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Monotone Ecological Inference∗

Hadi Elzayn Jacob Goldin Cameron Guage
Daniel E. Ho Claire Morton

September 12, 2025

Abstract

We study monotone ecological inference, a partial identification ap-
proach to ecological inference. The approach exploits information
about one or both of the following conditional associations: (1) out-
come differences between groups within the same neighborhood, and
(2) outcomes differences within the same group across neighborhoods
with different group compositions. We show how assumptions about
the sign of these conditional associations, whether individually or in
relation to one another, can yield informative sharp bounds in eco-
logical inference settings. We illustrate our proposed approach using
county-level data to study differences in Covid-19 vaccination rates
among Republicans and Democrats in the United States.

1 Introduction

Ecological inference (EI) – the use of aggregate data to investigate individual-
level associations – is a common challenge in fields such as political science,
sociology, economics, epidemiology, and public health. To fix ideas, consider
a researcher seeking to learn the difference in the prevalence of some out-
come across two groups of individuals, but data on both the outcome and
group membership are available only at some aggregated level, such as the

∗For helpful comments and suggestions, we are grateful to Kosuke Imai, Gary King,
Charles Manski, Shiying Hao, and Derek Ouyang. Elzayn, Ho, and Morton: Stanford
University. Goldin: University of Chicago, American Bar Foundation, and NBER. Guage:
Columbia University.
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individual’s neighborhood. EI is challenging because the neighborhood-level
data can be consistent with divergent individual-level associations between
group membership and the outcome.

There are several canonical estimation strategies that have been pro-
posed for EI settings, but each requires strong assumptions. Ecological re-
gression [Goodman, 1953] entails regressing neighborhood-level outcomes on
neighborhood-level rates of group membership. The approach is unbiased
only absent “contextual effects” – e.g., it would be biased if one group is
more likely to live in neighborhoods where individuals of both groups tend
to have higher values of the outcome. Alternatively, the neighborhood model
[Freedman et al., 1991] uses group-weighted averages across neighborhoods
to estimate group means. It yields unbiased estimates under a different,
but equally strong assumption, namely that there is no association between
group membership and the outcome among individuals living in the same
neighborhood. A third approach to EI, proposed by King [1997], relies for
identification on an assumption about the role of contextual effects within a
parametric statistical model.1

A limitation to all of these approaches is that they require strong assump-
tions for point identification. A potentially appealing alternative is therefore
to focus on partial identification methods, such as the so-called method of
bounds [Duncan and Davis, 1953], which refers to the sharp bounds obtained
from imposing only that the outcome is bounded. In practice, however, the
method of bounds interval is frequently wide. Depending on the application,
such bounds may not shed much light on the parameter of interest.

In this paper, we propose a middle-ground approach to identification
in EI settings that strikes a balance between obtaining informative results
while relying on potentially more credible identifying assumptions. The iden-
tifying assumptions we consider concern two quantities: (1) the between-
group within-neighborhood association – i.e, outcome differences between
groups within the same neighborhood, and (2) the within-group between-
neighborhood association – i.e., outcome differences within the same group
across neighborhoods with different group compositions. We show how as-

1Specifically, King models the individual-level variables of interest as independent draws
from a truncated bivariate normal distribution, where truncation ensures that the esti-
mated proportions fall in the unit interval. In doing so, King’s approach requires a similar
independence assumption as ecological regression; the value of the approach is to com-
bine the identifying power of that assumption with the constraints implied by worst-case
bounds.
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sumptions about the sign of these conditional associations – whether indi-
vidually or in relation to one another – can aid identification. In particular,
we derive sharp bounds for the group-level outcome means and for the dif-
ference in outcome means by group in EI settings in which the researcher
can sign one or both of the conditional associations. Because our identifying
assumptions relate to the signs of the conditional associations, we refer to our
proposed method as monotone ecological inference, in the spirit of Manski
and Pepper [2000].

