t = fr(Tj,t, LogGDPpcu) ∗ [Ir=high] + fr(Tj,t) ∗ [Ir=low]

+ gr(Pj,t) + λrXi + αj,r + ψk,y,r + δk,w,r + φd,r + εi,j,r,t. (G.2)

The variables Ir=high and Ir=low are indicator variables for whether worker i is in the high

or low risk group, respectively. Reflecting results in Table G.1, Equation G.2 does not

include interactions of the high-risk response function with climate, or interactions of the

low-risk response function with income or climate.

Figure G.1 presents the reponse functions for high-risk workers obtained from estimat-

ing Equation G.2.105 Each panel displays a predicted high-risk labor supply-temperature

response function evaluated at a particular point in the income space within the estima-

tion sample. Response functions are ordered by LogGDPpc terciles of the estimation

sample (increasingly rich from left to right), with each evaluated at the mean value of

LogGDPpc within its respective tercile. The histograms at the bottom of each panel re-

veal the distribution of daily maximum temperatures in the relevant income tercile, with

the inner pair of vertical lines indicating the 5th and 95th percentiles and the outer pair

indicating 1st and 99th percentiles. Because the low-risk response function is not inter-

acted with income or climate, it remains identical to the one estimated using the main

text Equation 6 and displayed in main text Figure 3B.

Table G.2 reports on some key features of the high-risk response functions in Figure

G.1, with each value representing the change in the temperature-sensitivity of labor sup-

ply associated with a marginal increase in LogGDPpc, evaluated at the daily maximum

temperature shown. Although not statistically significant by conventional standards, we

find evidence that higher incomes afford protection from labor supply losses at extreme

temperatures, with a doubling of income associated with 15.7 fewer lost weekly minutes

per high-risk worker on a -10◦C day, and 7.3 fewer lost minutes on a 40◦C day. These

effects are similar in magnitude to those estimated from Equation G.1.

subsampled responses. We therefore, focus on heterogeneity in the high-risk response by income.
105Temperature is modeled with a restricted cubic spline in daily maximum temperature with knots at

27◦ C, 37◦ C, and 39◦ C.
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Daily maximum High-risk
temperature workers

LogGDPpc

45◦ 16.4
(9.1)

40◦ 7.3
(4.6)

35◦ -0.2
(1.8)

27◦ -
-

10◦ 7.2
(5.3)

5◦ 9.3
(6.9)

0◦ 11.4
(8.4)

-5◦ 13.6
(10.0)

-10◦ 15.7
(11.5)

Overall significance p = 11.6%
Adj R-squared 0.33
N 2,423,958

Table G.2: Marginal effect of covariates on temperature sensitivity of labor
supply. Estimates (standard errors) from Equation G.2 represent the marginal effect of increasing
LogGDPpc by one unit on the temperature sensitivity of high-risk labor supply, evaluated at each of the
shown daily maximum temperatures. Temperature sensitivity is defined as the impact of a particular
temperature on weekly labor supply, relative to a day with a maximum temperature of 27◦C. LogGDPpc
is the logarithm of the average annual GDP per capita over the sample period, measured in constant
2005 dollars PPP. Response functions for high- and low-risk workers are estimated jointly in a stacked
regression model that is fully saturated with risk-group specific fixed effects. Regression is a restricted
cubic spline in daily maximum temperature with knots at 27◦ C, 37◦ C, and 39◦ C; each term of the
spline is interacted with LogGDPpc for high-risk workers.
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Figure G.1: Changes in weekly minutes worked per high-risk worker due to
daily temperature, as a function of income. Labor supply-temperature response functions
are estimated for high-risk workers as a function of income (Equation G.2). Each panel shows a predicted
response function for an in-sample income tercile (increasing income from left to right). Points along
each curve represent the effect on weekly labor supply of a single day at the daily maximum temperature
value shown on the x-axis, relative to a day with a maximum temperature of 27◦C (81◦F). Shaded areas
indicate 95% confidence intervals. Histograms show the distribution of daily maximum temperatures in
each income tercile, with the inner pair of vertical lines indicating the 5th and 95th percentiles and the
outer pair indicating 1st and 99th percentiles.

G.2 Hedonic value of thermal comfort accounting for within-

risk group differences in labor supply-temperature responses

We use the estimates from Equation G.2 to calculate the hedonic value of thermal comfort

offered by a low-risk job, allowing for the labor supply response of high-risk workers to

vary with a region’s income, but keeping the low-risk response constant as in main text

Figure 3B. As in main text Section V.B, the hedonic value will vary by location because

because locations vary in their distribution of the differences between daily temperatures

and Topt over the year. However, here there exists an additional source of variation across

locations— the mitigated labor supply losses from extreme temperatures in higher income

locations (as seen in Figure G.1 and Table G.2) reveal that the value of temperature-

induced disutility in a high-risk job relative to a low-risk job would be lower in richer

locations compared to poorer locations.

