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1 Introduction

Bank deposits are often referred to as “sleepy” or “sticky,” meaning that they are not friction-

lessly re-optimized every period. This sleepiness is thought to be a critical feature of the banking

sector, enabling banks to engage in maturity transformation (e.g., Hanson et al., 2015) and sus-

tain their business models. Sleepiness also has important consequences for bank regulation. For

example, regulators in the UK have expressed concern that bank deposit rates are insufficiently

responsive to short-term interest rates (namely, far less responsive than bank lending rates),

potentially harming depositors.1 Moreover, the global financial crisis and the recent run on

Silicon Valley Bank (SVB) have emphasized the importance of deposit stickiness for financial

stability (Drechsler et al., 2023; Jiang et al., 2024).

In this paper, we study the implications of sleepy deposits for the banking sector using new

microdata and within the context of a quantitative dynamic model. We start by documenting

new facts about depositor behavior in novel data on account openings and closures. We find

that deposit account turnover is low on average and varies in the cross-section of account

types. Accounts operated by older depositors have lower turnover, whereas business accounts

and larger accounts have higher turnover. Our data also shed light on the reasons for account

turnover. Less than 20% of account closures are a result of depositors shopping for better terms;

the majority are driven by account inactivity, moving, and death.

We then develop and estimate a dynamic structural model of demand and supply for de-

posits. In the model, depositors are “sleepy” and only infrequently shop for deposits. This

sleepiness gives rise to a dynamic “invest-versus-harvest” tradeoff (Beggs and Klemperer, 1992).

Banks face a tension between “investing” in their deposit base by attracting active depositors

with higher deposit rates and “harvesting” their sleepy depositors by setting lower deposit rates.

It is theoretically ambiguous, and therefore an empirical question, whether this tradeoff raises

or lowers equilibrium markups (Dubé et al., 2009; Brown et al., 2024; MacKay and Remer,

2024).

We show that taking depositor sleepiness and dynamic competition seriously has important

implications for the banking sector. First, sleepiness raises average markups. Average markups

are 53% lower in the absence of depositor sleepiness. Second, under dynamic competition,

markups are procyclical, rising more when the short rate rises. Third, accounting for dynamic

competition eliminates the increasing relationship between concentration and markups that ob-

tains under static competition. Fourth, sleepiness increases banks’ franchise values, accounting

for about 58% of the average bank’s deposit franchise value. Fifth, sleepiness disproportionately

increases bank franchise value for banks with either low product quality or high costs.

Our anonymous bank microdata comes from one of Fiserv’s core account processing plat-

forms. Fiserv is a leading provider of payments and financial services technology solutions.
1Rafe Uddin, “FCA threatens banks with action as it reviews savings rates,” Financial Times, September 1, 2023,

https://www.ft.com/content/5fac24ff-e9b9-4b03-aede-3dd2507e7f43.
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One of its key businesses involves providing financial technology solutions to banks and credit

unions, helping them maintain customer deposit and loan accounts. Our dataset includes

turnover data (openings and closures) from 89 banks and credit unions, covering 12 million de-

posit accounts. We observe anonymized turnover data aggregated across different dimensions.

We start by examining the persistence of deposits, focusing on account turnover, measured

as new deposit account openings in a year relative to all outstanding accounts. New accounts

account for 5-15% of all outstanding accounts, meaning that the average life of an account is

8-9 years. We also document cross-sectional variation in deposit turnover. Turnover is higher

among business and trust accounts compared to individual accounts. Larger accounts, mea-

sured by account balances, also appear to be more active. In contrast, accounts held by elderly

individuals are less active. Somewhat surprisingly, we find that accounts set up for online bank-

ing tend to experience less turnover. Part of this appears to be driven by the motivations for

switching accounts. We show that moving, which is inherently a less important factor for online

depositors, is a key reason why depositors switch accounts.

We interpret this cross-sectional variation in account turnover as being primarily driven by

depositor sleepiness. Consistent with this interpretation, we observe that deposit accounts are

more often closed due to a depositor either dying or moving than because the depositor moved

their funds to a bank with better rates or services.

In the second half of the paper, we develop and estimate a model of demand and supply

for deposits that features sleepy depositors. In the model, depositors enter a given period

either active (“awake”) or inactive (“asleep”) following the basic setup of Beggs and Klemperer

(1992) and Brown et al. (2024). Active depositors shop for bank accounts and select the bank

that maximizes their indirect utility. In contrast, inactive depositors do not shop and simply

maintain their bank account from the previous period. We assume that whether a depositor is

active or inactive depends on market-specific and aggregate state variables, such as the federal

funds rate. In this way, our model can capture the drivers of sleepiness, such as inattention

(whether rational or irrational), switching costs, and search costs, in reduced form, although

we do not explicitly take a stand on the underlying mechanism.

Banks compete for deposits to maximize their franchise value, defined as the present value

of current and future profits. Depositor sleepiness creates invest-versus-harvest incentives on

the supply side, which in turn induces dynamic competition on deposit rates. Banks set rates

based on their stocks of sleepy deposits, but today’s rates affect the stocks of sleepy deposits

carried into tomorrow, which in turn shape the rates that banks set tomorrow. Banks collect

deposits and earn a spread, competing in each market by setting deposit rates.

The model is quantitative and straightforward to estimate using data. We begin by estimat-

ing the share of inactive depositors in each market, parameterizing depositor sleepiness as a

function of market-level and aggregate state variables. A key challenge in this estimation is to

determine whether the observed persistence in depositors’ choices over banks arises from de-
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positor sleepiness or from persistence in depositor preferences. We address this identification

challenge in two ways.

First, we leverage our microdata on account openings and closures. We show that, under the

assumptions of our model, new account activity is sufficient to identify the degree of depositor

sleepiness. This provides us with a first, direct measure of sleepiness. Second, we examine

the annual autocorrelation in bank deposits at the bank-by-county level. A natural concern is

that this autocorrelation may be driven by both depositor sleepiness and persistence in branch

quality. To control for unobserved quality, we use a control function approach, as outlined in

Allen et al. (2024), incorporating cost-shifter instruments used in Whited et al. (2021) and

Whited et al. (2022).

We estimate that approximately 94% of depositors are inactive each year, consistent with

estimates from practitioners (Bancography, 2014). These estimates are quantitatively similar

across our two approaches to measuring sleepiness. Consistent with our reduced-form evidence,

we find cross-sectional variation in the degree of sleepiness across depositors. In addition, we

find that sleepiness is negatively correlated with the lagged federal funds rate—people wake up

when interest rates increase. This evidence is consistent with other work (e.g., Lu et al., 2025)

that highlights that depositor alertness tends to increase when the returns to shopping are high.

With our estimates of sleepiness in hand, we next estimate depositor preferences. We use

our estimates of sleepiness to calculate each bank’s market share among active depositors. The

choices of these active depositors allow us to estimate the preferences of depositors. Specifically,

we calculate each bank’s market share among active depositors and then estimate preferences

using market share data following Berry (1994). We find that accounting for depositor sleepi-

ness is critical for estimating depositor’s preferences. Depositors appear to be about 33% more

elastic after accounting for sleepiness.

Lastly, we estimate the supply-side parameters of our model. The way in which each bank

optimally navigates the invest-versus-harvest tradeoff depends both on the demand-side pa-

rameters (preferences and sleepiness) and on the way in which rate choices today affect all

banks’ market shares tomorrow (Beggs and Klemperer, 1992). To accommodate these forces in

our estimation, we use the simulation-based approach developed in Bajari et al. (2007). Given

our demand-side parameter estimates, a rate-setting policy function mapping states to deposit

rates, and a marginal cost function, we forward-simulate deposit rates and market shares over

many time periods and alternative paths of play to construct expected franchise values at many

points in the state space. We recover marginal costs by finding the parameter values that best

rationalize the estimated policy as optimal.

We use our demand- and supply-side model estimates to quantitatively understand the im-

portance of sleepy deposits. We consider counterfactuals in which all depositors are always

active, eliminating the invest-versus-harvest tradeoff and rendering competition static. This

comparison not only generates interesting economic insights, it is also policy-relevant. Reg-

3



ulators in several countries, most notably the UK’s Financial Conduct Authority (FCA), have

sought to increase the extent to which banks pass through interest rates to their depositors.2

Our static counterfactual is a limiting case of the FCA’s proposal in which bank deposit betas

are constrained to unity and banks compete with each other on constant spreads as opposed

to time-varying ones. By forcing banks to simultaneously make all current and future strategic

choices, this policy eliminates the dynamic invest-versus-harvest tradeoff otherwise induced by

depositor sleepiness.

Our estimates imply that sleepiness contributes significantly to average markups. Markups

would be 53% lower on average in the absence of depositor sleepiness, falling from about 68

basis points (bps) to about 32 bps. Moreover, sleepiness changes the cyclicality of markups,

making them procyclical. At the zero lower bound, the average markup is about 31 bps. On

the other hand, we estimate an average markup of 127 bps in 2023, after short-term interest

rates had risen to over 5%. This cyclicality is not simply due to the fact that realized rates

systematically undershot expectations throughout most of our sample period. For simple mar-

ket structures, we can directly compute the equilibrium of our model and demonstrate that

markups are cyclical in equilibrium. In other words, invest-versus-harvest incentives vary over

the business cycle in a way that generates cyclical markups. When the short rate is high, banks

with high market shares harvest their existing deposit bases, raising their markups. This softens

competition, allowing banks that are investing in growing their deposit bases to charge higher

markups than they otherwise would.

We then show that sleepiness and dynamic competition also change the geographic distribu-

tion of markups. In particular, they increase markups in areas that a static view of competition

would suggest are competitive, i.e., in low-concentration areas with low Herfindahl-Hirschman

indices (HHIs). In these markets, banks endogenously shift towards harvesting their sleepy

deposit bases, softening competition for active depositors.

We next turn to examining deposit franchise value. Under our static counterfactual, the

average bank’s deposit franchise value falls by about 58%. In other words, sleepiness accounts

for more than half of the value of the average bank’s deposit franchise. We also document a

large degree of cross-bank heterogeneity in the dependence of franchise value on sleepiness. In

particular, banks with low-quality deposit services and banks with high marginal costs benefit

most from sleepiness: moving from the 25th to the 75th percentile of product quality decreases

sleepiness dependence by about 10.4 percentage points (62% to 51.6%), whereas moving from

the 25th to the 75th percentile of marginal costs increases sleepiness dependence by about 3.4

percentage points (54.9% to 58.3%). Intuitively, sleepiness allows low-quality, high-cost banks

to charge relatively high markups without losing too many depositors in the near-term.

Finally, we quantify the consequences of these counterfactual reductions in deposit fran-
2Laura Noonan and Lucy Fisher, “UK Regulator Sets Deadline for Banks to Justify Low Interest Rates for Savers,”

Financial Times, July 31, 2023, https://www.ft.com/content/e03abe49-a513-4777-8d90-32e252733690.
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chise values for financial stability. For the three largest deposit-taking banks (JP Morgan, Bank

of America, and Wells Fargo), we convert franchise value losses into changes in risk-neutral

probabilities of default. We estimate substantial increases in default probabilities for all three

banks, increasing by about 10 percentage points in normal times and more than 20 percentage

points during the 2022-2023 monetary tightening cycle.

We consider two extensions of our model. In the first, we extend our model of banks to

allow price discrimination between new and existing depositors by offering short-term bonuses

to new customers. This enables banks to partially, though not perfectly, discriminate between

active and inactive depositors. The model estimates suggest that, while offering bonuses can

be an effective way to attract new customers, banks face large customer acquisition costs. Our

estimates suggest that it costs a bank roughly 15 cents to attract an additional dollar of deposits

from new depositors. In the second, we allow depositors to make forward-looking choices

when they are active. We estimate demand to be more elastic in this specification relative to

our baseline results. Although both extensions enrich the model, they do not quantitatively alter

our conclusions about how dynamic competition and the corresponding invest-versus-harvest

tradeoff affect competition in the banking sector.

The remainder of the paper is as follows. We first conclude the introduction by reviewing the

different literatures to which our paper contributes. Section 2 describes our data sources and

sample construction, and provides summary statistics of the key variables used in our empirical

analysis. Section 3 presents several new stylized facts about depositor behavior that motivate

the need for a quantitative model of depositor sleepiness. Section 4 describes our model, which

we structurally estimate in Section 5. We use our estimates to analyze policy counterfactuals in

Section 6, after which we conclude.

Related literature:

Our paper relates to several strands of literature. First, we contribute to the growing litera-

ture at the intersection of banking and industrial organization. Previous studies, including Dick

(2008), Egan et al. (2017), Xiao (2020), Whited et al. (2021), Egan et al. (2022), and Wang

et al. (2022), have employed standard demand estimation tools from the industrial organiza-

tion literature to estimate static demand for bank deposits and study the implications for bank

stability, monetary policy, and bank value.3 We extend this line of work by incorporating dy-

namics into both household demand for deposits and bank competition for those deposits. Our
3These tools have also been applied to the asset side of banks (Buchak et al., 2018; Benetton et al., 2021;

Benetton, 2021; Allen et al., 2024). Other related work includes Ackerberg and Gowrisankaran (2006), which
analyzes how network externalities shape customer and bank adoption of the ACH payments system; Gowrisankaran
and Krainer (2011), which studies the consumer welfare effects of banning ATM surcharges; Aguirregabiria et al.
(2024), which examines how bank competition and economies of scope and scale influence the distribution of
credit in the United States; and Corbae and D’Erasmo (2020), Corbae and D’Erasmo (2021), Corbae and D’Erasmo
(2024), which study banking industry dynamics, including the interactions between bank regulation, competition,
and financial stability.
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estimation of depositor preferences incorporates information about depositor turnover from

new microdata. We show that dynamics substantially alter the competitive equilibrium in the

U.S. banking market, raising average markups, protecting low-quality and high-cost banks from

competition, and increasing financial stability.

Second, we contribute to the literature in industrial organization on dynamic competi-

tion under inertial demand (Farrell and Shapiro, 1988; Beggs and Klemperer, 1992; Padilla,

1995). Recent structural work has highlighted the importance of accounting for dynamics,

inattention, and switching costs in both the banking sector (Honka et al., 2017) as well as

other retail markets, such as consumer packaged goods (Dubé et al., 2009), digital camcorders

(Gowrisankaran and Rysman, 2012), printers (Melnikov, 2013), the gasoline market (MacKay

and Remer, 2024), health insurance (Fleitas, 2017; Miller, 2019; Pakes et al., 2021), index

funds (Brown et al., 2024), and subscription markets (Einav et al., 2023). Additionally, pre-

vious work has emphasized the importance of inattention in shaping consumer mortgage refi-

nancing decisions (Agarwal et al., 2016; Andersen et al., 2020; Zhang, 2022). We show that

dynamics significantly alter competitive behavior in the $18 trillion US deposit market. Rela-

tive to prior work, our findings offer new insights into the heterogeneous impacts of inertial

demand on competition in the cross-section of both firms and markets.