A virtue of monotone ecological inference is that it relies on weaker iden-
tifying assumptions than canonical EI estimators, in that it does not require
taking a stance on the exact magnitude of either the between- or the within-
group association. In contrast, the neighborhood model estimator is unbiased
only if the between-group association is exactly zero, and ecological regres-
sion is unbiased only if the within-group association is exactly zero.2 These
distinctions are important in practice because in many settings of interest,
the researcher will not be able to entirely rule out within-neighborhood vari-
ation in group outcomes (so that the between-group association may be non-
zero) nor be able to rule out the presence of all contextual effects (so that the
within-group association may be non-zero). At the same time, the researcher
may be able to use theory or auxiliary data to form a belief about the likely
direction of any such associations if they are present, enabling monotone
ecological inference.3

A related possibility is that the researcher may have reason to believe that
the two conditional associations run in the same direction as one another,
even without necessarily knowing the direction. For example, the researcher
may expect that the contextual effects in a particular setting would amplify
any group differences in the outcome that would otherwise exist, such as
through social norms or local control over policy-making, so that the within-
group (between-neighborhood) association would tend to have the same sign
as the between-group (within-neighborhood) association. Under this condi-
tion, which we refer to as contextual reinforcement, we show that the data

2King’s approach also imposes that the within-group association be zero a priori, but
allows for a non-zero conditional association after incorporating feasibility constraints
based on the neighborhood-level data [for discussion, see Lewis, 2001, Jiang et al., 2020].

3As we illustrate below, an auxiliary sample of individual-level data may be useful to
assess the sign of one or both of the conditional associations, even if the sample is not
sufficiently large or representative enough to answer the primary research question on its
own.
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identifies the sign of the difference in group means, and we provide sharp
bounds for the group means as well as for their difference.

The main reason that monotone ecological inference is appealing as a re-
search design is that its identifying assumptions can often be reasoned about
on the basis of expert institutional knowledge and/or auxiliary data. We
illustrate this type of reasoning in our empirical application, where we study
differences in Covid-19 vaccination rates by political party using county-level
data. This topic has been the focus of substantial interest in recent years,
and much of the prior evidence is ecological in nature [Albrecht, 2022, Ye,
2023].

In applying monotone ecological inference to this research question, we
start by noting that the setting is one in which contextual reinforcement is
likely to hold. In particular, because many public health services and policies
like vaccination mandates are determined and applied on a sub-national level,
we expect that any within-neighborhood association between political party
and vaccination status would be amplified through neighborhood-level medi-
ators. For example, suppose that Republicans are more vaccine hesitant for
reasons that are not fully mediated through neighborhood (e.g., differences in
partisan media exposure and attitude formation), so that the between-group
association is negative. We would then also expect that Republicans living
in “red” counties (where most of the residents are Republicans) would be
more likely to face local policies and social norms inhibiting vaccinations, as
compared to Republicans living in “blue” counties (where few of the residents
are Republicans); hence the within-group (across-county) association would
also be negative.4 The plausibility of such “feedback” from individual- to
neighborhood-level associations supports the assumption of contextual rein-
forcement in this setting.

To augment the theoretical support for contextual reinforcement, we ob-
tain an auxiliary data set consisting of individual-level vaccination records
for approximately one million individuals from a registry of electronic health
records. We link these records to publicly available data on voter registration
and then anonymize them. For this sample, we find that both the between-
and within-group associations are negative: Republicans are less likely to be
vaccinated than Democrats living in the same county, and individuals of both
parties are more likely to be vaccinated in counties where individuals of their

4Conversely, if Democrats tended to be more opposed to vaccination, we would expect
the opposite pattern to obtain for both identifying assumptions.
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same party have higher vaccination rates. Although the exact magnitude
of these associations is unlikely to be the same in the overall population,
we interpret the sign of the estimated associations for this subpopulation to
support the contextual reinforcement assumption.

Analyzing the county-level data using monotone ecological inference, we
find evidence that Democrats are vaccinated at higher rates than Repub-
licans. We estimate the vaccination rate among Democrats to be between
0.61 and 0.81, compared to between 0.33 and 0.56 among Republicans. With
respect to the difference in vaccination rates between Democrats and Repub-
licans, the width of the contextual reinforcement bounds is approximately
67% narrower than the method of bounds interval. And unlike the method
of bounds, the contextual reinforcement bounds exclude the possibility that
there is no difference in vaccination rates by political party.