Following the general approach in main text Equation 9, we thus calculate the hedonic

value of thermal comfort in a low-risk job in impact region c as:

ωc
ε

∑
t

([
f̂high(T c,t,y, LogGDPpcc,y)−f̂high(T highopt (LogGDPpcc,y), LogGDPpcc,y)

]
−
[
f̂low(T c,t,y)−f̂low(T lowopt )

])
,

(G.3)

where T c,t represents region c’s 1950-2010 average temperature vector for each calendar

date t, LogGDPpcc represents region c’s 2010 log GDP per capita, and f̂r(·) represents
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the fitted values from Equation G.2 for each of the two risk groups r.106 In calculating

Equation G.3, we use the empirically determined optimum temperatures for low- and

high-risk labor supply. While T lowopt = 29.3◦C, T highopt varies by income and ranges between

28.4◦C and 31.7◦C.107 As in main text Equation 9, we construct a wage rate for each

impact region (ωc) based on its average per capita income in 2010 and use a Frisch

elasticity (ε) of 0.5.

To implement Equation G.3, we impose a constraint on the income-varying high-risk

responses to ensure that higher income does not mitigate any region’s high-risk response

to be less than the low-risk response. Specifically, we impose that at any given daily

maximum temperature, the labor supply losses (relative to a day at T highopt (LogGDPpcc,y))

of a high-risk worker cannot be smaller than those of a low-risk worker (relative to a day

at T lowopt ). In other words, we assume that temperatures farther from the optimum (either

colder or hotter) must be at least as harmful to high-risk workers as they are to low-

risk workers.108 To operationalize this, we calculate impacts along an adjusted high-risk

response function that is defined at each temperature as the minimum of the region- and

year-specific high-risk response function and the low-risk response.109

Under this model, we find that the hedonic value of thermal comfort in a low-risk

job amounts to 1.8% of annual income in 2010. This is roughly 40% less than hedonic

value based on estimates from main text Equation G.3, where we find the hedonic value

of thermal comfort to be worth 2.9% of annual income (main text Table 4). However,

both estimates have wide and overlapping 5th to 95th percentile ranges (0.3% to 3.3% for

the 1.8% estimate and -0.9% to 6.2% for the 2.9% estimate).

G.3 Impacts of climate change accounting for within-risk group

differences in labor supply-temperature responses

We use the estimates from Equation G.2 to project the impacts of climate change, allowing

for the labor supply response of high-risk workers to evolve into the future as regional

incomes rise, but keeping the low-risk response constant as in main text Figure 3B. In

this case, the labor supply impact of climate change is defined as:

106Note that for the low risk group, this fitted value is the same as the one from main text Equation 6.
107The vectors T lowopt ) and T highopt (LogGDPpcc,y) contain the nonlinear transformations of these optimal

temperatures.
108This assumption is important because Equation G.2 parameterizes the flattening of the inverted

U-shaped high-risk response function such that, with sufficiently high income, it could become flatter
than the low-risk response function, and even go so far as to take on a U-shape such that labor supply
increases due to extreme temperature days. However, such behavior is inconsistent with prior literature
documenting that high-risk workers experience greater labor supply losses on extreme temperature days
than low-risk workers (Garg, Gibson, and Sun, 2019; Graff Zivin and Neidell, 2014).

109Specifically, we take the minimum of high-risk and low-risk response function, where each function
is defined relative to its optimum. To accommodate this procedure when characterize uncertainty in
Equation G.3 estimates, we construct confidence intervals by resampling parameters of the labor supply-
temperature response functions.
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Labor Supply Impact Of Climate Changec,t,y =[
ρ̂c,yf̂high(Tc,t,y, LogGDPpcc,y) + (1− ρ̂c,y)f̂low(Tc,t,y)

]
︸ ︷︷ ︸

Temperature-induced labor supply under climate change
(with economic development and climate-driven adaptation)

−
[
ρ̂c,ỹf̂high(Tc,t,2015, LogGDPpcc,y) + (1− ρ̂c,ỹ)f̂low(Tc,t,2015)

]
︸ ︷︷ ︸

Temperature-induced labor supply without climate change
(with economic development)

, (G.4)

where f̂r(·) represents the fitted values from Equation G.2 for each of the two risk groups

r.110 As in the impact calculated in main text Equation 11, each impact region’s share of

high-risk workers is allowed to evolve as incomes grow and the climate warms. However, in

contrast to main text Equation 11, the high-risk response f̂high(·) is also allowed to evolve

based on the value of log GDP per capita in impact region c and year y. The disutility

costs of climate change are then calculated by multiplying the labor supply impact by the

ratio of the impact region’s projected wage rate and the Frisch elasticity of labor supply.

In implementing this projection, we impose a constraint on the evolution of high-risk

responses to ensure plausible out-of-sample projections over the 21st century. Specifically,

we impose that at any given daily maximum temperature, the labor supply losses (relative

to a day at 27◦ C) of a high-risk worker cannot be smaller than those of a low-risk worker.