Finally, we relate to the broader literature on bank deposits. One part of this literature

studies the sluggish and incomplete response of deposit rates to changes in the federal funds

rate (Berger and Hannan, 1991; Neumark and Sharpe, 1992). Drechsler et al. (2017) argue that

the sluggish response of rates is driven by bank market power: when the funds rate increases,

the opportunity cost of using cash as a substitute is higher, effectively increasing banks’ market

power and allowing them to raise their deposit spreads. Our model offers a complementary

mechanism, generating the sluggish adjustment of deposit rates through changes in banks’

invest-versus-harvest incentives as the funds rate changes. Another part of this literature uses

microdata to shed light on sources of sleepiness, generally finding that inattention (rational

or otherwise) is an important ingredient (Argyle et al., 2025; Lu et al., 2025; Lu and Wu,

2025; Cirelli and Olafsson, 2025). Our model is consistent with several sources of sleepiness,

including inattention, and our contribution is to explore the consequences of sleepiness for

dynamic competition. A third part of the literature underscores the importance of deposit

franchise value for bank runs, particularly during the 2023 Regional Banking Crisis (Drechsler

et al., 2023; DeMarzo et al., 2024; Jiang et al., 2024; Blickle et al., 2025). We show that

deposit sleepiness substantially raises deposit franchise value, amplifying the importance of the

channels these papers study.
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2 Data

We combine several different datasets for our analysis. Our primary data sources are: anonymized

data on account openings and closures from one of the core bank processing platforms, annual

information on deposit volumes at the branch level from the FDIC Summary of Deposits, quar-

terly information on bank salaries and fixed expenses from the FDIC Call Reports, and weekly

information on bank deposit rates at the branch×account-type level from Ratewatch. We also

bring in secondary sources of data to supplement portions of the analysis, namely county-level

demographics from the Census’ American Community Survey.

2.1 Sources

2.1.1 Bank Microdata

Our anonymous microdata comes from one of the core account processing platforms. The

dataset includes turnover data from 89 banks and credit unions, covering 12 million deposit

accounts. We use the data to study deposit account openings and closures and how they vary

with depositor characteristics.

2.1.2 Summary of Deposits

We obtain Summary of Deposits data from the FDIC website from 1994-2023. In particular, we

collect information on branch-level deposit volumes for each bank branch as of June 30th of

each year. Because banks have substantial latitude to allocate deposits across branches within

county, we aggregate observations up to the bank-county-year level for all of our analyses.

2.1.3 RateWatch

RateWatch is a commercial vendor that collects high-frequency information on banks’ deposit

rates across both account types and branches. The data that we obtain from RateWatch has

coverage from 2001 through the end of our sample period (June of 2023). To map into our

Summary of Deposits data, we construct a bank-county-year panel of average deposit rates

for several different account types: checking accounts, savings accounts, $10k money market

deposit accounts, $25k money market deposit accounts, 3-month Certificates of Deposit, and

12-month Certificates of Deposit. For each rate type, we obtain a single rate for each bank-

county-year cell by averaging over all reported rates for the bank’s branches within that county

from April-June of that year.

Our reported estimates throughout the paper use rates constructed from $10k money mar-

ket deposit accounts, which we have found to be most reflective of the average rate over banks’
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deposit mixes (i.e., including their non-interest-bearing deposit volumes).4

2.1.4 Call Reports

We collect quarterly data on banks’ salaries and fixed expenses from the FDIC Call Reports.

These cost data are important for identifying the structural parameters corresponding to our

household deposit demand system. We construct two bank-year level cost shifters used for our

analysis: (i) cumulative salary expenses from June of the prior year to June of the current

year, deflated by number of employees as of June of the prior year; (ii) cumulative non-interest

expenses on premises and fixed assets from June of the prior year to June of the current year,

deflated by total assets as of June of the prior year.

2.2 Sample Construction

We construct a bank×county×year level panel containing: (i) total deposits, from the Summary

of Deposits; (ii) average offered deposit rates, from RateWatch; (iii) bank-level cost shifters,

from the Call Reports; (iv) numbers of new accounts and total active accounts, from the micro-

data; and (v) county-level demographics, from the 2019 American Community Survey.

Because we need to account for the effects of interest accumulation on deposit volumes

throughout our empirical analyses, which requires knowledge of deposit rates from the prior

year, we restrict our sample to observations for which we have bank-county level deposit rate

and deposit volume information for both the current and the prior year.5 To reduce noise in our

forward simulations, we further restrict the sample to bank-county pairs appearing in at least 5

years of data. Finally, we drop any remaining single-bank markets. Our final sample contains

341,395 observations covering 2002-2023.

2.3 Summary Statistics

Table 1 displays summary statistics for the key variables used throughout our empirical analysis.

The average deposit rate in our sample is 34 bps, and the average spread between the federal

funds rate and deposit rates is 97 bps.6 The average bank-county observation in our sample has

a market share of 16%.
4In untabulated results, we verify that both our reduced-form and structural estimates are quantitatively similar

under various alternative constructions of deposit rates.
5As a result, we have to drop observations from 2001 – the first year for which we have RateWatch data. Our

sample will also therefore omit the first year in which a bank operates in a county.
6Deposit rates in our sample are lower than what one would infer from deposit interest expenses in the Call

Reports – the primary reason for this discrepancy is that we use rates offered on small-balance savings accounts,
whereas a large share of call report deposits are certificates of deposit and wholesale deposits, both of which tend
to offer significantly higher interest rates.
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3 Motivating Evidence

The premise of our model and paper is that depositors are “sleepy”—they are often inactive for

long periods and shop infrequently. Here, we use our turnover data to document the persistence

in account holdings and understand the potential drivers of this persistence. We examine both

account openings and closures.

3.1 Account Openings

We first show that depositors rarely open new accounts, examining account turnover and aver-

age account life. We calculate turnover by dividing the total number of new accounts of that

type, across all banks in a given year, by the total number of existing accounts of the same type

for that year. Average account life is given by the reciprocal of the turnover rate.

Figure 1 displays average account life for different account types. Turnover is similar for

checking and savings accounts. New checking and savings accounts make up roughly 8-15%

of existing accounts, translating to an average life of about eight years. Turnover for time

deposit accounts is higher. New time deposit accounts comprise about 10-20% of all active

time deposit accounts, corresponding to an average life of about six years. This higher turnover

for time deposits is intuitive, as time deposit accounts have a natural maturity date, which

prompts depositors to open and close accounts.

As one would expect, business accounts and accounts with large initial balances exhibit

higher turnover, while accounts held by people over the age of 65 feature much lower turnover.

Somewhat surprisingly, internet banking accounts exhibit lower turnover. One might expect

internet banking customers to be more sophisticated and thus more likely to shop around.

However, our subsequent results in Section 3.2 shed light on this: a common reason depositors

switch accounts is relocation. Customers without online banking typically need to open a new

account when they move to an area in which their current bank does not have any branches,

whereas online banking allows them to continue to use their account even in the absence of a

nearby branch.

To systematically summarize the cross-sectional drivers of turnover, we classify bank ac-

counts along five key attributes: account type (checking, savings, or time deposits), holder type

(person, business, or trust), online banking setup (yes or no), initial balance above $50,000

(roughly the top 10% of accounts), and whether the account-holder is over 65 years old (for

personal accounts). This results in 72 unique account profiles (3x3x2x2x2), denoted by i, at

the bank-by-year level. We then calculate account turnover for each profile-by-bank-by-year

combination:

Turnoverijt = at + aj +X ′
ijtb+ eijt. (1)
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We control for the account characteristics used to construct the account profile cells in Xijt. We

also include bank fixed effects (aj), time fixed effects (at), and bank-time fixed effects (ajt) in

our most stringent specification.

Table 2 displays the regression results corresponding to equation (1). Consistent with Figure

1, turnover varies by account type. Column (4) indicates that, within a bank-year, savings

accounts on average have turnover rates 1.3 percentage points higher than checking accounts,

while turnover among time depositors is 5.1 percentage points higher than for individuals with

checking accounts. Turnover is 4.8 percentage points lower for account holders aged 65 and

older, suggesting that older customers are less likely to shop around for banks. Turnover is

4.1 percentage points higher for business accounts and 7.2 percentage points higher for larger

accounts.

The low average account turnover we observe could be due to either (i) persistent depositor

preferences over banks or (ii) frictions like depositor sleepiness, switching costs, or search

costs. The cross-sectional variation in account turnover we document within bank-year in Table

2 seems more consistent with frictional explanations. For instance, consider our result that

business and large accounts at the same bank at the same time have higher turnover than other

accounts. This is more likely explained by lower search and switching costs than by the idea

that these depositors have more volatile preferences. Similarly, older retail depositors likely

exhibit lower turnover because they face higher search and switching costs, not because their

preferences are more persistent than others.

3.2 Account Closings

We next examine why depositors switch banks, focusing on account closings. Our microdata

provides details on the reasons customers close bank accounts. When an account is closed, the

bank typically reports the reason in a standardized format. For 75% of closures, we observe a

reason, along with a brief description, which we categorize into five different classifications.7

Figure 2 displays a histogram of the reasons why customers close bank accounts. The most

common reason is “inactivity,” where the bank closes the account on the customer’s behalf.

Other common reasons include the account no longer being needed by the customer or the

customer moving or passing away. Collectively, moves and deaths account for over 20% of

closures, with half attributed to moving.

Conversely, depositors report switching to a bank offering better rates, services, or fees in

only 17% of cases. These findings suggest that, while some consumers actively shop for better

banking options, many are inactive and close accounts for more idiosyncratic reasons.
7We focus on closures where the depositor provided a reason and exclude those resulting from internal transfers

within the bank (i.e., when the depositor closed an account due to opening another within the same bank). In 25%
of closures, no reason is provided, and internal transfers account for 18% of all closures.
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4 Model

We develop and estimate a tractable dynamic model of demand and supply for deposits. A key

feature of the model is that we allow the persistence of deposit demand to be driven by both

product quality persistence and depositor sleepiness.

In the model, depositors are either awake (i.e., active) or asleep (i.e., inactive) each period,

following the basic setup of Beggs and Klemperer (1992) and Brown et al. (2024). Whether a

depositor is awake or asleep in a given period is an exogenous process, which can be thought of

as a reduced-form approximation to switching costs or inattention. Depositors who are awake

re-optimize and select the bank that maximizes their utility, while depositors who are asleep

maintain their banking relationship from the previous period.

Banks set deposit rates, dynamically competing for depositors to maximize the franchise

value of the bank. Due to depositor inactivity, banks may face “invest-versus-harvest” incen-

tives. On one hand, inactive depositors mechanically make deposit demand less elastic. This

reduced elasticity incentivizes banks to offer lower deposit rates and “harvest” their existing

depositor base. On the other hand, depositor sleepiness increases the lifetime value of attract-

ing a depositor today. Each depositor the bank attracts is, in expectation, likely to remain a

depositor in the future due to sleepiness. This effect of sleepiness on the expected length of the

depositor-bank relationship encourages banks to offer higher deposit rates and “invest” in their

depositor base.

4.1 Depositors

Each period, depositors are either awake or asleep. Awake depositors select the bank that

maximizes their indirect utility, while asleep depositors maintain their banking relationship

from the previous period. We model an awake depositor’s bank choice as a discrete choice

problem following Berry (1994).

4.1.1 Depositor Preferences

Households demand deposit accounts. Active depositors select the bank j from the set Jk

available in market k to deposit their funds. Depositors derive utility from promised deposit

rates and other bank services. The indirect utility derived by depositor i from bank j in market

k at time t is given by:

uijkt = αρjkt + δjkt + εijkt.

Without loss of generality and for ease of exposition, we write the utility of a depositor in

terms of deposit spreads (ρjkt) rather than deposit rates. The deposit spread is defined as the

difference between the risk-free rateRF
t and the deposit rate: ρjkt := RF

t −rjkt. The spread then
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reflects the “price” that depositors pay for banking services. The parameter α < 0 measures the

disutility depositors experience from paying higher spreads (i.e., prices).

Depositors also derive utility from banking services, captured by δjkt + εijkt. The term δjkt

reflects vertical differentiation at the bank-by-market-by-time level: bank quality differences

that vary across banks, markets, and over time. For example, Bank of America may offer

superior services relative to Citibank in a specific market, for instance due to the location of

their branches. The term εijkt captures horizontal differentiation in the marketplace. In other

words, depositors do not necessarily agree on which bank is the best in a given market.

One could interpret this setup in two ways. Either depositors make myopic choices, with

uijkt capturing the indirect utility received in the current period. Or they make forward-looking

choices, with uijkt capturing the full expected discounted utility of selecting a bank in the

current period, acknowledging that they may be inactive and thus unable to reoptimize in

subsequent periods. For the purposes of presenting the model, we do not need to take a stand

on the interpretation of uijkt. For estimation and counterfactuals, the interpretation matters. In

our baseline specification, we assume that depositors are making a myopic choice, though we

explore the case of fully forward-looking demand in Section 5.4.2.

4.1.2 Depositor Sleepiness

Depositors enter each period as either active or inactive. We let the indicator variable Dit

denote whether a depositor i is active at time t. Whether a depositor is active depends on the

latent variable D∗
it, where:

D∗
it = S′

k(i)tΓ +X ′
itΘ+ ηit, Dit = 1(D∗

it > 0). (2)

The term Sk(i)t is a vector of market-level and aggregate state variables (e.g., the federal funds

rate) that influence whether a depositor in market k is active at time t. The parameter Γ

measures how these state variables impact whether a depositor is awake or asleep. For example,

depositors may be more likely to become active when aggregate interest rates are high. The

term Xit is a vector of depositor characteristics that impact whether a depositor is awake or

asleep, such as the depositor’s age. Lastly, the term ηit is a depositor-specific idiosyncratic

shock, generating heterogeneity in which depositors are active versus inactive.

The share of depositors that are inactive in a given market k at time t is given by

ϕkt = 1− E[Dit|Sk(i)t],

where we take the expectation over the idiosyncratic shocks ηit and depositor demographics

Xit. When we estimate the model, we estimate the parameter ϕkt as a function of market-level

and aggregate state variables Skt.
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Our model of depositor activity through the parameter ϕkt can be thought of as a reduced-

form approach that captures several underlying frictions, such as inattention or switching costs.