Our results contribute to a large literature that studies identification in
EI settings; [for surveys see, e.g., King, 1997, King et al., 2004, Cho and
Manski, 2008]. Most of this literature focuses on point-identification, with
notable exceptions that include Duncan and Davis [1953], Horowitz and Man-
ski [1995], Cross and Manski [2002], Greiner and Quinn [2009], Manski [2018],
and Jiang et al. [2020]. Among these, Manski [2018] in particular shares a
key feature of our approach, which is to consider sign restrictions on the joint
distribution of individual-level variables to aid in identification. However, the
monotonicity assumptions we consider differ substantially from those consid-
ered by Manski [2018] and aid in identifying a different parameter, leading
us to a very different set of results and insights.5 More recently, Li et al.
[2023] also consider the role of “bounded variation assumptions” for identi-
fying personalized risk assessments from published medical studies, a setting
that shares some features of ecological inference but also differs from it in
important respects.

We contribute to this literature by proposing a novel partial identifica-
tion strategy that can yield informative bounds under appealing identifying
assumptions. A distinct contribution is to provide novel expressions for the
relationship among canonical EI estimators as well as for their respective
estimands, clarifying the interpretation of results when they are applied to
estimate population group differences.

5Specifically, our primary focus is on identifying group characteristics at the population-
level whereas Manski [2018] studies identification of group characteristics for particular
neighborhoods. We study the latter problem in Section 5, where we relate our approach
to Manski’s and introduce novel monotonicity conditions that can aid identification.
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Outside of the EI setting, our results relate to a literature that infers
disparities in individual-level data based on probabilistic estimates of group
membership [Chen et al., 2019, Kallus et al., 2022, McCartan et al., 2024].
Closest to our approach is Elzayn et al. [2025], which applies a partial iden-
tification strategy for estimating income tax audit disparities by race us-
ing individual-level data and probabilistically inferred racial characteristics
based on the sign of conditional covariance terms that are the individual-level
analogs to the conditional associations we study.6 Our approach is also sim-
ilar in spirit to prior work that studies the identification of treatment effects
when the researcher substitutes identifying assumptions based on inequali-
ties for identifying assumptions based on equalities [e.g., Manski and Pepper,
2000, Molinari, 2010, Manski and Pepper, 2018, Rambachan and Roth, 2023].

We proceed as follows. Section 2 describes our empirical setup and de-
fines several canonical EI estimators. Section 3 derives sharp bounds for
the population difference in group means using Monotone EI. Section 4 ex-
tends the same approach to identification of the levels of group means. Sec-
tion 5 develops Monotone EI tools for identification of group means at the
neighborhood-level. Section 6 applies our results to study partisan gaps in
Covid-19 vaccinations. Section 7 concludes. An open-source R software pack-
age, MonotoneEI, is available to implement our proposed approach. The soft-
ware and accompanying documentation are available at https://github.

com/reglab/MonotoneEI.

2 Empirical Framework

A population of individuals is characterized by a triple (X, Y,N). We inter-
pret X to define the individual’s group membership; Y to be the outcome of
interest; and N as the individual’s neighborhood. For expositional simplic-
ity, we initially focus on the case in which X ∈ {0, 1}; the analysis extends
naturally to settings in which there are more than two discrete groups, as
we discuss below. We are primarily interested in the mean values of Y by
group,

Y x = E[Y |X = x],

6Elzayn et al. [2025] does not relate its approach to ecological inference nor derive the
sharp bounds we provide here.
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as well as the difference in group means,

D = Y 1 − Y 0.

Following the presentation of our main results, we also consider the iden-
tification of the levels and difference of the group means for specific neigh-
borhoods, E[Y |X,N = n] and E[Y |X = 1, N = n]− E[Y |X = 0, N = n].

We do not observe individual-level values of X or Y , but rather observe
data that has been aggregated across individuals with the same value of
N . Denote the mean values of X and Y for the individuals in a particular
neighborhood n by

Xn = E[X|N = n]

and
Yn = E[Y |N = n].