In other words, we assume that temperatures farther from 27◦ C (either colder or hotter)

must be at least as harmful to high-risk workers as they are to low-risk workers.111 To

operationalize this, we calculate impacts along an adjusted high-risk response function

that is defined at each temperature (relative to 27◦ C) as the minimum of the region- and

year-specific high-risk response function and the low-risk response shown in main text

Figure 3B.

Under this projection, we project that by 2099, the global disutility costs of climate

change under RCP8.5 will amount to roughly 0.7% of 2099 global GDP (Figure G.2).

This is slightly less than half of the projected costs based on estimates from main text

Equation 6, where we projected global disutility costs at 2099 equal to 1.8% of 2099 global

GDP (main text Figure 8A, green line).112 However, both estimates have wide 5th to 95th

percentile ranges with considerable overlap (-0.3% to 2.5% for the 0.7% estimate and 0.2%

110Note that for the low risk group, this fitted value is the same as the one from main text Equation 6.
111This assumption is important because Equation G.2 parameterizes the flattening of the inverted

U-shaped high-risk response function such that, with sufficiently high income, it could become flatter
than the low-risk response function, and even go so far as to take on a U-shape such that labor supply
increases due to extreme temperature days. However, such behavior is inconsistent with prior literature
documenting that high-risk workers experience greater labor supply losses on extreme temperature days
than low-risk workers (Garg, Gibson, and Sun, 2019; Graff Zivin and Neidell, 2014).

112Similarly, the end-of-century disutility costs of climate change under RCP4.5 reduce from 0.5% to
0.2% of 2099 global GDP, with 5th to 95th percentile ranges 0.0% to 1.3% and -0.1% to 0.7%, respectively.
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to 5.1% for the 1.8% estimate). Main text Table 6 also reports labor disutility partial SCC

estimates based on disutility costs projected in Equation G.4. Allowing for heterogenous

high-risk responses as a function of income roughly halves the SCC estimates, although

the uncertainty ranges in both cases are wide and substantially overlapping.

Figure G.2: Time series of projected climate change-induced worker disutility
costs, accounting for within risk group adaptation. Costs in each year are calculated
under a labor share of income = 0.6 (Karabarbounis and Neiman, 2014) and elasticity of labor supply =
0.5 (Chetty et al., 2011) and are expressed as a percentage of that year’s global GDP. All estimates refer to
the SSP3 socioeconomic scenario. Panels A and B respectively show globally aggregated worker disutility
costs of climate change under the RCP 8.5 and RCP4.5 emissions scenarios. In each panel, the green
line shows estimates that account for changes in each impact region’s workforce composition as incomes
grow and the climate warms (main text Equation 11), while the orange line additionally accounts for
changes in the temperature sensitivity of high-risk labor supply as incomes grow (Equation G.4). Lines
represent a mean estimate across a set of Monte Carlo simulations accounting for both climate model
and statistical uncertainty; shaded areas indicate the range between 10th and 90th percentiles.
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H Calculation of a labor disutility partial social cost

of carbon

We compute the labor disutility costs imposed by a marginal ton of CO2 in two key steps.

First, we construct “damage functions” (Hsiang et al., 2017; Nordhaus, 1992), which

describe labor disutility costs as a function of the change in the global climate. Second,

we use a climate-carbon cycle model to simulate future warming trajectories that result

from the marginal emission today, which we combine with estimated damage functions to

calculate the temporal trajectory of global costs. The present discounted value of these

costs represents the labor disutility component of the SCC. Both steps of this process

involve uncertainty, deriving both from econometric uncertainty in the labor disutility

costs imposed by a given level of climate change, as well as from physical uncertainty

in the sensitivity of the global climate to greenhouse gas emissions. We quantify the

uncertainty from both these sources, as well as value its contribution to the partial SCC

when individuals are risk averse. In this Appendix, we describe these two steps and our

treatment of uncertainty, and then present ranges of partial SCC estimates that decompose

uncertainty into its component parts. Lastly, we present partial SCC estimates under

alternative baseline socioeconomic scenarios. We note that the methodology used here is

nearly identical to that developed and described in Rode et al. (2021) and Carleton et al.

(2022); for further methodological details, we refer the reader to these prior publications.

H.1 Constructing damage functions for labor disutility

We construct empirical damage functions that express global labor disutility costs of

climate change as a function of the change in global mean surface temperature relative

to the 2001-2010 average level (∆GMST). Damage functions through 2099 are built from

projections of global disutility costs (Dylps) in each year (y) using 33 climate models (l),

two emissions scenarios (p), and a resampling of estimates (s) that captures uncertainty in

the estimation of Equations 6 and 10. These multiple projections lead to an empirically-

derived distribution of potential outcomes that are conditional on the ∆GMST value for

the year, climate model, and emissions scenario used to generate that projection. Using

these outcomes and their associated ∆GMST values, we separately estimate a quadratic

damage function in each year, as follows:

D(∆GMST, y)ylps = ψy1∆GMSTylp + ψy2∆GMST 2
ylp + εylps, (H.1)

using all simulations within a 5-year window of year y, thereby allowing the shape of the

function D(∆GMST, y) to evolve flexibly and smoothly over the century. Such time-

varying damage functions are estimated in order to account for changes over time in the

underlying global population distribution and workforce composition, which shape the
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sensitivity of labor supply to temperature (Carleton et al., 2022; Rode et al., 2021).