For example, a depositor may be rationally inattentive until the federal funds rate is high

enough to justify acquiring more information and searching for a new bank. Our model captures

these effects through the term S′
ktΓ. Similarly, the parameter ϕkt may also capture switching

costs, as depositors may not switch banks until the return from doing so is sufficiently large to

offset these costs.8

4.2 Banks

Banks engage in dynamic oligopolistic competition to maximize the present discounted value

of all current and future profits. Each period t, bank j collects deposits in market k at interest

rate rjkt and invests them in a constant-returns-to-scale technology Rjt ∼ N (µjt, σjt).

Banks face two types of marginal costs. First, they must pay the promised deposit rate rjkt
to each depositor. Second, they incur a constant marginal cost cjkt of collecting deposits. This

cost consists of both explicit expenses for servicing depositors (e.g., variable wages for bank

tellers) and any implicit benefits or costs of acquiring an additional deposit.

The bank’s flow profits, denoted πjt, at time t are given by:

πjt =
∑
k∈K

Depjkt((Rjt −RF
t ) + ρjkt − cjkt).

The bank collects deposits Depjkt in each market k, and K denotes the set of markets. The

marginal profit associated with collecting an additional dollar of deposits for bank j in market

k at time t is given by Rjt − RF
t + ρjkt − cjkt, where Rjt − RF

t captures excess lending returns

over the short rate, ρjkt = RF
t − rjkt captures the benefit of funding at the deposit rate rather

than the short rate (i.e., the deposit spread), and cjkt captures the non-deposit-related marginal

cost of an additional dollar of deposits.

The above assumes that banks must offer the same deposit rate to all depositors in a market.

In reality, banks may price-discriminate between their existing (“incumbent”) depositors, many

of whom are inactive in a given period, and depositors they are trying to win over from other

banks, all of whom must by construction be active in that period. In Appendix E, we develop and

estimate an extension in which banks can offer separate rates in each period to their incumbent

and new depositors, potentially incurring different marginal costs when servicing new versus

incumbent depositors. This extension allows banks to partially, though not perfectly, price

discriminate across active and inactive depositors. The model estimates suggest that, while

offering bonuses can be an effective way to attract new customers, banks face large customer
8Of course, the exact moment of the rate distribution that drives depositor behavior depends on the exact micro-

foundation. In a switching cost model, the maximum rate matters, while in a search model, conditional expected
rates matter.
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acquisition costs.

Bank j’s franchise value at time t, denoted Vjt, is given by the present discounted value of

all current and future profits:

Vjt = E
[ ∞∑
s=t

βsπjs

]
,

where the bank discounts future profits by the discount factor β < 1.

4.3 Equilibrium

Following Bajari et al. (2007), we study stationary Markov Perfect Equilibria in pure strategies.

Under this solution concept, each bank’s equilibrium choices in each market are functions only

of: (i) the current values of the game’s payoff-relevant states, which are commonly observed by

all market participants; and (ii) an i.i.d. private cost shock drawn at the start of each period.

These assumptions allow us to avoid explicitly estimating banks’ first order conditions. Instead,

we rely simply on the assumption that their actions yield higher franchise value than other

possible actions.

4.3.1 Depositors

In equilibrium, all active depositors select the bank that maximizes their indirect utility, while

inactive depositors maintain their choice from the previous period. Following the demand esti-

mation literature, we assume that the depositor-bank-market-time specific utility shocks (εijkt)

are distributed as Type-1 Extreme Value (Berry, 1994; Berry et al., 1995). This depositor opti-

mization implies that the market share of bank j in market k at time t among active depositors

(i.e., the probability an active depositor selects bank j in market k at time t) is given by:

sActive
jkt =

exp(αρjkt + δjkt)∑
ℓ∈Jk

exp(αρikt + δℓkt)
, (3)

where sActive
jkt denotes the bank’s market share among active depositors.

Inactive depositors select the same bank as in the previous period. Thus, total deposits

collected by bank j in market k at time t are given by:

Depjkt = (1− ϕkt)Mkts
Active
jkt︸ ︷︷ ︸

Active Depositor Demand

+ϕkt(1 + rjkt−1)Depjkt−1︸ ︷︷ ︸
Inactive Depositor Demand

, (4)

The first term on the right hand side represents active depositor demand, which is equal to the

share of depositors who are awake, 1−ϕkt multiplied by the size of the deposit market, Mkt, and

the bank’s active market share, sActive
jkt . The second term represents inactive depositor demand,

which is equal to the deposits collected by the bank in the previous period, Depositsjkt−1,
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grossed up by the interest they earned (1+ rjkt−1), multiplied by the fraction of depositors who

are inactive, ϕkt.

4.3.2 Banks

Banks compete for deposits by playing a dynamic, Markovian rate-setting game: they formulate

strategies as functions of current, payoff-relevant states. In each market k, the state space

consists of:

1. exogenous public states Ωkt: objects that are invariant to banks’ actions (e.g., the federal

funds rate, bank-specific quality δjkt).

2. endogenous public states Wkt: objects that are functions of banks’ past actions (e.g., mar-

ket shares in k)

3. exogenous private states χkt: i.i.d. cost shocks drawn by each bank in the market at the

start of each period. We assume that the distribution of these shocks is common over

banks, markets, and time, and that it is known by all participants.

Let Skt := (Ωkt,Wkt) denote the ex-ante state of the game for a given market and period

(i.e., before cost shocks are realized). Bank j’s franchise value from choosing a spread-setting

strategy σj : Skt × χjkt → ρjkt, given its conjecture of other banks’ rate-setting strategies σ−j ,

follows the recursion:

V (Skt,σ) = Eχjt,Rjt [Dep(Skt,σ)(Rjt −RF
t + σj(Skt, χjt)− c(Skt, χjt)) |Skt] (5)

+ βESkt+1,χt+1
[V (Skt+1,σ) |σ,Skt]

where Dep(·) re-casts equation (4) as a function of the state.9 Under a well-defined state

transition process: T : Skt × ρkt → Skt+1, the recursion in equation (5) is well-defined.

Importantly, our specification of the private shocks χkt simplifies the problem considerably:

shocks can affect banks’ current actions and current costs, but by the Markov property these

are the only channels through which they can affect future outcomes of the game. Moreover,

because the shocks are i.i.d., we need not condition on past realizations in the continuation

values in equation (5), which would be difficult given that the shocks are unobservable.10

9That is,

Dep(Skt,σ) := ϕ(Skt)M(Skt)s
Active(Skt,σ) + (1− ϕ(Skt))(1 + σ(Skt−1, χt−1))Dep(Skt−1,σ)

10Berry and Compiani (2023) develop a way to accommodate serially correlated unobservables in settings such
as ours, but their approach comes at the cost of no longer point-identifying the parameters of the policy function.
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In equilibrium, all banks must prefer their current strategy to any other Markovian strategy,

holding fixed conjectures about opponents’ play:

V (S,σ) ≥ V (S, σ′j ,σ−j) ∀S ∈ S, ∀σ′j , ∀ j ∈ J ,

In our empirical analysis, we restrict our attention to symmetric equilibria.11

4.4 Discussion: Dynamic Versus Static Competition

Equation (5) can be used to illustrate intuitive differences between static and dynamic compe-

tition. Consider a single market of constant size M = 1 that is populated by J banks. Each

bank j enters the current period with lagged market share sj,− and has constant marginal cost

cj and constant product quality δj . Suppose that there is no aggregate risk (i.e., the short rate

RF
t is constant).

Differentiating equation (5), bank j’s equilibrium markup is given by :

ρj − c︸ ︷︷ ︸
markup

=
−1

α(1− sActive
j )︸ ︷︷ ︸

static pricing rule

+
ϕ

1− ϕ

sj,−

sActive
j

−1

α(1− sActive
j )︸ ︷︷ ︸

harvesting incentive

+β∇Vj(s | δ, c)



sActive
1

1−sActive
j

...

−1
...

sActive
K

1−sActive
j


︸ ︷︷ ︸

investing incentive

(6)

The first term on the right hand side of equation (6) reflects the standard, statically optimal

“inverse-elasticity” pricing rule. The second term reflects the bank’s incentive to harvest its

installed base of sleepy deposits. The relative strength of the harvesting incentive is increas-

ing in sleepiness ϕ. Moreover, the harvesting incentive is always non-negative: at the static

equilibrium outcome, if ϕ > 0, the harvesting incentive exerts upward pressure on markups.

The third term captures the bank’s incentive to invest in growing its deposit base. The

relative strength of bank j’s investment incentive is a function of three objects: (i) the discount

rate; (ii) the sensitivity of bank j’s value function to the vector of lagged market shares; and

(iii) the sensitivity of market shares to bank j’s spread.

The importance of the discount rate is intuitive, as the benefits from investing are realized

in the future. The sensitivity of the value function to lagged market shares arises because

a fraction of today’s depositors will be asleep tomorrow. If all depositors were awake, our
11It is, in principle, feasible to relax this assumption by estimating separate rate-setting policy functions across

banks or markets. However, the second stage of the Bajari et al. (2007) procedure has been shown to be highly
sensitive to policy function approximation error. We therefore prefer to pool observations when estimating the policy
function to reduce noise.
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model would become static and this sensitivity would be zero. The final object on which the

investment incentive depends, the sensitivity of market shares to bank j’s deposit spread, is

important because it scales the afore-mentioned change in the value function. Given the logit

structure of our demand system, this object is simply the vector of diversion ratios from bank j

to all other banks in the market.

Equation (6) shows that it would be difficult to obtain closed-form results relating equilib-

rium markups to model primitives. Strategic interactions across time periods, encoded by the

term ∇V (s | δ, c), are shaped by all banks’ product qualities and marginal costs. The richness

of these strategic interactions can overturn intuitions obtained from static models, highlighting

the importance of accurately modeling the dynamic nature of deposit market competition.

5 Estimation

A key strength of our model is that it is dynamic, quantitative, and relatively straightforward to

estimate. The parameters to estimate are the sleepiness function ϕ(Skt), depositor preferences

(α, δjkt), and bank marginal costs (cjkt). We estimate the model in three steps.

First, we estimate depositor sleepiness. Second, given our estimates of depositor sleepiness,

we estimate the preferences of active depositors following Berry (1994). Third, to estimate

marginal costs, we employ the two-step approach developed by Bajari et al. (2007). We flexibly

estimate the mapping from banks’ observed states to the deposit spreads they set. Marginal

cost parameters are then estimated by exploiting the equilibrium condition that the observed

spread-setting policy function maximizes all banks’ expected franchise values.

5.1 Depositor Sleepiness

In our estimation, we allow sleepiness to vary depending on depositor type and market char-

acteristics as motivated by our reduced-form analysis in Section 3. Depositor types, denoted ℓ,

are defined by a vector of demographics Xℓkt. For depositor type ℓ, bank j, county k, and year

t, total deposits are given by the following identity:

Depℓjkt = (1− ϕ(Skt,Xℓkt))Mℓkts
Active
jkt︸ ︷︷ ︸

Active Depositor Demand

+ϕ(Skt,Xℓkt)(1 +RF
t−1 − ρjkt−1)Depℓjkt−1︸ ︷︷ ︸

Inactive Depositor Demand

(7)

where Mℓkt refers to the total market size within depositor type l and sactivejkt refers to bank j’s

market share among active depositors.12 We estimate depositor sleepiness jointly using two sets

of moments, one from our microdata on account turnover and the second the autocorrelation

of branch-level deposits.
12Market shares are constant across depositor types, given our assumptions on active depositor preferences.
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5.1.1 Account-Level Turnover

The challenge in estimating equation (7) from our microdata is that we do not directly ob-

serve active demand. However, our data on new account openings allow us to compute active

demand under our model assumptions. New account openings at bank j at time t equal the

number of depositors who were active at t and selected bank j, but did not previously bank

with bank j, such that:

NewDepℓjkt = (1− ϕ(Skt,Xℓkt))Mℓkts
Active
jkt (1− sjkt−1),

which implies

Active Depositor Demand = NewDepℓjkt
1

1− sjkt−1.

We are relying on the assumption of our model that, conditional on average bank utility, deposi-

tors’ idiosyncratic preferences εijkt are independent over time. Otherwise, depositors previously

at bank j who are awake in period t would have a different propensity to select bank j than

other depositors awake in the same period.13

With this assumption, all objects in equation (7) are observed. To proceed with estimation,

we divide by deposits, Depℓjkt and rearrange to obtain:

1−
NewDepℓjkt
Depℓjkt

1

1− sjkt−1
= ϕ(Skt,Xℓkt)

Depℓjkt−1

Depℓjkt
+ eℓjkt (8)

where eℓjkt represents measurement error that is “outside” the model. Equation (8) shows that

depositor sleepiness closely maps to the reduced-form evidence presented in Section 3. The

dependent variable is a scaled version of our measure of deposit turnover, NewDepℓjkt
Depℓjkt

, where

the structural model informs the appropriate scaling parameter.

When estimating these moment conditions using our micro-data, we measure total and new

deposits in terms of deposit accounts, defined at the depositor-type level.14 We define depositor

types as demographic cells based on whether the individual is over age 65, opened the account

with an initial balance less than $50,000, and signed up for internet banking. For example,

one cell would represent accounts held by individuals over 65, with an initial balance below

$50,000, who enrolled in internet banking.

To reduce noise and simplify the estimation, we set the right-hand side regressor of equation

(8), Depℓjkt−1

Depℓjkt
, to .95. That is, we assume a growth rate of about 5%. We also aggregate equation

(8) to the bank-cell-year level (i.e., aggregate across markets), replacing sjkt−1 with sjt−1, the

bank’s market share across all of its markets.
13As we discuss below, Figure 3 shows that the model closely matches an empirical moment that distinguishes

sleepiness from persistent preferences: the pace at which banks entering a new market accumulate market share.
14This explains why equation (8) omits the term (1 + RF

t−1 − ρjkt−1) that appears in (7). (7) is in dollar units,
while (8) measures numbers of accounts.
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Finally, we parameterize ϕ(·) to be linear in states and further assume that that ϕ(·) only

depends on the lagged federal funds rate and depositor characteristics: ϕ(Skt,Xℓkt) = Υ′
1St +

Υ′
2Xℓt. Thus, our estimated model more closely captures depositor inattention, rational or

otherwise, rather than search or switching costs — in search and switching cost models, ϕ(·)
depends on endogenous variables, not just exogenous state variables. Our assumption fits our

motivating evidence in Section 3.2, which showed that account closures were mostly driven

by idiosyncratic reasons rather than search. This distinction has a limited impact on the esti-

mation step, but it influences the real-world policies that correspond to the counterfactuals we

consider.15

5.1.2 Autocorrelation in Branch Deposits

To further discipline our estimation, we use bank-county level panel data on deposit volumes

from the Summary of Deposits. Equation (7) suggests that in this data we could estimate

ϕ(Skt,Xkt) = Υ′
1Skt +Υ′

2Xkt by running the following regression:

Depjkt = (Υ′
1Skt +Υ′

2Xkt)(1 +RF
t−1 − ρjkt−1)Depjkt−1 + νjkt.