The distribution of individuals across neighborhoods is given by

pn = Pr(N = n).

We assume the researcher can directly observe (Xn, Yn, pn) for each n,
deferring issues of sampling uncertainty and statistical inference to our em-
pirical application. We also assume that there are a finite number of neigh-
borhoods, N ∈ N with |N | < ∞. To avoid degenerate cases, we assume
that there exists some n ∈ N for which pn > 0 and Xn ∈ (0, 1). In addition,
we assume that for each group x and neighborhood n, the conditional ex-
pectation of Y with respect to x and n exists and is bounded, Y ≤ Y x

n ≤ Y
for some known pair (Y , Y ) ∈ R2, where Y x

n = E[Y |N = n,X = x]. This
assumption will be naturally satisfied when Y itself has finite support.

Figure 1 visualizes the joint relationship between X, Y , and N . The
overall population association between X and Y can be decomposed into two
conditional associations. We formally define the between-group association
as

δB := E [Cov (Y,X |N)]

and the within-group association as:

δW := E [Cov (Y,XN |X)]

where XN = E[X|N ]. Intuitively, the between-group association, δB, refers
to differences in the outcome between groups within the same neighborhood.
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In turn, the within-group association, δW , refers to differences in the out-
come across neighborhoods with different group prevalence, among individ-
uals within the same group.7

It is possible to relate the overall difference in group means, D, to these
conditional associations, δB and δW . To do so, define γ = Var(XN )

Var(X)
. Intuitively,

γ reflects the loss of information due to the data being aggregated, so that
γ < 1 in EI settings. We then have the following result.

Proposition 1 (Decomposition of Overall Association into Conditional As-
sociations).

D =
δB + δW

(1− γ)Var(X)

We defer the proof of Proposition 1, and all subsequent results, to the Ap-
pendix. Although we are not aware of prior work that has linked the differ-
ence in group means to δB and δW in this way, the γ term that appears in
Proposition 1 is familiar within the EI literature as a mediator of the dis-
crepancy between individual and ecological estimation approaches.8 Because
γ < 1, an immediate implication of Proposition 1 is that the sign of D is the
same as that of δB + δW .

Canonical EI Estimators

We next describe three canonical approaches for estimating the group-level
means in EI settings. We focus on these three methods (as opposed to other
popular methods like King [1997]) because they will appear as inputs into
the monotone EI bounds we derive.

The most common method for conducting EI is ecological regression (ER)
[Goodman, 1953]. The ecological regression estimator for the difference in

group means, D̂ER, is defined as the estimated coefficient for XN in the
weighted least squares regression of YN on XN , with weights based on the

7These interpretations follows from the fact that with binary X, Cov(X,Y |N = n) =
E[XY |N = n] − E[Y |N = n]E[X|N = n] = Pr[X = 1|N = n](Y 1

n − E[Y |N ]) =
Var[X|N = n](Y 1

n − Y 0
n ). Hence, δB =

∑
n∈N (Y 1

n − Y 0
n ) Var[X|n] pn. Similarly,

δW = E[X] Cov (YN , XN |X = 1) + (1− E[X]) Cov (YN , XN |X = 0).
8For example, γ corresponds to η2X,A in Equation 1 of Robinson [1950].
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share of the population in each neighborhood:

D̂ER =

∑
n∈N

pn Ỹn X̃n∑
n∈N

pn

(
X̃n

)2
where X̃n = Xn −

∑
n pnXn∑

n pn
denotes the demeaned value of Xn, and similarly

for Ỹn = Yn −
∑

n pnYn∑
n pn

. We will focus on the ecological regression estimator’s

asymptotic limit under an iid sampling process:

DER =
Cov(YN , XN)

Var(XN)

where XN = E[X|N ] and YN = E[Y |N ].
In turn, the ecological regression estimates for the group-level means are

given by

Ŷ 0
ER =

∑
n∈N

pn Yn −


∑
n∈N

pn Ỹn X̃n∑
n∈N

pn (X̃n)2

 (∑
n∈N

pnXn

)

and

Ŷ 1
ER =

∑
n∈N

pn Yn +


∑
n∈N

pn Ỹn X̃n∑
n∈N

pn (X̃n)2

 (∑
n∈N

pn (1−Xn)

)

which respectively converge to

Y 0
ER = E[YN ]−

(
Cov(YN , XN)

Var(XN)

)
E[XN ]

and

Y 1
ER = E[YN ] +

(
Cov(YN , XN)

Var(XN)

)
(1− E[XN ]) .