Figure H.1A illustrates this exercise for for y = 2097, with Dylps values from all

Monte Carlo simulations shown as points situated along the horizontal axis based on

their corresponding ∆GMSTylp. This scatterplot includes realizations under RCP4.5 and

RCP8.5 scenarios over the years 2095-2099, for all projections in our 33-member ensemble.

The median end-of-century warming relative to 2001-2010 under RCP8.5 (red points)

across our climate models is +3.7◦C, while under RCP4.5 (blue points) it is +1.6◦C. The

black line is the quadratic damage function estimated for the year 2097, the latest year

for which a full 5-year window of damage estimates can be constructed. We recover a

convex damage function, indicating that the marginal disutility costs of warming increase

with ∆GMST.

Analogous curves are constructed for all years, 2015 to 2099. To obtain damage func-

tions for the year 2100 onwards, years for which high-resolution climate and socioeconomic

projections are not available, we extrapolate the estimated coefficients of the 2099 dam-

age function at the annual growth rate of GDP per capita from 2098 to 2099.113 The

resulting damage functions are shown in Figure H.1B, where damage functions in later

years are shown to be steeper than those in earlier years, reflecting trends in income and

population.

H.2 Computing damages from a marginal carbon dioxide emis-

sions pulse

The partial SCC at year y0 is defined as the marginal social cost from increased labor

disutility imposed by the emission of a marginal ton of CO2 at y0, holding all other factors

fixed, including the forecast trajectory of baseline greenhouse gas emissions.114 Formally,

for a discount rate δ, this is expressed as:

Partial SCCy0 =
2300∑
y0

e−δy
dD̂(∆GMST, y)

d∆GMSTy

̂d∆GMSTy
dCO2y0

. (H.2)

The values dD̂(∆GMST,y)
d∆GMSTy

are the marginal damages at each year that occur as a result of

the small change in future global temperatures caused by the marginal emission.115 They

are computed using the differentiable damage functions described in Equation H.1. The

113Specifically, for y > 2100 and k ∈ {1, 2}, ψ̂yk = ψ̂2099
k ∗ (1 + g)(y−2099), where g denotes the growth

rate of GDP per capita from 2098 to 2099 under a given socioeconomic scenario.
114We use CO2 to represent changes in all global greenhouse gas (GHG) emissions as it is the most

abundant GHG and the warming potential of all other GHGs are generally reported in terms of their
CO2 equivalence.

115We assume that discounted damages from an emissions pulse at y0 = 2020 become negligible after
2300.
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Figure H.1: Global labor disutility damages. The damage function in Panel A relates
empirically-derived total global labor disutility damages to anomalies in global mean surface temperature
(∆GMST) at end-of-century. Each point (red = RCP8.5, blue = RCP4.5) indicates the global labor
disutility costs of climate change in a single year (ranging from 2095 to 2099) for a single simulation of a
single climate model, accounting for changes to workforce composition as incomes grow and the climate
warms. The black line represents the end-of-century quadratic damage function, which is estimated
through the points shown. Shaded areas indicate the range between 5th and 95th quantiles. Damage
functions that evolve over time (Panel B) are estimated up to 2100, and their continuing evolution
extrapolated forward to 2300 at the annual growth rate of GDP per capita from 2098 to 2099. Orange
curves depict damage functions for every 10 years pre-2100; the black curve depicts the end-of-century
damage function; grey curves depict damage functions for every 50 years post-2100. Probability density
functions below display the distribution of GMST anomalies at 2100 (Panel A) and 2200 (Panel B) in
each emissions scenario across our 33 climate models. Damages are calculated under a labor share of
income = 0.6 (Karabarbounis and Neiman, 2014) and elasticity of labor supply = 0.5 (Chetty et al.,
2011). All values refer to the SSP3 socioeconomic scenario.

term ̂d∆GMSTy
dCO2y0

is the increase in ∆GMST that occurs at each year along a baseline climate

trajectory as a result of a marginal unit of emissions at y0, which we approximate with

an “infinitesimally small” pulse of CO2 emissions occurring at year y0 = 2020.