However, this regression is only unbiased if lagged deposits are uncorrelated with active de-

mand (i.e., the first term in equation (7)). This assumption does not hold because of vertical

differentiation across banks. If some banks provide superior average deposit services, these

banks will have higher deposits and higher spreads both yesterday and today, regardless of

depositor sleepiness.

We adopt a control function approach to address this issue, regressing spreads on bank-level

cost shifters to recover latent demand:

Control Function: ρjkt = λZjt + vjkt︸︷︷︸
Latent Demand

(9)

Second Stage: Depjkt = (Υ′
1Skt +Υ′

2Xkt)(1 +RF
t−1 − ρjkt−1)Depjkt−1 +H(vjkt) + ιjkt

(10)

We use two cost shifters, Zjt: (1) salaries, calculated as wage expenses over the past four

quarters divided by the lagged number of employees, and (2) fixed expenses, summed over the

past four quarters and divided by lagged assets.

This approach requires two key identifying assumptions.16 First, the control function must
15For instance, consider a counterfactual setting ϕ = 0. If ϕ reflects inattention, the most relevant policy might be

an awareness campaign about rates. If ϕ reflects switching costs, the most relevant policies would facilitate opening
and closing accounts.

16We can relax these assumptions in our estimation by flexibly controlling for increasingly higher-order terms of
the cost shifters in the control function and the residuals in the second stage.
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be correctly specified: E[vjkt |Zjt ] = 0. Second, latent demand must be correctly specified:

H(vjkt) + ιjkt = νjkt

E[(1 +RF
t−1 − ρjkt−1)Depjkt−1 · ιijkt] = 0

Under these assumptions, we will consistently estimate the parameters Υ.

Finally, to facilitate comparability across markets with different amounts of deposits, we

estimate equation (10) in terms of market shares rather than the level of deposits.

5.1.3 Results

We report our estimates of depositor sleepiness in Table 3. Columns (1)-(2) rely solely on

depositor cell-level microdata, columns (3)-(4) present estimates using only the bank-county

level data, and columns (5)-(6) combine both sets of moments.

Column (1) shows that average inertia implied by our microdata is 86.8%. In other words,

we estimate that just under 87% of depositors are inactive at a given point in time.17 Column

(2) allows inertia to vary as a function of the federal funds rate and account-level demograph-

ics. Mirroring our reduced-form findings, we find that older account holders and those with

internet banking are substantially more inertial, whereas account holders with larger balances

are substantially less inertial. Inertia also falls as the short rate rises: a one percentage point

increase in the short rate reduces the fraction of depositors who are inactive by 0.4 percentage

points.

Columns (3) and (4) present control function estimates using only the Summary of Deposits

data. In column (3), we find that an additional dollar of lagged deposits increases current

deposits by 97.7¢. Thus, we find broadly similar inertia estimates leveraging different sources

of variation across two different data sets. Column (4) adds an interaction between lagged

deposits and the lagged federal funds rate. As in column (2), we find that inertia declines with

the short rate.

Finally, columns (5) and (6) report GMM estimates using both sets of moments and find

broadly similar results.

5.1.4 Sleepiness versus Persistent Unobserved Preference Heterogeneity: Evidence from

Market Entry

We now provide a brief validation of our assumption that inertia is driven by sleepiness rather

than by persistent unobserved preference heterogeneity. In our model, we allow observed and

unobserved bank quality to be correlated over time; however, we assume that conditional on

being awake, unobserved preference heterogeneity is not persistent (i.e., the depositor-specific
17By comparison, Brown et al. (2024) find that about 87% of retail index fund investors are inactive.
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utility shocks, εijkt, are i.i.d. across periods). In general, it can be difficult to determine whether

the persistence in deposits arises from inattention or from persistent unobserved preference het-

erogeneity. A key distinction between these two frictions, which we exploit, lies in the speed of

adjustment to new entrants. Persistent preference heterogeneity implies that an entrant should

immediately attain its steady-state market share. In contrast, depositor sleepiness implies that

the entrant can access only 1−ϕt ≈ 6.5% of the market in each period. As a result, a bank is lim-

ited in how quickly it can raise deposits, even if it offers high-quality services and competitive

deposit rates.

In Figure 3, we compare how fast entrant banks achieve their market shares at year 10 in the

data to their speed in a simulation of our model with our estimated preferences and degree of

sleepiness. One can think of this as an untargeted moment from the model. The two series are

very similar, indicating that depositors are sleepy. Moreover, the similarity in the curvature of

the paths in the data and our simulated model corroborates our estimated degree of sleepiness.

5.2 Depositor Preferences

5.2.1 Estimation

We estimate the preferences of depositors following Berry (1994). Equation (3) implies we can

estimate depositor preferences using the following regression:

log(sActive
jkt ) = αρjkt + δj + µkt + ejkt. (11)

Persistent unobserved heterogeneity in product quality that is not absorbed by bank fixed ef-

fects will again bias OLS estimates of equation (11). In addition, firms may take into account

idiosyncratic demand shocks that we cannot observe when setting prices.

We use the same control function approach as above to address these endogeneity concerns.

The identifying assumptions are that: (i) fluctuations in salaries and fixed expenses affect banks’

spread-setting decisions; and (ii) spreads are the only channel through which these cost shifters

affect market shares. In other words, it cannot be the case that the cost shifters are systemati-

cally related to unobserved demand shocks.

To estimate equation (11) we need each bank’s market share among active depositors, which

may differ from observed overall market shares. Following Brown et al. (2024), we convert

overall market shares to active market shares using our sleepiness estimates from Section 5.1:

DepActive
jkt := max

{
0, Depjkt−Υ′

(
Skt

X̃kt

)
(1+RF

t−1−ρjkt−1)Depj,k,t−1

}
, sActive

jkt :=
DepActive

jkt∑
ℓ∈Jk

DepActive
ℓkt

where X̃kt converts account-level demographics in the data into implied county-level demo-

21



graphics in the American Community Survey.1819

5.2.2 Results

We report our demand estimates in Table 4. To demonstrate the importance of accounting

for depositor sleepiness, columns (1) and (2) report estimates assuming that all depositors

are active (i.e., using overall market shares),20 while columns (3) and (4) report estimates

accounting for sleepiness (i.e., using active market shares).

Comparing the estimates in columns (2) and (4), we see that accounting for sleepiness

results in a 34% higher estimated elasticity of demand.21 Intuitively, given a change in rates

and change in total deposit quantities, the implied elasticity is higher when only a fraction of

deposits active and therefore able to react.

In Appendix 5.4.2, we re-estimate demand assuming that depositors are forward-looking.

We show that this amounts to adding an additional product characteristic to the demand sys-

tem: the discounted expected utility of remaining asleep and continuing to bank with today’s

active choice for many periods. We find qualitatively similar estimates under forward-looking

and myopic demand, though the former imply more elastic demand than the latter. More im-

portantly, both estimates indicate that, once we take sleepiness into account, depositors are

significantly more elastic than suggested by estimates generated under the assumption that all

depositors are always active.

5.3 Bank Costs

We collect each bank’s asset returns and marginal cost of producing deposits, Rjt − c(Skt, χjt),

into a single variable, which we term “net marginal costs.”22 We estimate these costs using the

two-step approach developed in Bajari et al. (2007) (henceforth “BBL”). The logic underlying

BBL is to bypass solving for the equilibrium of the model by instead assuming that observed

bank actions reflect equilibrium play. Section 5.3.1 explains how we parameterize marginal
18In particular, to extrapolate the account-level demographics used to estimate sleepiness in column (7) of ta-

ble 3 to the full Summary of Deposits sample, we map each demographic variable to the nearest corresponding
demographic in the American Community Survey.

19Our model implies that active demand should always be non-negative. However, because we estimate a high
degree of inertia and deposit growth is volatile at the bank-county level, active demand is negative in about 14%
observations. We drop these observations from the sample when estimating the active demand system.

20The estimates in columns (1) and (2) are similar to estimates in prior work.
21Elasticities are calculated assuming a market share of 10% and a deposit rate equal to the sample median, which

is approximately 15 bps.
22If external finance is costly, then our estimated net costs will reflect the marginal risk-adjusted return to lending–

part of the value of deposits arises from the fact that they are the marginal source of funding for loans. Conversely,
if Modigliani and Miller (1958) holds and external finance is frictionless,then our estimated net cost will not capture
returns to lending because banks essentially operate the deposit and lending businesses separately. This distinction
will become important in our counterfactual analyses on financial stability. In particular, if Modigliani and Miller
(1958) held, we would need to bring in additional information on the value of a bank’s lending franchise in order
to properly characterize its counterfactual probability of default.
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costs and characterizes the state space of the game. Section 5.3.2 specifies and estimates banks’

spread-setting policy function. Section 5.3.3 specifies transition functions for the state vari-

ables. Section 5.3.4 forward-simulates paths of play to calculate expected franchise values

under both the estimated policy function as well as many alternative policy functions, and uses

these estimates to recover marginal costs.

5.3.1 Parameterization and State Space

We parameterize net marginal costs to be a linear function of a common intercept, the current

short rate, the cost shifters, and the private cost shocks:

cjkt := ω + ζRF
t + γ′Zjt + χjkt

We allow net costs to vary with the short rate for two reasons. First, lending returns may vary

with the short rate. Second, it allows us to isolates variation in markups driven by variation in

the strength of invest-versus-harvest incentives over time.23

Given this cost specification and the Markov concept, the state space in market k at time

t consists of: (i) the current short rate RF
t ; (ii) lagged short rate RF

t−1; (iii) lagged deposit

shares;24 (iv) cost shifters (salaries and fixed expenses) Zkt; (v) product qualities δkt; (vi)

county demographics; and (vii) private cost shocks χkt.

5.3.2 Policy Function Estimation

The first step of the BBL estimation procedure requires us to recover the policy function, char-

acterizing the reduced-form mapping from states to actions. Since we have continuous state

and action spaces, we adopt a flexible parametric specification as in Ryan (2012) and Matvos

and Seru (2014).25 Our baseline policy function specification is a first-order polynomial of all

states, which we report in Table 5. Following Ryan (2012), we also include sums of competitors’

characteristics (costs, lagged market shares) as regressors.
23A large body of recent work has argued that deposit markups are strongly procyclical, e.g., Drechsler et al.

(2017, 2021, 2023); Xiao (2020); Whited et al. (2021); Wang et al. (2022). In these papers, the mechanism driving
procyclical markups is that the banking sector has more market power when rates are higher because holding cash,
the liquid outside option, becomes more expensive. This force is left out of our model, and our parameterization
will allow its effects to flow through to costs instead of markups.

24We use market shares instead of deposits to ensure that spread-setting behavior does not mechanically change
as the market grows in size in the forward simulation.

25In order to identify the policy function, we require a scalar unobservable assumption: the vector of unobservable
shocks in the policy function is one-dimensional. To satisfy this, we assume that unobservable shocks reflect shocks
to the marginal cost of servicing deposits. Given that we recover demand shocks from the estimated demand system
and control for them in the policy function, this is a reasonable assumption. Coupled with our assumption that
private cost shocks χ are mean-zero and i.i.d. over banks, markets, and time, this obviates the need to estimate
the cost shock distribution. We can instead proceed by simply treating the empirical distribution of policy function
residuals as an estimate of the equilibrium distribution of policy shocks (i.e., changes to banks’ chosen spreads
driven by cost shocks) and sample from this distribution in our forward simulation.
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5.3.3 State Transitions

We close the model by specifying laws of motions over the state space. Endogenous states, by

construction, follow deterministic transitions: lagged market shares are updated in accordance

with realized market outcomes in the prior period. We assume that banks believe their product

qualities δjkt and costs Zjt will remain constant at current levels in perpetuity. We make this

assumption both for computational ease and because our primary mechanism of interest is

unrelated to expected or realized variation in these objects.

We construct a stochastic process for the short rate using instantaneous forward rate esti-

mates published on the Federal Reserve’s website.26 At time t and for time horizons s − t ∈
{1, · · · , 30}, we simulate rates using:

RF
s ∼ N (Ft,s, V̂ar(RF )),

where Ft,s is the estimated instantaneous forward rate at time t, s− t years hence, and where

V̂ar(RF ) is the sample variance of the federal funds rate over our sample period.27 For all time

horizons s− t ∈ {31, T}, we use the estimated 30-year forward rate.

5.3.4 Forward Simulation

Given the estimated policy function and the state transition processes, we can forward-simulate

play to compute the expected franchise value at any point in the state space. Furthermore,

we know that the equilibrium policy function maximizes all banks’ franchise values. The BBL

insight is to invert this condition: we assume that banks are acting optimally, which implies that

alternative spread-setting policies should generate (weakly) lower expected franchise values

than the true policy function.

To operationalize this idea, we construct 60 such alternative policies. 20 perturb the re-

sponsiveness of deposit spreads to the short rate, 20 perturb their responsiveness to lagged

market share, and 20 are multiplicative deviations (i.e., multiplying the spread implied by the

estimated policy function by a constant). All perturbations are normal draws centered around

the estimated policy function. For each alternative, we perturb the policy function of a sin-

gle randomly-selected bank in each county-year, holding the policy function of its competitors

fixed at the original estimated policy. Each policy alternative thus generates one inequality per

county-year, namely that the selected bank is better off at the estimated policy function than

at the perturbed one. Following BBL, we estimate marginal costs by minimizing the expected

sum of squared violations over all inequalities. We compute expectations over 1000 paths of:

26Series SVENF published at https://www.federalreserve.gov/data/yield-curve-tables/feds200628_1.h
tml. Accessed 11/19/2024.

27This procedure admits a type of time-inconsistency: paths of simulated rates are invariant to idiosyncratic shocks
drawn in a given period. We have experimented with alternative processes for interest rates, such as the Cox et al.
(1985) process, and obtained very similar results.
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(i) interest rates drawn from instantaneous forward rates and (ii) private shocks drawn from

the empirical distribution of policy function residuals. We set the discount rate β = 0.9 and

forward-simulate out to 50 periods in the future. Further details are given in Appendix Section

A.