9

An alternative method for estimating group-level differences in ecologi-
cal inference settings is the so-called Neighborhood Model (NM) [Freedman

9One can equivalently define the ecological regression estimates for the group means as
the estimated coefficients of the weighted regression of YN on XN and 1−XN .
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et al., 1991].10 The neighborhood model estimators for the group-level means
are weighted averages of the neighborhood-level outcomes, with weights given
by the group’s prevalence in the neighborhood:

Ŷ 1
NM =

∑
n∈N

pnXnYn∑
n∈N

pnXn

and

Ŷ 0
NM =

∑
n∈N

pn (1−Xn)Yn∑
n∈N

pn (1−Xn)

The neighborhood model estimator for the difference in group means,
D̂NM , is correspondingly defined as

D̂NM =

∑
n∈N

pnXnYn∑
n∈N

pnXn

−

∑
n∈N

pn(1−Xn)Yn∑
n∈N

pn(1−Xn)

As above, we will focus on the neighborhood model estimators’ asymp-
totic limits:

Y 1
NM =

E[XN YN ]

E[XN ]

Y 0
NM =

E [(1−XN)YN ]

E [1−XN ]

and

DNM =
E[XN YN ]

E[XN ]
− E [(1−XN)YN ]

E [1−XN ]

It will be useful in our subsequent results to observe that ecological re-
gression and the neighborhood model estimates follow a close mechanical
relationship.11

10Freedman et al. [1991] proposes two model variants: the non-linear neighborhood
model and the linear neighborhood. Our focus is on the former.

11Surprisingly, the relationship described in Lemma 1 has not received attention in
the EI literature. The only prior reference to it that we could identify appears in an
unpublished monograph Ansolabehere and Rivers [1995].
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Lemma 1 (Relationship Between Neighborhood Model and Ecological Re-
gression).

DNM = γ DER

where γ = Var(XN )
Var(X)

< 1, as above. Whereas ecological regression and the

neighborhood model yield point estimates for the group-level means and their
difference, an alternative approach is to calculate the most extreme values of
these quantities that are consistent with the observed data. In EI settings,
consistency with the data requires that, for each n ∈ N , (i) Y 0

n ∈ [Y , Y ]; (ii)
Y 1
n ∈ [Y , Y ]; and (iii) Xn Y

1
n + (1 − Xn)Y

0
n = Yn. The Method of Bounds

(MOB) interval is defined by the minimum and maximum group-level means
that satisfy these constraints.12

Proposition 2 (Method of Bounds for Group Means). Suppose that for
each x and n, the conditional expectation of Y with respect to x and n exists,
Y ≤ E[Y |X = x,N = n] ≤ Y for some pair (Y , Y ) ∈ R2. Define the
following parameters:

Y 1+
MOB : =

E
[
min

{
YN − Y (1−XN), Y XN

}}
]

E[X]
.

Y 0−
MOB : =

E[max
{
YN − Y XN , Y (1−XN)

}
]

1− E[X]

Y 1−
MOB : =

E[max
{
YN − Y (1−XN), Y XN

}
]

E[X]

Y 0+
MOB : =

E[min
{
YN − Y XN , Y (1−XN)

}
]

1− E[X]

It follows that

Y 1 ∈
[
Y 1−
MOB , Y 1+

MOB

]
(1)

and Y 0 ∈
[
Y 0−
MOB , Y 0+

MOB

]
(2)

The bounds in (1) and (2) are sharp.