Estimating ̂d∆GMSTy
dCO2y0

requires a climate model capable of estimating the global temper-

ature response in each year to a single pulse of CO2 emissions. We adopt a version of the

Finite Amplitude Impulse Response (FAIR) simple climate model that has been devel-

oped especially for this type of calculation (Millar et al., 2017; Smith et al., 2018). Specifi-

cally, we use FAIR to calculate ∆GMSTy trajectories for emissions scenarios RCP4.5 and

RCP8.5, both with and without an exogenous impulse of 1Gt C (equivalent to 3.66Gt

CO2) in the year 2020, an approximation of an infinitesimal emission for which the model

numerics are stable (Carleton et al., 2022; Rode et al., 2021). In FAIR, this emissions

impulse perturbs the trajectory of atmospheric CO2 concentrations and ∆GMSTy for

2020-2300, with dynamics that are influenced by the baseline RCP scenario. In each sce-

nario, the trajectory of ∆GMSTy in the “RCP + pulse” simulation is differenced from the

baseline RCP simulation to compute ̂d∆GMSTy
dCO2y0

, and the resulting damages are converted
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into USD per 1t CO2. Details on our use of FAIR are provided in Carleton et al. (2022)

and Rode et al. (2021). Figure 9D plots the discounted (2% discount rate) stream of labor

disutility damages in future years due to the marginal pulse of emissions today, using the

median values of FAIR's four key parameter distributions and the mean global damage

function. The shaded area represents the inter-quartile range of each years damages, re-

flecting uncertainty in the climate system as well as uncertainty in the damage function,

as detailed in the next section.

H.3 Accounting for uncertainty and its value in the partial SCC

for labor disutility

We compute labor disutility partial SCCs accounting for both damage function uncer-

tainty and uncertainty over climate sensitivity. Here, we briefly describe our implementa-

tion of uncertainty in the SCC calculation, as well as our approach to valuing uncertainty

in the SCC when individuals are risk averse.

H.3.1 Labor disutility partial SCC estimates accounting for both damage

function and climate sensitivity uncertainty

As described in Section H.1, damage functions are computed using estimates of the global

monetized damages in each year generated from 33 climate models, two emissions scenar-

ios, and a resampling of damage estimates that captures uncertainty in the estimation

of Equations 6 and 10. These multiple simulations (we draw 15 realizations of global

damages for each climate model, emissions scenario, SSP trajectory, and year) give us

an empirically-derived distribution of potential economic outcomes that are conditional

on the ∆GMST value for the year, emissions scenario, and climate model used to gen-

erate that projection. To account for uncertainty in a single year’s damage function, we

pool these realizations for the associated 5-year window (see Section H.1). We then run

quantile regressions to fit quantile-specific damage functions for 19 quantiles (i.e., every

5th percentile from the 5th to 95th). As in the mean damage function estimation, damage

function quantiles for years after 2099 are obtained by extrapolation; estimated coeffi-

cients of each 2099 damage function quantile are extrapolated at the annual growth rate

of GDP per capita from 2098 to 2099.

We run each quantile-specific damage function through each of ∼100,000 sets of dis-

tinct parameter combinations in the FAIR climate-carbon cycle model; these parameter

combinations together represent uncertainty in the climate’s sensitivity to carbon emis-

sions (Carleton et al., 2022; Rode et al., 2021).116 We then report moments (e.g., 1st-99th

116The sets of FAIR parameter combinations are identical to Rode et al. (2021) and Carleton et al.
(2022), except we apply an additional constraint here to rule out simulations with unrealistically high
equilibrium climate sensitivity (ECS) that yield unrealistic future temperature changes. Specifically,
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percentile ranges) of the resulting distribution of partial SCC estimates, up-weighting

runs in order to reflect probability mass in the damage function uncertainty space. This

process reflects a joint sampling from the full space of damage function uncertainty and

climate sensitivity uncertainty.

In Table H.1, we isolate uncertainty in the labor disutility partial SCC that arises

from uncertainty in the damage function versus that arising from uncertainty in climate

sensitivity. To isolate uncertainty arising from the damage function, we run the set of

quantile-year damage functions through FAIR with each climate parameter fixed at its

median value and up-weight runs in order to reflect probability mass in the damage

function uncertainty space. The corresponding SCC 1st-99th percentile range is resolved

from the resulting distribution of labor disutility partial SCCs. To isolate uncertainty in

the labor disutility partial SCC that arises from climate sensitivity uncertainty, we run

the mean damage function through each of the ∼100,000 sets of FAIR parameters. The

corresponding SCC 1st-99th percentile range is resolved from the resulting distribution of

energy partial SCCs.

H.3.2 Calculating a certainty equivalent partial SCC for labor disutility

Here we demonstrate how we incorporate damage function and climate sensitivity un-

certainty into the calculation of a “certainty equivalent” partial SCC for labor disutility,

accounting for the fact that individuals are risk averse and therefore value reducing un-

certainty. This takes place in two steps. First we calculate “certainty equivalent” global

damage functions for labor disutility that reflect uncertainty within each of the 24,378

impact regions for which we project damages. Second, we use these damage functions to

calculate a certainty equivalent partial SCC, using the distribution of parameters in the

climate model FAIR to value the uncertainty in the sensitivity of the global climate to

additional emissions.

Certainty equivalent global damage functions for labor disutility The building

blocks of a certainty equivalent global damage function are projections of labor disutility

costs in each of 24,378 impact regions under each of 33 climate models and two emissions

scenarios. As discussed above, these projections are resampled to capture uncertainty in

the estimation of Equations 6 and 10 and are denoted Dcylps for impact region c, year y,

climate model l, emissions scenario p, and resampling s.