To see the intuition for the procedure, consider an alternative policy function that marginally

increases spreads. This policy function and our estimated demand system tell us how deposit

spreads and quantities jointly evolve in the forward simulation, allowing us to compute the

marginal revenue associated with the alternative. Discounting and averaging over simulations

thus gives us expected discounted marginal revenue. If this present value of marginal revenue is

positive, it must be that expected discounted marginal costs are high. Otherwise, the observed

policy function would not be optimal.

Such deviations differentially impact each of the four cost terms at different points in the

state space, allowing us to separately identify each parameter. For instance, if an alternative

policy raises marginal revenue particularly in high-rate periods within our simulations, it must

be that costs load heavily on rates (i.e., ζ is high). Otherwise, the observed policy function

would not be optimal. Similarly, if an alternative policy raises expected discounted marginal

revenue particularly for banks with high values of the cost shifters Zjt, then γ must be high.

5.3.5 Results

Our marginal cost estimates are presented in Table 6, and the time series of implied one-period

markups, ρjt − cjt, is presented in Panel (a) of Figure 4. The average markup in our sample

is about 68 bps. Moreover, markups exhibit significant cyclicality: average markups exceeded

125 bps in 2005-2007 and 2022-2023, while they hovered between 20 and 45 bps from 2008

to 2015.

These extended periods of low markups largely reflect the fact that interest rates were

surprisingly low for much of the sample period, systematically undershooting forward curve-

implied expectations. In other words, banks did not expect low markups to persist as long as

they did. To illustrate this point, we next study a measure of “expected markups,” defined as

the constant markup that a bank would have to charge, holding fixed its expectations about

short rates and deposit volumes, to obtain the franchise value that it does with the time-varying

markups it actually charges. The red line in Panel (b) of Figure 4 plots the time series of

expected markups. The average expected markup in our sample is also about 68 bps, but it

varies substantially less throughout the sample. In other words, at times like 2009 when current

markups were low, banks still expected to earn significantly higher markups going forward.
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5.4 Extensions

We explore two extensions of the model. First, we allow banks to price-discriminate between

new and existing depositors by offering short-term bonuses to new customers. Offering bonuses

to new depositors enables banks to partially, though not perfectly, price-discriminate between

active and inactive depositors. Second, we allow active depositors to make forward-looking,

rather than myopic, choices about where to deposit their funds. These extensions enhance the

model but do not quantitatively alter our conclusions about how dynamic competition and the

corresponding invest-versus-harvest tradeoff affect competition in the banking sector.

5.4.1 Promotional Rates for New Depositors

In our baseline model, banks pay the same deposit rates to incumbent depositors (i.e., those

who were with the bank in the prior period) and to new depositors. In Appendix E, we develop

and estimate an extension in which banks can offer different rates to new versus existing de-

positors (i.e., promotional rates). We also allow the marginal costs of serving incumbents and

new customers to differ to reflect customer acquisition costs.

Absent frictions, banks would offer aggressive rates to active depositors and never offer

positive rates to inactive ones, thereby investing in active customers while maximally harvesting

inactive ones. Such price discrimination is infeasible because banks cannot observe which of

their incumbent depositors are active. In practice, and in our model extension, banks instead

offer separate rates to new and existing depositors, which allows them to imperfectly price-

discriminate across active and inactive depositors. New depositors, by definition, are all active

and thus have more elastic demand than a bank’s existing depositor base, which is instead made

up of a mix of active and inactive customers. Consistent with this, we observe in the data that

banks offer aggressive promotional rates to new customers.

It is straightforward to extend and estimate our model to incorporate promotional rates for

new depositors. First, we estimate separate policy functions for incumbent and new spreads.

For simplicity and to maximize comparability with our baseline results, we assume that our orig-

inal policy function estimates capture the choice of incumbent spreads. We proxy for spreads

offered to new depositors as the baseline spread plus the gap between the “promotional” rates

offered on certificates of deposit (CD) from the Ratewatch data and non-promotional CD rates

of similar maturity.28 We report these estimates in Appendix Table A1.

To estimate marginal costs, we then run an augmented forward simulation in which we now

simulate forward both policy functions, as well as policy shocks with respect to both spreads.

We construct perturbed polices as in the baseline case, though for each type of deviation, we

perturb “incumbent” spreads in half of the runs and “new” spreads in the other half.
28The majority of our sample does not have information on promotional rates, so we estimate the “new spread”

policy function in the subset of observations that do report promotional rates.
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We report our estimates in Table A2, and we plot the time-varying distribution of estimated

markups charged to incumbent and new depositors in Figure A4. Our estimates indicate that the

marginal cost of serving new depositors is high relative to that of incumbents, suggesting that

banks face high customer acquisition costs. In particular, we find that banks spend about $0.15

upfront to raise an additional dollar of new deposits (an implied markup of -1500 bps), while

they earn sizable markups on their existing depositor base (134 bps, on average). Although

this extension provides new insights into bank pricing behavior, acquisition costs, and the role

of inertia, it does not significantly change our conclusions about the importance of accounting

for depositor sleepiness.

5.4.2 Forward-Looking Active Depositors

We also consider an extension that allows active depositors to make forward-looking choices.

In our baseline model, depositors are myopic: they do not take into account that they are

likely to be asleep, and therefore unable to re-optimize, for several periods following an active

decision. In this extension, we re-estimate our deposit demand system under the assumption

that depositors are forward-looking. Forward-looking behavior complicates estimation in the

sense that the depositor’s problem becomes dynamic:

Vit(Dit = 1) = max
j∈K

{
αρjkt + δjkt + εijkt + βE[Vit+1(Dit+1) | j]

}
Decomposing the continuation value into the discounted present value of utility conditional on

remaining asleep and the discounted present value conditional on making a new active choice,

we obtain:

Vit(Dit = 1) = max
j∈K

{
αρjkt+δjkt+εijkt+

∞∑
s=t+1

(βϕ)s−tE[αρjks+δjks]+
∞∑

s=t+1

(βϕ)s−t 1− ϕ

ϕ
E[Vis(1, j) | j]

}
The key insight is that the second component of the continuation value does not depend on the
depositor’s choice today – conditional on waking up in any period, all depositors have the same

expected utility over that period’s choice set, regardless of the bank they used in the previous

period. We can therefore difference this term out across all banks in the market without altering

choice probabilities. As a result of this differencing, there are no longer any recursive terms in

this expression. The only remaining difference between the forward-looking and myopic cases

is that for the former, the discounted present value of future utility from staying asleep and

remaining at the bank chosen today essentially behaves like an additional characteristic of that

bank’s current deposit services.

To proceed with estimation, we construct depositor expectations of future utility using the

forward-simulated spreads from our baseline estimation.29 We present our estimates using this
29This comes with the caveat that these simulated spreads are based on the assumption that banks price off of
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approach in Appendix Table A3. Our results are qualitatively similar to the baseline demand

estimates, although we find that demand is more elastic when we assume active depositors are

forward-looking rather than myopic.

6 Implications for Markups and Franchise Values

In this section, we use counterfactuals to illustrate the insights that emerge from modeling

dynamic competition for deposits. We compare the estimates from our dynamic model to coun-

terfactuals in which all depositors are always active. In these counterfactuals, banks no longer

face invest-versus-harvest incentives and competition is static à la Bertrand-Nash.

We show that sleepiness and dynamic competition generate five main effects. First, they

significantly raise average markups. Second, markups become procyclical, rising when the short

rate rises. Third, sleepiness and dynamic competition particularly increase markups in areas

that a static view of competition would suggest are competitive, i.e., in low-concentration areas

with low Herfindahl-Hirschman indices (HHIs). Fourth, sleepiness increases banks’ franchise

values and lowers their default probabilities. Finally, the franchise values of banks with either

low product-quality or high costs increase most.

Our comparison between dynamic and static competition not only generates interesting eco-

nomic insights, it is also policy-relevant. In recent years, regulators in several countries have

proposed and implemented regulations that seek to constrain the ways in which banks set de-

posit rates. Perhaps most prominently, the UK’s Financial Conduct Authority (FCA) has engaged

in a policy initiative to increase the pass-through of short-term interest rates into deposit rates.

In Appendix C, we show that the limiting case of this initiative—a policy that requires banks to

fully pass through changes in short rates—is isomorphic to eliminating depositor sleepiness.30

The intuition is that, by forcing full pass-through and constraining banks to choose a single

spread for both the current and all future periods, the regulator shuts down the invest-versus-

harvest tradeoff otherwise induced by depositor sleepiness: a bank’s choice of spread affects

both its active market share today and its active market share tomorrow. In other words, the

bank cannot invest today and harvest tomorrow; it either invests in all periods or harvests in

all periods.

depositors’ myopic preferences. Strictly speaking, banks set rates as a function of depositor preferences and lagged
market shares, such that future spreads are a complicated, nonlinear function of α, δj , and ejkt. To construct
depositor expectations consistent with banks pricing off of their forward-looking preferences, we would thus need
to perform a global search over the space of demand-side parameters, where for each conjecture of parameter values
we would have to forward-simulate over aggregate rates and policy shocks, construct the expectation over future
spreads, and then run the above regression. This is computationally infeasible.

30This equivalence exactly holds in the absence of a zero lower bound (ZLB) on deposit rates, but we show in the
appendix that the results are very similar quantitatively whether or not we impose a ZLB.

28



6.1 Markups in Dynamic Equilibrium

We begin by comparing the behavior of markups in our dynamic model versus the static coun-

terfactual.

6.1.1 Level

Panel (b) of Figure 4 studies the average level of markups. It compares expected markups in our

dynamic model to those in the static counterfactual. While average expected markups in the

dynamic model are about 68 bps, in the counterfactual they are about 32 bps. Thus, eliminating

banks’ invest-versus-harvest incentives reduces equilibrium expected markups by an average of

36 bps, about 53%. Intuitively, in the dynamic model, banks face a less elastic set of depositors

than they do in the static counterfactual.

Panel (b) of Figure 4 also illustrates the distribution of markups across banks in the dynamic

model and static counterfactual. The dark grey band displays the 25th-75th percentiles, and the

light grey band displays the 10th-90th sample percentiles.31 For most years, the 10th percentile

markup in the dynamic model is above the 90th percentile markup in the static model.

6.1.2 Cyclicality

We next turn to the cyclicality of markups. The green dots in Panel (a) of Figure 5 display binned

sample averages of estimated markups as a function of the federal funds rate. As discussed in

the previous section, markups display substantial cyclicality, averaging about 30 bps when the

short rate is 0% and 125 bps when the short rate is 5%.

At first, this cyclicality may seem puzzling: we do not include an outside option in our

demand system, and we model depositor elasticities as being constant over time. Moreover,

to the extent that depositor sleepiness decreases when the short rate increases, as we found

in Table 3, one would expect markups to be counter-cyclical. As equation (6) shows, harvest

incentives and thus markups are lower when sleepiness is lower.

To see the intuition, we first consider what a static model delivers, depicted in the blue

dots. In our demand system, a static model can only deliver cyclical markups as a mechanical

byproduct of the zero lower bound (ZLB) on deposit rates. That is, when deposit rates are stuck

at zero, increases in the short rate raise deposit spreads one-for-one (i.e., deposit rates remain at

zero). If the ZLB constraint does not bind, then banks charge the optimal static markup, which

is constant. The blue dots in Panel (a) display this property. When the short rate is at zero,

banks are bound by the ZLB and therefore charge markups below their optimal unconstrained

levels; at higher levels of the short rate, banks simply charge this constant markup.

Under dynamic competition, this logic breaks down because of the invest-versus-harvest

tradeoff. When the short rate is high, the harvest incentive leads banks that have accumulated
31Percentiles are calculated across county-bank observations each year.
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high market shares to keep their deposit rates at or near zero. This softens the competition fac-

ing banks with little accumulated market share that want to invest. These banks can undercut

the harvesting banks while still charging relatively high markups.

One may worry that the procyclical markups we estimate in panel (a) are not a property

of the dynamic model; they may simply reflect the fact that our estimated policy function is

strongly procyclical. To address this concern, we directly solve for the Markov Perfect equilib-

rium of our model at our estimated parameter values in a hypothetical market with three sym-

metric banks. The red dots plot the equilibrium policy function across different short rates.32 As

is evident in the figure, simulated and estimated markups display similar degrees of cyclicality,

suggesting that dynamic competition does indeed drive our results.

6.1.3 Market Concentration

Panel (b) of Figure 5 illustrates a second key property of our dynamic model: markups are

essentially constant as a function of market concentration, as measured by the Herfindahl-

Hirschman index (HHI). As before, this result obtains both in our estimated model and in

our simulated dynamic equilibrium. In contrast, the static benchmark delivers the expected

result that markups are substantially higher in more concentrated markets. In the data, deposit

spreads are nearly invariant to market concentration (see Appendix Figure A5), corroborating

our findings.33

How does dynamic competition alter the relationship between concentration and compe-

tition? Consider a market in which one bank holds the majority of market share, making

concentration high in this market. This bank will choose to harvest and offer uncompetitive

rates, but the other banks in the market will optimally respond by competing aggressively to

win over the large bank’s incumbent depositors.

6.2 Effects on Franchise Values

We next analyze the effect of the static counterfactual on the value of the deposit franchise.

In Panel (a) of Figure 6, we plot the time series of aggregate deposit franchise value under

our baseline estimates (orange line) and under the counterfactual policy (teal line). The static

counterfactual reduces the aggregate value of the deposit franchise by about 54%. In dollar

terms, about $1 trillion of franchise value would have been lost if the FCA policy had been

implemented in 2023, compared to an aggregate market value of equity in the banking sector

of about $2.3 trillion.
32The dots correspond to the markups that a bank with 10% lagged market share sets, when one competitor has

10% lagged share and the other 80%.
33It could still be the case that more concentrated markets feature banks with lower marginal costs, in which

case markups would be increasing in market concentration even when deposit spreads do not. We note that the
flat relationship between deposit spreads and market concentration obtains even after controlling for observable
measures of bank operating costs, cutting against this possibility.
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Perhaps even more striking than the high average dependence of the deposit franchise on

sleepy deposits is the degree of heterogeneity. As Panel (b) demonstrates, about 15% of banks

derive more than 80% of franchise value from sleepiness whereas about 3% of banks derive

less than 20% of franchise value from sleepy demand. The next section analyzes the drivers of

this heterogeneity in greater detail.