In the absence of climate change, individual consumption in impact region c in future

year y is defined to be equal to GDP per capita (GDPpccy) (derived following Appendix

B.3.3), plus an uncertain component that captures fluctuations in labor disutility due to

variability in the local climate around its historical mean. This term, which we denote D̃cys

we exclude ECS values above the 99th percentile and symmetrically exclude ECS values below the 1st

percentile, which results in 1,928 simulations being ruled out, leaving a total ensemble of 94,378 members.
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for resampling s, is necessary in order to avoid conflating weather variability in our future

projections with uncertainty caused by climate change.117 Thus in the absence of climate

change, individual consumption under resampling s is CNoClimateChange
cys = GDPpcc,y−D̃cys.

While under the climate change projected for climate model l and emissions scenario

p, individual consumption after subtracting labor disutility costs under resampling s is

CClimateChange
cylps = GDPpcc,y −Dcylps.

To convert these uncertain levels of individual consumption into a certainty equivalent,

we use a constant relative risk aversion utility function V (·) with a coefficient of relative

risk aversion set equal to 2.118 We then compute certainty equivalent consumption with

and without climate change. For consumption in the absence of climate change, we take

the certainty equivalent over all resampled consumption values for a given impact region

and year:

CNoClimateChangeCE
cy = V −1

( 1

S

S∑
s=1

V (CNoClimateChange
cys )

)
, (H.3)

where S denotes the total count of resampled values. For consumption under the climate

change projected for a given climate model l and emissions pathway p, we similarly take

the certainty equivalent over all resampled values:119

CClimateChangeCE
cylp = V −1

( 1

S

S∑
s=1

V (Ccylps)
)
. (H.4)

The certainty equivalent labor disutility costs of climate change are thus the differ-

ence between individual certainty equivalent consumption under no climate change and

certainty equivalent consumption under climate change:

DCE
cylp = CNoClimateChangeCE

cy − CClimateChangeCE
cylp . (H.5)

Total global labor disutility damages DCE
ylp are obtained through a population-weighted

sum of per capita labor disutility costs across all impact regions c.120 Using these certainty

117To construct D̃cys, we calculate the change in annual labor disutility costs due to a given year’s daily
temperatures— where those daily temperatures are drawn from the 1981-2005 time period— relative to
the mean temperature for each day over that same period.

118A large literature generally estimates that this coefficient is approximately equal to 2 (Arrow, 2007;
Dasgupta, 2007, 2008; Weitzman, 2007, 2009).

119At this stage, we do not take a certainty equivalent over future climate uncertainty (i.e., across
climate models) because the variation in global climate provided by the climate models is necessary to
construct a global damage function for calculating damages from a marginal emission. Hence Equation
H.4 only takes a certainty equivalent over resampled values within a climate model.

120National population projections are taken from the Shared Socioeconomics Pathways (SSP) and are
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equivalent global damages and their associated ∆GMST values based on the year, climate

model, and emissions scenario, we separately estimate a quadratic damage function in each

year in the same manner as described in Section H.1, Equation H.1:

DCE(∆GMST, y)ylp = ψy1∆GMSTylp + ψy2∆GMST 2
ylp + εylp. (H.6)

The only difference between the estimation of Equation H.1 and Equation H.6 is that the

latter is estimated through fewer points, as the multiple resampled realizations of damages

for a given year, climate model, and emissions scenario are collapsed to a single certainty

equivalent. However, it should be noted that this certainty equivalent damage function

only values econometric uncertainty, and not physical uncertainty in the sensitivity of

the global climate to emissions. To calculate a certainty equivalent partial SCC that

reflects both econometric and physical sources of uncertainty, it is necessary to apply

our certainty equivalent damage functions to the full distribution of parameters in the

FAIR simple climate model, and value the resulting uncertain stream of damages from

the marginal emission, as we do in the next subsection.

Certainty equivalent damages from the marginal emission The certainty equiv-

alent partial SCC at year y0 is defined as the certainty equivalent marginal social cost

from increased labor disutility imposed by the emission of a marginal ton of CO2 at y0,

holding all other factors fixed, including the forecast trajectory of baseline greenhouse gas

emissions. Formally, for a discount rate δ, this is expressed as:

Partial SCCCE
y0

=
2300∑
y0

e−δy
[dD̂CE(∆GMST, y)

d∆GMSTy

̂d∆GMSTy
dCO2y0

]CE
. (H.7)

Equation H.7 expresses the present discounted value of the certainty equivalent labor

disutility damages imposed by the marginal emission at y0, and differs in two important

ways from the partial SCC expression in Equation H.2. In particular, the certainty equiv-

alent partial SCC calculation: (i) uses the estimated certainty equivalent damage function

estimated in Equation H.6, i.e., D̂CE(∆GMST, y); and (ii) accounts for uncertainty in

the FAIR simple climate model of how ∆GMST is perturbed by the marginal emission,

i.e., ̂d∆GMSTy
dCO2y0

. Importantly, the trajectories with and without the impulse are both un-

certain, due to uncertainty in the sensitivity of the global climate to emissions, and we

characterize this uncertainty by resampling the parameters of FAIR to generate K pairs of

realized trajectories (i.e., with and without the impulse). We use ∆GMSTbaseline+,yk and

∆GMSTbaseline,yk to denote the realization k ∈ {1, . . . , K} in year y, with and without

allocated to impact regions based on current satellite-based within-country population distributions from
Bright et al. (2012) (see Appendix B.3.4).
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the impulse, respectively.