6.2.1 Bank Heterogeneity

In panel (a) of Figure 7, we show bin-scatter plots of each bank’s share of franchise value lost

under the counterfactual policy against deposit product quality δj . We find that banks with the

lowest product quality are the most negatively affected by the policy. The intuition underlying

this result is that sleepiness dampens the returns to having higher product quality. This is

because the vast majority of depositors in a given period are asleep and thus not choosing their

banks as a function of product quality. In equilibrium, this allows smaller banks to charge

relatively higher markups without losing too much market share.

In panel (b) of Figure 7, we show bin-scatter plots of each bank’s share of franchise value

lost under the counterfactual policy against its marginal cost, netting out the common cost

component from the short rate, ζRt. We find that the least cost-efficient banks are much more

negatively affected in the counterfactual. Depositor sleepiness enables firms with high operat-

ing costs to pass their expenses through to depositors.

6.2.2 Effects on Financial Stability

A different way to understand the effects of the static counterfactual on franchise value is to

examine risk-neutral probabilities of default. Consider a bank’s decision to default or continue

operating in the future, in the style of Leland (1994). The bank will default if and only if the

loss incurred today is larger than the present value of future operating profits. In the language

of our model, recalling that lending returns follow Rjt ∼ N (µjt, σ
2
jt):

Default if: − (Rjt − µjt − rjt − cjt)Depjt > βVjt+1

Integrating out Rjt and rearranging, we obtain:

Probability of Default = Φ

 −βVjt+1

Depjt
+ rjt + cjt − µjt

σjt

 (12)

All objects in equation (12) are already known or have been estimated, other than σjt.34 To

recover σjt, we first convert observed credit default swap spreads into implied risk-neutral

34Recall that the expected lending return, µjt, is not separately identified from marginal costs cjt. As a result, our
empirical estimates of cjt correspond to cjt − µjt in this equation.
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probabilities of default and then invert equation (12) for each bank in each year of our sample

period.35

To calculate counterfactual probabilities of default, we replace the baseline objects Vjt+1

and rjt with their counterfactual counterparts, and then simply re-evaluate the right-hand-side.

We plot the time series of baseline and counterfactual default probabilities for the three

largest banks (JP Morgan, Bank of America, Wells Fargo) in Figure 8.36 Panel (a) displays

the results for JP Morgan. Baseline default probabilities range from near 0% to about 2.5%,

whereas counterfactual default probabilities fluctuate around 10%. Excluding the global finan-

cial crisis, fluctuations in counterfactual default probabilities are driven primarily by the shape

of the yield curve: when future rates are expected to be high, more franchise value is lost in the

counterfactual.

7 Conclusion

Bank deposits are often described as sticky, sleepy, and inelastic. We examine the implica-

tions of sleepy deposits and their role in creating value and stability in the banking sector. We

demonstrate that whether the observed stickiness is driven by depositor sleepiness or inelastic

demand (i.e., preference heterogeneity) has significant implications for consumers, banks, and

policymakers. Using both our microdata and branch-level deposit data, we show that deposi-

tors exhibit high levels of inactivity, which we attribute to depositor sleepiness. This sleepiness

appears to vary both across depositors and over time.

The sleepiness we document has critical consequences. For consumers, it implies that de-

positors are much more responsive to deposit rates than previously believed once sleepiness

is accounted for. For banks, depositor inactivity creates substantial value: on average, nearly

60% of a bank’s deposit franchise value arises from the fact that most of its depositors remain

inactive in any given period.

Depositor sleepiness also raises concerns for policymakers. In particular, it suggests that

banks may be slow to pass changes in aggregate rates through to depositors. For example,

a bank might delay increasing its deposit rates following a rise in aggregate rates, knowing

that most of its depositors are unlikely to notice or respond. These concerns have prompted

regulators to consider policies aimed at increasing rate pass-through to depositors. We analyze

the effects of such policies, including requiring banks to offer floating-rate deposits with a fixed

spread. While these policies could benefit depositors by raising deposit rates by approximately

36 basis points, they also come with significant costs. For instance, following the 2022-2023

monetary tightening, the probability of default for two major money-center banks in the US

would have increased to more than 20% had banks been forced to offer floating-rate deposits.
35We use five-year CDS spreads, assuming a recovery rate of 40% and a constant hazard rate.
36Our results use the primary commercial bank subsidiary within each holding company’s organization.
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Thus, while these policies may enhance consumer outcomes, they also pose risks to financial

stability.
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Tables and Figures

Figure 1: Average Life of a Deposit Account

Notes: Figure 1 plots the implied average life of several different types of deposit accounts, in
years, using our account-level microdata. Average life is calculated using the rate of account
turnover (i.e., the fraction of existing accounts in a given year that are newly-opened) and the
following formula:

Average lifei =
1

Turnover Ratei
where i denotes account type. The turnover rate, and by extension average life, is calculated in
units of years.
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Figure 2: Reasons for Closing a Deposit Account

Notes: Figure 2 displays a histogram of the reasons depositors report for closing their accounts.
We focus on closures where the depositor provided a reason, excluding those resulting from
internal transfers within the bank (i.e., cases where the depositor closed an account to open
another within the same bank). In 25% of closures, no reason is provided, and internal transfers
account for 18% of all closures.
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Figure 3: Sleepiness versus Unobserved Preference Heterogeneity: Evidence from Market Entry

Notes: Figure 3 plots the progression of market shares for entering firms as a function of the
number of years since entry:

normalized sharet =
sharet − share0
share10 − share0

We difference out market shares in year 0 to account for the fact that banks entering new coun-
ties according to the Summary of Deposits immediately report large market shares for largely
mechanical reasons (i.e., deposits previously collected in nearby areas without any of the en-
trant bank’s branches are immediately booked at the new branch). The green line plots medians
from Summary of Deposits data and the red line plots medians from forward-simulations of a
3-bank Markov Perfect equilibrium. See Appendix Figure A1 for an alternative normalization
of market shares including the year-0 shares; see Appendix B for additional details on our com-
putation of Markov-Perfect equilibria.
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Figure 4: Markup Estimates

(a) Current

(b) Expected

Notes: Panel (a) of Figure 4 displays the yearly bank-county level distributions of current
markups under our baseline estimates. Panel (b) of Figure 4 displays the yearly bank-county
level distributions of expected markups under our baseline estimates, as well as markups under
the counterfactual policy constraining banks to fix the spread they charge below the short rate.
“Expected markups” are defined as the constant markup that a bank would need to charge,
holding expectations of current and future deposit volumes fixed, in order to achieve the same
franchise value that we estimate in the forward simulation. We winsorize expected markups at
the 1% level to reduce the influence of extreme outliers.
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Figure 5: Properties of Estimated Markups

(a) Markups and Short Rate

(b) Markups and Market Concentration

Notes: Panels (a) of Figure 5 plots markups from our two-step estimates (green line) against
those obtained from a 3-bank Markov Perfect equilibrium (red line) and from a 3-bank
Bertrand-Nash equilibrium without depositor sleepiness (teal line). Panel (b) of Figure 5 plots
market-level markups from our two-step estimates (green line) against average market-level
markups from a series of 3-bank Markov Perfect equilibria (red line) and a series of Bertrand-
Nash equilibria without depositor sleepiness (teal line). See Appendix B for additional details
on our computation of Markov Perfect and Bertrand-Nash equilibria.
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Figure 6: Counterfactual Franchise Value

(a) Total Deposit Franchise Value in the Banking Sector

(b) Share of Deposit Franchise Value Lost in Counterfactual – 2010

Notes: Panel (a) of Figure 6 displays total deposit franchise value in the U.S. banking sector un-
der our baseline estimates and in our simulated static equilibria. To facilitate comparison with
other aggregate quantities, we scale the yearly totals by the fraction of total deposits that are
accounted for by observations in our sample. Panel (b) of Figure 6 displays the cross-sectional
bank-level distribution of the fraction of deposit franchise value lost under the counterfactual
policy (i.e., one less the ratio of counterfactual to baseline value) using data from 2010.
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Figure 7: Bank-Level Heterogeneity in Policy Exposure

(a) Deposit Product Quality

(b) Marginal Cost

Notes: Panel (a) of Figure 7 displays a bank-level bin-scatter plot of the fraction of deposit fran-
chise value lost under the counterfactual policy against product quality δj . Panel (b) of Figure 7
displays a bank-level bin-scatter plot of the fraction of the same statistic against marginal costs,
demeaned by the average marginal cost in each of the bank’s markets.

44



Figure 8: Counterfactual Probabilities of Default – Top 3 Banks

(a) JP Morgan (b) Bank of America

(c) Wells Fargo

Notes: The panels of Figure 8 display baseline and counterfactual estimates of risk-neutral
probabilities of default for the top 3 banks: JP Morgan, Bank of America, Wells Fargo. We
compute baseline risk-neutral one-year default probabilities using five-year credit default swap
spreads (assuming constant hazard rates). To obtain counterfactual default probabilities, we
use the baseline five-year CDS spreads to estimate the risk-neutral probability of default. We
then use our baseline estimated franchise value to calculate asset volatility. Finally, we reduce
the bank’s franchise value by the estimated difference in expected franchise value between the
baseline and counterfactual scenarios and recalculate the probability of default while holding
asset volatility constant. We assume a 40% recovery rate in the event of default.
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Table 1: Summary Statistics

Variable Observations Mean Median SD

Bank-County Level:
Deposit Rate (bps) 341,395 34 15 50
Deposit Spread (bps) 341,395 97 17 145
Deposit Market Share 341,395 0.16 0.10 0.18
County Deposits ($M) 341,395 405 84 4046

Bank Level:
Wages ($1000s) 95,693 69 64 24
100× Fixed Expenses

Total Assets 95,693 0.39 0.36 0.18
Total Deposits ($M) 95,693 1874 171 30712

Notes: Table 1 summarizes the key variables in our data sample. As discussed in the text, we
limit our sample to bank-county pairs appearing in at least 5 years of data and for which we
have all required information in both the current and previous years. Throughout the entirety
of the paper, including here, we winsorize our wage and fixed expense measures at the 2.5%
level to reduce the influence of extreme outliers.
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Table 2: Account Turnover

(1) (2) (3) (4)

Internet Banking -0.007** -0.028*** -0.043*** -0.052***
(0.003) (0.003) (0.003) (0.003)

Business Account 0.064*** 0.042*** 0.035*** 0.041***
(0.007) (0.007) (0.007) (0.006)

Trust Account 0.055*** 0.022*** 0.014** 0.013**
(0.006) (0.006) (0.006) (0.005)

Over 65 -0.040*** -0.048*** -0.048*** -0.048***
(0.003) (0.003) (0.002) (0.002)

Large Initial Balance (50k+) 0.094*** 0.086*** 0.074*** 0.072***
(0.006) (0.006) (0.005) (0.005)

ln(Bank Size (# Accounts)) 0.006*** -0.004*** 0.036***
(0.001) (0.001) (0.007)

Savings Account 0.014*** 0.010*** 0.015*** 0.013***
(0.003) (0.003) (0.003) (0.002)

Time Deposit Account 0.056*** 0.053*** 0.053*** 0.051***
(0.004) (0.004) (0.003) (0.003)

Observations 55,041 55,041 55,041 55,022
R-squared 0.133 0.281 0.431 0.616
Year FE X X
Bank FE X
Bank-Year FE X

Notes: Table 2 displays the regression results corresponding to equation (1). We classify bank
accounts along six key attributes: account type (checking, savings, or time deposits), holder
type (person, business, or trust), online banking setup, initial balance above $50,000, and
whether the accountholder is over age 65 (for personal accounts). This results in 72 unique
account profiles (3x3x2x2x2). Observations are at the account profile-by-bank-by-year level.
The dependent variable is account turnover, which is defined as the number of new accounts
with that profile divided by the number of existing accounts with that profile. Robust standard
errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Table 3: Sleepiness Estimates

Microdata only SoD only Combined

(1) (2) (3) (4) (5) (6)

Υ1,cons 0.868∗∗∗ 0.877∗∗∗ 0.977∗∗∗ 0.979∗∗∗ 0.904∗∗∗ 0.945∗∗∗

(0.008) (0.010) (0.001) (0.002) (0.007) (0.006)

Υ1,RF
t

-0.416∗ -0.105∗∗∗ -0.355∗∗

(0.249) (0.041) (0.169)
Υ2,over 65 0.0526∗∗∗ 0.017∗∗∗

(0.005) (0.005)
Υ2,over $50k -0.094∗∗∗ -0.130∗∗∗

(0.006) (0.007)
Υ2,internet banking 0.036∗∗∗ 0.002

(0.007) (0.007)

Observations 8,878 8,878 341,395 341,395 350,273 350,273
Within R-squared 0.966 0.966 0.963 0.963 0.962 0.966
Bank FE X X X X
County-Year FE X X X X

Notes: Table 3 reports the results of panel regressions of depositor sleepiness. Observations are
either at the bank-county level (SoD) or the bank-depositor-cell level (microdata). In the case
of the SoD sample, all branches of a given bank (as defined by FDIC certificate number) in a
given county-year are aggregated into a single observation. In all columns including SoD data,
we control for both deposit spreads and a 1st-order polynomial of the residuals obtained from
equation (9): a spread-setting control function that uses salaries and fixed expenses as cost
shifters. The F-statistic testing joint nullity of the cost shifters in the control function is 12.8.
Standard errors are clustered by bank. *** p<0.01, ** p<0.05, * p<0.10.
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Table 4: Demand Estimates

Total Market (No Inertia) Active Market

OLS CF OLS CF
(1) (2) (3) (4)

ρjkt -3.17∗∗∗ -290.4∗∗∗ -16.2∗∗∗ -388.7∗∗∗

(1.14) (15.3) (2.05) (29.3)

Observations 294,809 294,809 294,809 294,809
Rate Elasticity of Demand 0.004 0.392 0.022 0.525
R2 0.733 0.734 0.625 0.626
Bank fixed effects ✓ ✓ ✓ ✓
County-Year fixed effects ✓ ✓ ✓ ✓

Notes: Table 4 reports OLS and control function estimates obtained from a Berry (1994) demand
system, where j indexes banks, k indexes counties, and t indexes years. Observations are at
the bank-county level. In particular, all branches of a given bank (as defined by FDIC certificate
number) in a given county-year are aggregated into a single observation. In columns (3) and
(4), we control for a 1st-order polynomial of the residuals obtained from (9): a spread-setting
control function that uses salaries and fixed expenses as cost shifters. Standard errors are
clustered by bank-year. The F-statistic testing joint nullity of the cost shifters in the control
function is 12.8. The rate elasticity of demand is calculated assuming a market share of 10%
and an offered interest rate at the sample median (about 15 bps). *** p<0.01, ** p<0.05, *
p<0.10.
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Table 5: Policy Function Estimates

(1)

Constant -0.001∗∗∗

(0.0003)
Rt 0.909∗∗∗

(0.005)
Rt−1 -0.116∗∗∗

(0.008)
δjkt 0.001∗∗∗

(3.26× 10−5)
Log(Deposit Share)jkt−1 -0.0010∗∗∗

(3.19× 10−5)
Rt−1 × Log(Deposit Share)jkt−1 0.001

(0.001)∑
ℓ ̸=j

Log(Deposit Share)ℓkt−1 9.88× 10−6∗∗∗

(1.08× 10−6)
Wagesjt

# Employeesjt−1
3.12× 10−5∗∗∗

(1.96× 10−6)∑
ℓ ̸=j

Wagesℓt
# Employeesℓt−1

1.37× 10−6∗∗∗

(9.02× 10−8)
Fixed Expensesjt

Assetsjt−1
-0.023
(0.025)∑

ℓ ̸=j

Fixed Expensesℓt
Assetsℓt−1

-0.035∗∗∗

(0.001)
fraction over 65k 0.002∗∗∗

(0.0002)
fraction over $50k HH incomek -0.002∗∗∗

(0.0002)
fraction w/internetk -0.004∗∗∗

(0.0003)

Observations 341,329
R2 0.942

Notes: Table 5 reports OLS estimates of the spread-setting policy function, where j indexes
banks, k indexes counties, and t indexes years. Observations are at the bank-county level.
In particular, all branches of a given bank (as defined by FDIC certificate number) in a given
county-year are aggregated into a single observation. Unobserved product qualities δ are taken
from the demand system estimated in column (4) of Table 4. Standard errors are clustered by
bank-year. *** p<0.01, ** p<0.05, * p<0.10.
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Table 6: Marginal Cost Estimates

ζ 0.695
(0.030)

ω -0.008
(0.003)

γ1 5.139 ×10−6

(1.190 ×10−6)
γ2 0.013

(0.325)

Notes: Table 6 reports the results of the two-step estimator based on Bajari et al. (2007).
We construct 60 alternative policies: 20 perturb the responsiveness of deposit spreads with
respect to the short rate; 20 perturb the responsiveness of deposit spreads with respect to
lagged log market share; 20 multiply spreads by a constant randomly drawn around 1. For
each alternative policy, independent draws are taken for one randomly-selected bank in
each county-year – 3,278,400 total inequalities are used in estimation. Each expectation is
constructed by averaging over 1,000 simulated paths of: (i) interest rates, generated from
estimated yield curves as described in Section 5.3.3; and (ii) policy shocks, drawn from the
distribution of policy function residuals (censored at the 5th and 95th percentiles). Standard
errors are calculated via bootstrap: we resample, with replacement, 500 times – each time
constructing datasets of the same length as the total number of inequalities. We then calculate
standard errors as the standard deviation of the vector of estimates.

Costs are parameterized as:

cjkt = ζFed Fundst + ω + γ1
Salariesjt

# Employeesjt−1

+ γ2
Fixed Expensesjt

Assetsjt−1
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Appendix

A Details of marginal cost estimation

We begin by rewriting the bank value function as an expectation that is linear in the marginal

cost parameters:

ψσ,j,k :=


E
[ ∞∑
s=t

βtρjksDepjks

]
E
[ ∞∑
s=t

βtRsDepjks

]
E
[ ∞∑
s=t

βtDepjks

]



Vσ,j,k ≡ ψT
σ,j,k ·

 1

−ζ
−ω − γ′Zjt


For any alternative spread-setting policy, σ̃, it should be the case that a bank is better off at the

original estimated policy function, σ, than at the alternative one:

g(σ, σ̃) = (ψσ − ψσ̃)
T ·

 1

−ζ
−ω − γ′Zjt

 ≥ 0

where ψσ̃ denotes the analogous vector of expectations under the perturbed policy.

To operationalize this idea, we construct sixty such alternative policies. Twenty perturb the

responsiveness of deposit spreads to the short rate, twenty perturb responsiveness to lagged

market share, and twenty are multiplicative deviations. All perturbations are normal draws

centered around the estimated policy function. For each alternative, we perturb the policy

function of a single randomly-selected bank in each county-year, holding the policy function of

its competitors fixed at the original estimated policy. Each policy alternative thus generates one

inequality per county-year, namely that the selected bank is better off at the estimated policy

function than at the perturbed one.

We compute expectations over 1000 paths of: (i) interest rates drawn from instantaneous

forward rates, as described in Section 5.3.3 ; and (ii) private shocks drawn from the empirical

distribution of policy function residuals. We set the discount rate β = 0.9 and forward-simulate

out to fifty periods in the future. We additionally assume that the only source of growth in

deposit market size is from interest accumulation.

Following Bajari et al. (2007), we estimate marginal costs by minimizing the sum of squared

violations over all inequalities:

(ω, ζ, γ) := argmin
∑

(min{g(σ, σ̃), 0})2
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While all cost parameters are jointly identified, it is helpful to consider the variation driving

the estimates of each parameter. Consider a bank’s decision of whether or not to deviate in

some way from the equilibrium policy function. Doing so changes both the expected path of

spreads as well as the expected path of deposit volumes. To fix ideas, let us suppose the bank

is considering a deviation that tends to increase spreads. Holding the path of deposit volumes

fixed, this will increase franchise value. But through the active demand system, it will also

reduce deposit volumes and thus franchise value. Both of these effects are fully quantifiable

without any knowledge of the marginal cost parameters. That said, the change in deposit

volumes also changes the present value of costs, and this effect is fully characterized by the

marginal cost parameters. The question therefore becomes whether the net benefit of the

deviation (i.e., the sum of the two “cost-independent” effects) outweighs the cost effect. The

BBL estimator penalizes candidate vectors for which this is the case, and the penalty scales in

the size of potential profits from deviating.

Importantly, changes in deposit volumes differentially impact each of the four cost terms at

different points in the state space, thereby allowing us to separately identify each parameter. A

given volume shock: (i) has the same effect on the unweighted path of volumes across all states;

(ii) impacts the rate-weighted path of volumes much more in a high-rate environment than a

low rate environment; and (iii) impacts the cost-shifter-weighted paths of volumes much more

when costs are higher. Thus, we pin down ζ by selecting inequalities from different years of our

sample (i.e., as rates vary), whereas we pin down the γ parameters by sampling inequalities

widely from both the cross-section and the time-series.

While this identification argument holds for any set of selected policy deviations, we choose

our alternative policies in part to make the separate identification of the key cost parameters

more transparent. For example, perturbations to the federal funds pass-through provide an

additional dimension of differential variation in the rate-weighted path of volumes, since they

strengthen the correlation between the path of rates and the path of volumes.
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B Computation of Markov Perfect and Bertrand-Nash Equilibria

B.1 Markov Perfect Equilibrium

We work with markets consisting of three banks and set sleepiness, ϕ, to .935 (the average

estimated level in our data). We set rate sensitivity, α, to the estimated level of −388.7. We

set ζ, the coefficient on the short rate in the marginal cost equation, to the estimated .695. We

set “base” marginal costs to −30 bps for all three banks, which is about the 75th percentile

of our estimated distribution.37 Mirroring the empirical model, we add mean-zero, normally-

distributed shocks to banks’ chosen spreads, with the standard deviation set to the level in

the estimated policy function (about 21 bps). Finally, we parameterize the short rate transition

process using a discretized Cox et al. (1985) process with mean reversion, κ, of .11, a long-term

average rate, θ, of .03, and a volatility, σ, of .08.

We solve for Markov Perfect equilibrium using value function iteration, as in Pakes and

McGuire (1994). As is well-known, with strategic interactions between firms, this algorithm is

not guaranteed to converge. We have found that a few modifications to the algorithm tend to

smooth out best response correspondences, thereby reducing cycling behavior and facilitating

convergence: (i) interpolating the value function off of a discretized grid with flexible splines,

as in Fowlie et al. (2016); and (ii) imposing a small quantity adjustment cost. There is also no

guarantee that any Markov Perfect equilibrium is unique, but in practice we have found little

to no evidence of multiple equilibria.

For panel (a) of Figure 5, we endow all three banks in the market with equivalent non-

price deposit product qualities δ and solve for a symmetric equilibrium. We then plot the policy

function, at different levels of the short rate, for a bank with 10% market share when one other

bank has 10% share and the third bank has 80%.

For panel (b) of Figure 5, we perform the following procedure for each red dot on the graph:

• pick the vector of lagged market shares at which we want to start (i.e., to target some

value of HHI)

• solve for the product quality vector δ that generates these market shares in static equilib-

rium (i.e., when all depositors are active)

• solve for the Markov Perfect Equilibrium of the dynamic game via value function iteration

• forward-simulate both the static and dynamic games over 100 paths of interest rates and

policy shocks, each 100 years in length, recording the average market-level expected

markup across all runs.

To obtain starting values of lagged market shares for the dynamic game, we assume that in

the first period everyone is active, and we solve for the Nash equilibrium of the first period
37None of our results are sensitive to the exact choice of marginal costs.
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stage game holding the continuation values fixed at the solution to the infinite-horizon Markov

Perfect equilibrium. Then, for each simulation run, we begin at these lagged market shares and

run a burn-in of 50 periods, at which point we then record the results of the forward simulation.

All dots begin with a starting aggregate short rate of 5%.

B.2 Bertrand-Nash Equilibrium

We again work with markets with three banks, but we now set sleepiness, ϕ, to 0. All other

parameters are as described in the prior section. For panel (a) of Figure 5, we endow all

three banks in the market with equivalent non-price deposit product qualities δ and solve for a

symmetric Markov Perfect equilibrium using the same value function iteration as above, though

with ϕ = 0 this is isomorphic to solving the usual nonlinear fixed point problem characterizing

equilibrium Bertrand-Nash markups.

For panel (a) of Figure 5, we endow all three banks in the market with equivalent non-

price deposit product qualities δ and solve for a symmetric equilibrium. We then plot the policy

function, at different levels of the short rate, for a bank with 10% market share when one other

bank has 10% share and the third bank has 80%.

For panel (b) of Figure 5, we perform the following procedure for each teal dot on the

graph:

• pick the vector of lagged market shares at which we want to start (i.e., to target some

value of HHI)

• solve for the product quality vector δ that generates these market shares in static equilib-

rium (i.e., when all depositors are active)

• solve for the Bertrand-Nash equilibrium of the static game

• forward-simulate the static game over 100 paths of interest rates and policy shocks, each

100 years in length, recording the average market-level expected markup across all runs.

All dots begin with a starting aggregate short rate of 5%.
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C Background on FCA Policy and Equivalence to Static Counterfac-

tual

C.1 Background on the FCA Policy

In July of 2023, the FCA published a 14-point plan with the stated goal of increasing the deposit

rates offered to consumers.38 Under the power of “Consumer Duty”, a set of newly-enacted con-

sumer protection regulations, the FCA began to require banks with deposit rates substantially

lower than the “base rate” (the aggregate short-term interest rate) to justify how their offered

rates provided consumers with a “fair value.” If the FCA deemed such justifications to be insuf-

ficient, it would have recourse to levy fines onto the banks or place restrictions on their business

operations. The plan also specified that the FCA would review the timing of bank deposit rate

changes after any adjustment in the base rate. In September of 2024, the FCA published an-

other statement announcing that they would investigate evidence of asymmetric deposit betas:

banks that passed on rate reductions more quickly and fully than rate increases.39 Jointly, these

statements express a clear desire on the part of the FCA to restrict the relationship between

aggregate rates and bank deposit rates. We therefore use our structural estimates to simulate a

counterfactual policy in which banks are forced to fully pass aggregate rate fluctuations through

to their deposit rates.

C.2 Equivalence to Static Counterfactual

In this section, we demonstrate that constraining banks to fully pass through aggregate interest

rate changes to their deposit rates is in fact isomorphic to eliminating depositor sleepiness (i.e.,

setting ϕ = 0).

To see this, suppose that at time 0 all depositors are active. Each bank seeks to maximize

franchise value by choosing the constant spread it will charge between the federal funds rate

and its offered deposit rate. The bank’s problem is:

max
ρ
M0s0(ρ− c(RF

0 )) +
∞∑
t=1

βtE[Mtst(ρ− c(RF
t ))] (A1)

where st refers total deposit market share, c(·) refers to marginal cost and deviates from its

initial level solely due to fluctuations in RF
t , and Mt refers to market size at time t and grows

38Financial Conduct Authority. “FCA sets out 14-point action plan on cash savings.” Available at: https://www.
fca.org.uk/news/press-releases/action-plan-cash-savings. Accessed December 17, 2024

39Financial Conduct Authority. “FCA update on cash savings – September 2024.” Available at: https://www.fca.
org.uk/publications/multi-firm-reviews/fca-update-cash-savings-september-2024. Accessed December
17, 2024.
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at a deterministic rate g.40 We can rewrite equation (A1) as:

max
ρ
M0s0(ρ− c(R0)) +

∞∑
t=1

βtE[
(
ϕtMt−1(1 + g)st−1 + (1− ϕt)Mts

active
t

)
(ρ− c(RF

t ))]

Because all depositors are active in period 0, we clearly have s0 = sactive0 . But since active

depositors have the same preferences in every period, it follows that s0 = sactive0 = sactivet =

st, ∀ t. Noting also that (1 + g)M0 = M1, the first term in the infinite sum thus collapses to

βE[M1s0(ρ− c(R1)], the second term to β2E[M2s0(ρ− c(R2)], and so forth, leaving us with:

max
ρ
s0

∞∑
t=0

βtE[Mt(ρ− c(RF
t ))]

The bank’s first-order condition is:

∂s

∂ρ

( ∞∑
t=0

βtE[Mt(ρ− c(RF
t ))]

)
+ s0

( ∞∑
t=0

βtMt

)
= 0 (A2)

This pricing equation is precisely the present-value formulation of the static Bertrand-Nash first-

order condition. We solve for outcomes under the FCA policy in each market in our data by

finding the vector of spreads and shares under which equation (A2) holds for all banks in the

market.