In the absence of climate change, total global consumption in future year y is assumed

to be deterministic and equal to total global GDP (GlobalGDPy). However, under climate

change, consumption will be equal to GDP less the labor disutility damages associated

with a given level of warming. Let GlobalCbaseline+,yk and GlobalCbaseline,yk denote total

global consumption under climate change with and without the impulse, respectively, at

year y in realization k. Formally:

GlobalCbaseline+,y,k = GlobalGDPy − D̂CE(∆GMSTbaseline+,yk);

GlobalCbaseline,y,k = GlobalGDPy − D̂CE(∆GMSTbaseline,yk).

(H.8)

Certainty equivalent (CE) consumption in year y, with and without the pulse, is thus:121

GlobalCCE
baseline+,y = V −1

(
1
K

∑K
k=1 V (GlobalCbaseline+,yk)

)
;

GlobalCCE
baseline,y = V −1

(
1
K

∑K
k=1 V (GlobalCbaseline,yk)

)
,

(H.9)

where the certainty equivalent here is taken over climate sensitivity uncertainty, which is

captured by the K resampled realizations of FAIR parameters.

Finally, subtracting GlobalCCE
baseline+,y from GlobalCCE

baseline,y yields the certainty equiv-

alent labor disutility damages at year y imposed by the marginal emission at y0:

GlobalCCE
baseline,y −GlobalCCE

baseline+,y =
[dD̂CE(∆GMST, y)

d∆GMSTy

̂d∆GMSTy
dCO2y0

]CE
. (H.10)

Taking the net present value of these certainty equivalent damages (i.e., Equation H.7)

yields the certainty equivalent partial SCC for labor disutility.

H.4 Decomposing estimates of the partial social cost of carbon

due to labor disutility by source of uncertainty

In the main text, Table 5 reports point estimate labor disutility partial SCCs, 1st-99th

percentile ranges over a distribution of SCCs accounting for both damage function and

climate sensitivity uncertainty, and certainty equivalent SCCs. In Table H.1, these results

are expanded to include a decomposition of uncertainty into its two component parts.

Specifically, Panel I shows the same point estimates and full uncertainty 1st-99th percentile

ranges as in Table 5, but additionally includes 1st-99th percentile ranges accounting only

121Note that with a constant relative risk aversion utility function, only the percent loss from global GDP
will matter for risk aversion. Hence the utility function can be directly applied to global consumption,
without needing to first convert to per capita terms.

110



for damage function uncertainty (using a deterministic climate sensitivity) and 1st-99th

percentile ranges accounting only for climate sensitivity uncertainty (using a deterministic

damage function). We note that because the estimated damage function relationships

between labor disutility costs and ∆GMST are nonlinear, and because the distributions of

FAIR model parameters are not normal, the full uncertainty 1st-99th percentile ranges will

not necessarily contain the corresponding ranges derived from one source of uncertainty

alone. Panel II replicates the certainty equivalent partial SCC estimates also shown in

Panel II of Table 5.

As is evident in Table H.1, uncertainty in climate sensitivity tends to dominate overall

uncertainty in the labor disutility partial SCC, especially on the top end of the distribu-

tion. In contrast, while damage function uncertainty plays an important role, it is more

influential over lower quantiles of the partial SCC distribution. This finding is consistent

across distinct discount rates and emissions scenarios.

Discount rate δ = 1.5% δ = 2% δ = 2.5% δ = 3% δ = 5%

I. Partial SCC estimates

RCP 8.5 $28.8 $16.7 $10.6 $7.2 $2.4
Damage function uncertainty [$4.9,$49.9] [$1.1,$30.9] [-$0.7,$21.0] [-$1.5,$15.3] [-$2.1,$6.5]
Climate sensitivity uncertainty [$4.3,$222.9] [$2.6,$132.0] [$1.8,$83.9] [$1.3,$56.1] [$0.5,$14.5]
Full uncertainty [$0.2,$215.3] [-$0.5,$125.1] [-$0.9,$77.7] [-$1.1,$50.6] [-$1.4,$12.1]

RCP 4.5 $17.5 $10.6 $7.0 $5.0 $1.9
Damage function uncertainty [-$3.3,$41.9] [-$3.6,$26.9] [-$3.5,$18.9] [-$3.3,$14.3] [-$2.6,$6.7]
Climate sensitivity uncertainty [$3.4,$235.8] [$2.1,$130.0] [$1.5, $78.3] [$1.1,$50.3] [$0.5,$12.3]
Full uncertainty [-$2.4,$229.8] [-$2.3,$125.5] [-$2.3,$74.4] [-$2.2,$46.9] [-$2.0,$10.7]