40In our forward simulation, market size actually grows in accordance with total interest accumulation and the
sleepy deposit stock grows in accordance with bank-specific interest accumulation – both, in turn, depend on offered
deposit rates in the previous period. This force is quantitatively unimportant, and we therefore assume exogenous
market size growth in our counterfactual for the sake of tractability. That said, to further ensure comparability
between our baseline and counterfactual results, we assume that market size grows each year by the average offered
deposit rate in our sample (about 34 bps).
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D Franchise Value Decomposition

The proof laid out in the previous section is constructive in the sense that it provides a simple

algorithm to compute outcomes under the counterfactual FCA policy. To perform a true decom-

position of deposit franchise value into a “sleepy” component and an “inelastic” component,

however, we need to retain a zero lower bound on deposit rates. This complicates the required

procedure in two, related ways. First, in some markets, some banks may not be able to charge

their Bertrand-Nash markup without breaching this constraint. Solving for equilibrium then

consists of both determining which banks are constrained in equilibrium and, given the set of

constrained banks, solving for spreads and market shares that satisfy the first-order conditions

for the unconstrained banks. That is, we search for a vector of deposit spread ρ∗ that, for all

banks j in the market, satisfies:

ρ∗j (R
F ) =

cj − 1
α(1−sj(ρ

∗,δ)) , if RF − (cj − 1
α(1−sj(ρ

∗,δ))) ≥ 0

0, otherwise

Second, consequently, equilibrium spreads and market shares are now a function of the

short rate. Thus, unlike in the FCA computation, we need to solve for the equilibrium in each

market for each level of the short rate.

Solving for the equilibrium of the more than 54,000 markets in our data for each of 51

periods across 1000 simulations (i.e., for each draw of the short rate), is computationally in-

feasible. Instead, we discretize the range of short rates into an equally-spaced grid from 0 to

.05, with buckets of 25 bps in width. We then solve for equilibria in all markets at each point

of the discretized grid. Finally, we perform the forward simulation over the same 1000 paths of

drawn short rates used in our baseline two-step estimation by assigning each drawn short rate

to a discretized outcome using the floor function (e.g., a short rate draw of 80 bps is assigned to

the equilibrium outcomes calculated for a short rate of 75 bps) and then averaging the resulting

discounted sum of profits:

E[Static Franchise Value w/ZLBjkt] =
1000∑

sim=1

50∑
t=0

βt(1+g)tMts
∗
j (R

F
sim,t, δ)(ρ

∗
j (R

F
sim,t)−cj(RF

sim,t))

As in the FCA computation, we assume that the size of the market grows deterministically at

the average offered deposit rate in the sample (34 bps).
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E Extension: Price Discrimination between New and Incumbent

Depositors

Recall that in our baseline set-up, banks must choose a single deposit spread each period to

offer to both their “incumbent” depositors (i.e., depositors who banked with them in the prior

period) and their “new” depositors. In this extension, we allow banks to offer separate spreads

to their incumbent and new depositors, and we estimate separate marginal cost parameters for

servicing new versus incumbent deposits.

Importantly, because banks cannot distinguish which of their incumbent depositors are ac-

tive versus asleep, the fundamental invest-versus-harvest tradeoff when setting the incumbent

spread substantially resembles our initial formulation. The primary difference in the incum-

bent spread decision relative to baseline is that the propensity of running off awake incumbent

depositors with high spreads will be larger if competitors choose to offer low spreads to their

new depositors in equilibrium. With regard to the choice of spread offered to new depositors,

offering a very low “new spread” does not come with a cost of offering better terms to many

asleep depositors, though it still has the benefit of carrying over a larger deposit base into the

following period.

Under this set-up, bank j’s problem becomes:

V (St,σ
i,σn) = Eχjt

[Depi(St, σ
i
j ,σ

n)(σij − ci(St, χ
i
jt)) |St] + Eχjt

[Depn(St,σ
i,σn)(σnj − cn(St, χ

n
jt)) |St]

+ βESt+1,χt+1
[V (St+1,σ

i,σn) |σi,σn,St]

where the i and n superscripts denote, respectively, “incumbent” and “new.”

ψσ,j,k :=



E
[ ∞∑
s=t

βtρijksDep
i
jks

]
E
[ ∞∑
s=t

βtRsDep
i
jks

]
E
[ ∞∑
s=t

βtDepijks

]
E
[ ∞∑
s=t

βtρnjksDep
n
jks

]
E
[ ∞∑
s=t

βtRsDep
n
jks

]
E
[ ∞∑
s=t

βtDepnjks

]



Vσ,j,k ≡ ψT
σ,j,k



1

−ζi

−ωi − γi′Zjt

1

−ζn

−ωn − γn′Zjt


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We create alternative polices as in the baseline case, but we now perturb “incumbent” spreads

in half of the runs and “new” spreads in the other half. For any alternative pair of spread-setting

policies, (σ̃i, σ̃n), it should be the case that a bank is better off at the original estimated policy

functions, (σi, σn), than at the alternative ones:

g((σi, σn), (σ̃i, σ̃n)) = (ψσ − ψσ̃)
T



1

−ζi

−ωi − γi′Zjt

1

−ζn

−ωn − γn′Zjt


≥ 0

where ψσ̃ denotes the analogous vector of expectations under the perturbed policy. With in-

equalities in-hand, we choose the vector of cost parameters that minimizes the sum of squared

violations from optimality, only now we estimate separate parameters for incumbent and new

deposits:

(ωi, ζi, γi, ωn, ζn, γn) := argmin
∑

(min{g((σi, σn), (σ̃i, σ̃n)), 0})2

We report estimates in Appendix Table A2. In Figure A4, we additionally plot the time-varying

distributions of current markups charged to new and incumbent depositors.
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Appendix Tables and Figures

Figure A1: Sleepiness versus Persistent Preference Heterogeneity (alternative normalization)

Notes: Figure A1 plots the progression of market shares for entering firms as a function of the
number of years since entry:

normalized sharet =
sharet
share10

The green line plots medians from Summary of Deposits data, the red line plots medians from
forward-simulations of a 3-bank Markov Perfect equilibrium, and the teal line reflects the fact
that static market shares are time-invariant. See Appendix B for additional details on our
computation of Markov Perfect equilibria.
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Figure A2: Estimated Franchise Values versus Core Deposit Intangible Valuations

Notes: Figure A2 plots the average Core Deposit Intangible (CDI) announced in realized mergers
(green line) against the time-series averages of as close an analog as we can construct from our
two-step estimates (red line) and static simulations (teal line). The Core Deposit Intangible,
a part of the purchase price allocation process in mergers between banks, is calculated by
projecting the present value of savings a bank realizes by offering below-market interest rates
on core deposits, rather than raising other forms of more expensive debt, over the deposits’
“useful life” (almost always taken to be ten years).41 We construct analogous statistics using our
two-step estimates and static simulations by calculating franchise values only using cash flows
over the next ten years. There remain two important differences between our construction of
franchise values and the CDI. First, our analysis does not incorporate the fixed costs of running
the deposit franchise. This means that our estimates will be biased upward relative to the
CDI. Second, if Modigliani and Miller (1958) fails, our estimates will incorporate the value of
the lending franchise. In contrast, even if Modigliani and Miller (1958) does fail, banks are
instructed to calculate CDI using the gap between offered deposit rates and the rate they would
pay on their next-cheapest form of debt (usually the FHLB advance rate). This, again, biases
our estimates upwards relative to reported CDI’s.

41See, for example, https://www.bdo.com/insights/industries/core-of-the-core-deposit-intangibl
e-valuation-and-trends. Accessed 08/05/2025.
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Figure A3: Franchise Value Decomposition

(a) Aggregate Banking Sector

(b) 2010 Cross-Section

Notes: Panel (a) of Figure A3 displays total deposit franchise value in the U.S. banking sector
under our baseline estimates and in our simulated static equilibria eliminating depositor sleepi-
ness. To facilitate comparison with other aggregate quantities, we scale the yearly totals by
the fraction of total deposits that are accounted for by observations in our sample. Panel (b) of
Figure A3 displays the cross-sectional bank-level distribution of the fraction of deposit franchise
value that we attribute to sleepy demand, with the remainder attributed to inelastic demand,
using data from 2010.
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Figure A4: Markup Estimates under Price Discrimination

(a) New Depositors

(b) Incumbent Depositors

Notes: Panel (a) of Figure A4 displays the yearly bank-county level distributions of current
markups charged to new depositors. Panel (b) of Figure A4 displays the yearly bank-county
level distributions of current markups charged to incumbent depositors. We winsorize markups
at the 1% level to reduce the influence of extreme outliers.
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Figure A5: Deposit Spreads versus Market Concentration

Notes: Figure A5 plots a market-level bin-scatter plot of deposit spreads against the Herfindahl
Hirschman Index (HHI). Market-level deposit spreads are demeaned by year.
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Table A1: Policy Function for Spreads Offered to New Depositors

(1)

Constant 0.008∗∗∗

(0.002)
Rt 0.197∗∗∗

(0.029)
Rt−1 0.098∗∗∗

(0.031)
δjkt 0.0003∗∗

(0.0001)
Log(Deposit Share)jkt−1 -0.0003∗

(0.0002)
Rt−1 × Log(Deposit Share)jkt−1 0.005

(0.005)∑
ℓ̸=j

Log(Deposit Share)ℓkt−1 1.03× 10−5

(6.94× 10−6)
Wagesjt

# Employeesjt−1
−3.88× 10−6

(1.42× 10−5)∑
ℓ̸=j

Wagesℓt
# Employeesℓt−1

1.32× 10−6∗∗

(5.83× 10−7)
Fixed Expensesjt

Assetsjt−1
0.070

(0.147)∑
ℓ̸=j

Fixed Expensesℓt
Assetsℓt−1

-0.005

(0.010)
fraction over 65k 0.001

(0.002)
fraction over $50k HH incomek -0.002

(0.001)
fraction w/internetk -0.007∗∗∗

(0.002)

Observations 24,258
R2 0.364

Notes: Table A1 reports OLS estimates of the policy function for the “promotional gap”: the
difference between promotional CD rates of maturity ≤ 6 months and regular $10k 3-month
CD rates. We proxy for the spread offered to new depositors as the baseline $10k money market
spread less this promotional gap. Standard errors are clustered by bank-year. *** p<0.01, **
p<0.05, * p<0.10.
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Table A2: Marginal Cost Estimates Under Price Discrimination

ζi 0.670
(0.163)

ωi 0.031
(0.035)

γi1 -0.001
(0.000)

γi2 0.264
(0.226)

ζn -0.796
(0.337)

ωn -0.135
(0.177)

γin 0.003
(0.002)

γn2 0.127
(0.148)

Notes: Table A2 reports the results of the two-step estimator based on Bajari et al. (2007). We
construct 60 alternative policies: 15 perturb the responsiveness of incumbent deposit spreads
with respect to the short rate; 15 perturb the responsiveness of new deposit spreads with
respect to the short rate; 15 multiply incumbent spreads by a constant randomly drawn around
1; and 15 multiply new spreads by a constant randomly drawn around 1. For each alternative
policy, independent draws are taken for one randomly-selected bank in each county-year
– 3,278,400 total inequalities are used in estimation. Each expectation is constructed by
averaging over 1,000 simulated paths of: (i) interest rates, generated from estimated yield
curves as described in Section 5.3.3; and (ii) policy shocks for both new and incumbent
spreads, drawn from the distribution of policy function residuals (censored at the 5th and 95th
percentiles). Standard errors are calculated via bootstrap: we resample, with replacement, 500
times – each time constructing datasets of the same length as the total number of inequalities.
We then calculate standard errors as the standard deviation of the vector of estimates.

Costs are parameterized as:

cijkt = ζiFed Fundst + ωi + γi1
Salariesjt

# Employeesjt−1

+ γi2
Fixed Expensesjt

Assetsjt−1

cnjkt = ζnFed Fundst + ωn + γn1
Salariesjt

# Employeesjt−1

+ γn2
Fixed Expensesjt

Assetsjt−1
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Table A3: Forward-Looking Demand Estimates

(1) (2)

ρjkt -388.7∗∗∗ -769.6∗∗∗

(29.3) (39.5)

E[
∞∑

s=t+1

(
βsuijks

s∏
m=t+1

ϕm

)
] 0.238∗∗∗

(0.0009)

Observations 294,809 294,809
Rate Elasticity of Demand 0.525 1.039
R2 0.626 0.801
Bank fixed effects ✓ ✓
County-Year fixed effects ✓ ✓

Notes: Table A3 reports control function estimates obtained from a Berry (1994) demand sys-
tem. We control for a 1st-order polynomial of the residuals obtained from equation (9): a
spread-setting control function that uses salaries and fixed expenses as cost shifters. Standard
errors are clustered by bank-year. Column (1) replicates our baseline demand specification,
which assumes depositor myopia, as presented in column (4) of Table 4. Column (2) reports
our forward-looking estimates, in which we control for the present value of future utility in
the event of remaining asleep and continuing to bank with the bank chosen today. The rate
elasticity of demand is calculated assuming a market share of 10% and an offered interest rate
at the sample median (about 15 bps). *** p<0.01, ** p<0.05, * p<0.10.

A.17


	Regular Cover Page
	Dynamic Competition for Sleepy Deposits
	Introduction
	Data
	Sources
	Bank Microdata
	Summary of Deposits
	RateWatch
	Call Reports

	Sample Construction
	Summary Statistics

	Motivating Evidence
	Account Openings
	Account Closings

	Model
	Depositors
	Depositor Preferences
	Depositor Sleepiness

	Banks
	Equilibrium
	Depositors
	Banks

	Discussion: Dynamic Versus Static Competition

	Estimation
	Depositor Sleepiness
	Account-Level Turnover
	Autocorrelation in Branch Deposits
	Results
	Sleepiness versus Persistent Unobserved Preference Heterogeneity: Evidence from Market Entry

	Depositor Preferences 
	Estimation
	Results

	Bank Costs
	Parameterization and State Space
	Policy Function Estimation
	State Transitions
	Forward Simulation
	Results

	Extensions
	Promotional Rates for New Depositors
	Forward-Looking Active Depositors 


	Implications for Markups and Franchise Values
	Markups in Dynamic Equilibrium 
	Level
	Cyclicality
	Market Concentration

	Effects on Franchise Values
	Bank Heterogeneity
	Effects on Financial Stability


	Conclusion
	Details of marginal cost estimation 
	Computation of Markov Perfect and Bertrand-Nash Equilibria
	Markov Perfect Equilibrium
	Bertrand-Nash Equilibrium

	Background on FCA Policy and Equivalence to Static Counterfactual
	Background on the FCA Policy
	Equivalence to Static Counterfactual

	Franchise Value Decomposition 
	Extension: Price Discrimination between New and Incumbent Depositors 