II. Partial SCC estimates
(certainty equivalent)

RCP 8.5 $50.8 $29.1 $18.0 $11.9 $3.2

RCP 4.5 $39.7 $22.5 $13.9 $9.3 $2.7

Table H.1: Estimates of a partial social cost of carbon for labor disutility. All
partial SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are calculated from
damage functions estimated from projected results under the socioeconomic scenario SSP3. Values shown
assume a Frisch elasticity of labor supply of 0.5 (Chetty et al., 2011) and a labor share of income of 0.6
(Karabarbounis and Neiman, 2014). Point estimates displayed in Panel I rely on the median values of the
four key input parameters into the climate model FAIR and a conditional mean estimate of the damage
function; 1st-99th percentile ranges [in brackets] reflect damage function uncertainty, climate sensitivity
uncertainty, or both damage function and climate sensitivity uncertainty (i.e., full uncertainty). Panel II
displays certainty equivalent values of the partial SCC, which account for risk aversion using a constant
relative risk aversion utility function with a coefficient of relative risk aversion equal to 2.

H.5 Alternative socioeconomic scenarios

In the main text, we display climate change impact projections and estimates of the partial

social cost of carbon under the socioeconomic scenario SSP3. Each Shared Socioeconomic
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Pathway (SSP) scenario models a different possible pathway of economic development,

population growth, and demographics. In Table H.2, we show estimates of the labor

disutility partial social cost of carbon under two alternative scenarios (SSP2 and SSP4,

alongside SSP3). While results from these alternative scenarios are similar in magnitude

to those from SSP3, we emphasize SSP3 in the main text because its historic global

growth rates in GDP per capita and population match observed global growth rates over

the 2000-2018 period much more closely than either SSP2 or SSP4 (Carleton et al., 2022).

Discount rate δ = 1.5% δ = 2% δ = 2.5% δ = 3% δ = 5%

I. Partial SCC estimates

SSP2

RCP 8.5
$85.0 $40.0 $21.3 $12.6 $3.2

[$4.5,$593.7] [$1.3,$284.3] [$0.0,$151.9] [-$0.5,$88.5] [-$1.2,$16.8]

RCP 4.5
$51.6 $24.9 $13.8 $8.6 $2.6

[-$2.0,$741.2] [-$2.1,$327.2] [-$2.1,$162.4] [-$2.0,$89.3] [-$1.8,$15.5]

SSP3

RCP 8.5
$28.8 $16.7 $10.6 $7.2 $2.4

[$0.2,$215.3] [-$0.5,$125.1] [-$0.9,$77.7] [-$1.1,$50.6] [-$1.4,$12.1]

RCP 4.5
$17.5 $10.6 $7.0 $5.0 $1.9

[-$2.4,$229.8] [-$2.3,$125.5] [-$2.3,$74.4] [-$2.2,$46.9] [-$2.0,$10.7]

SSP4

RCP 8.5
$27.8 $15.8 $9.9 $6.7 $2.2

[-$0.2,$202.5] [-$1.0,$113.3] [-$1.4,$68.0] [-$1.6,$42.9] [-$1.9,$9.3]

RCP 4.5
$18.5 $11.0 $7.2 $5.1 $1.9

[-$3.5,$224.3] [-$3.2,$117.7] [-$3.0,$67.1] [-$2.8,$40.7] [-$2.4,$8.6]

II. Partial SCC estimates
(certainty equivalent)

SSP2
RCP 8.5 $143.4 $67.0 $35.1 $20.3 $4.1
RCP 4.5 $123.2 $55.8 $28.6 $16.3 $3.4

SSP3
RCP 8.5 $50.8 $29.1 $18.0 $11.9 $3.2
RCP 4.5 $39.7 $22.5 $13.9 $9.3 $2.7

SSP4
RCP 8.5 $45.1 $25.3 $15.4 $10.0 $2.4
RCP 4.5 $38.2 $21.0 $12.6 $8.2 $2.1

Table H.2: Estimates of a partial social cost of carbon for labor disutility under
alternative socioeconomic scenarios. All partial SCC values are for the year 2020, measured
in PPP-adjusted 2019 USD, assuming a Frisch elasticity of labor supply of 0.5 (Chetty et al., 2011) and a
labor share of income of 0.6 (Karabarbounis and Neiman, 2014). Estimates are calculated using constant
annual discount rates ranging from 1.5% to 5%, either a very high (RCP8.5) or intermediate (RCP4.5)
baseline emissions scenario, and socioeconomic scenario SSP2, SSP3, or SSP4. Point estimates displayed
in Panel I rely on the median values of the four key input parameters into the climate model FAIR
and a conditional mean estimate of the damage function; 1st-99th percentile ranges [in brackets] reflect
climate sensitivity and damage function uncertainty. Panel II displays certainty equivalent values of the
partial SCC, which account for risk aversion using a constant relative risk aversion utility function with
a coefficient of relative risk aversion equal to 2.
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