12In Proposition 2 and throughout, we refer to an interval [a , b] as a sharp bound for
Y 1 if, for every y1 ∈ [a , b], there exists some joint distribution of (X,Y ) that is consistent
with the observed marginal distribution of (pn, Xn, Yn) as well as any additional imposed
assumptions, and that implies Y 1 = y1, and similarly for bounds for Y 0 and D.
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The insight underlying Proposition 2 is originally due to Duncan and
Davis [1953]; it has been extended and formalized by Horowitz and Manski
[1995], Cross and Manski [2002], Cho and Manski [2008]. Those authors
showed how one could derive sharp bounds on group means for outcomes
with bounded support and for neighborhoods in which the group’s prevalence
is known. Proposition 2 provides a novel closed-form expression for the
aggregation of those neighborhood-specific bounds to the population-level.

The same approach yields bounds for the difference in group means:

Proposition 3 (Method of Bounds for Difference in Group Means). Suppose
that for each x and n, the conditional expectation of Y with respect to x and
n exists, Y ≤ |E[Y |X = x,N = n] ≤ Y for some pair (Y , Y ) ∈ R2. Define
the following parameters:

D+
MOB =

E[min
{
YN − Y (1−XN), Y XN

}
]− E[X]E[Y ]

Var[X]

and D−
MOB =

E[Y ](1− E[X])− E[min{YN − Y XN , Y (1−XN)}]
Var(X)

It follows that

D ∈
[
D−

MOB , D+
MOB

]
(3)

The bounds in (3) are sharp.

As a corollary to Propositions 2 and 3, observe that the estimands asso-
ciated with the neighborhood model will always be feasible.

Corollary 1. Absent additional information, the neighborhood model esti-
mates, Y 0

NM , Y 1
NM , and DNM , are feasible given the observed neighborhood-

level data.

In the next section, we consider the asymptotic bias of these estimators
and show that they define sharp bounds under various assumptions about
the sign of the within- and between-group associations.

3 Identification of the Difference in Group

Means

In this section we study how assumptions about the sign of the within- and
between-group associations provide identifying power for learning about the

12



difference in group means. We first establish that the bias of the ecological
regression estimate for the difference in group means depends on the within-
group association.13

Proposition 4 (Bias of Ecological Regression for Difference in Group Means).

DER −D =
δW

Var(XN)

We also have the following direct corollary:

Corollary 2. The ecological regression estimator, D̂ER, is unbiased if and
only if δW = 0.

When the within-group association is non-zero, ecological regression is bi-
ased because differences in the prevalence of groups across neighborhoods are
conflated by other neighborhood-level contextual effects. This phenomenon
was recognized as early as Goodman [1953]; it is sometimes referred to as
aggregation bias in the EI literature.

Because our focus is on identification of group outcomes at the popula-
tion level (as opposed to group differences for a particular neighborhood),
the condition provided in Corollary 1 differs from the condition typically
described in the EI literature under which ecological regression is unbiased,
which is that

Cov(Y 1
N , XN) = Cov(Y 0

N , XN) = 0 (4)

where Y x
N = E[Y |N,X = x] for x = 0, 1.14 Although condition (4) implies

δW = 0, the converse is not true. This distinction is significant because con-
dition (4) can be empirically tested with the residuals from the ecological
regression, as proposed, for instance, by Loewen and Grofman [1989] and
Gelman et al. [2001]. However, δW may be zero (so that ecological regres-
sion identifies our parameter of interest), even when the ecological regression

13Throughout, we use “bias” to refer to the asymptotic bias of the specified estimator,
i.e., the difference between what the estimator identifies and the target estimand. Proposi-
tions 4 and 6 are the EI analogues to Proposition 1.1 and 1.2 in Elzayn et al. [2025], which
apply to individual-level data in which group membership is probabilistically observed.

14A stronger condition that is sometimes discussed, which implies (4), is the constancy
model, under which each group’s outcomes are the same in each neighborhood, Y x

n = Y x

for all n and for x = 0, 1.
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residuals indicate that the conditional expectation function of YN given XN

is highly non-linear (indicating that Condition (4) is violated). Figure 1
provides an illustration.

Figure 1: Ecological Regression with Contextual Effects

Notes: The figure illustrates a setting in which Cov(YN , XN |X) ̸= 0 for each
X, so that E[YN |XN ] is nonlinear. However, E[Cov(YN , XN |X)] = δW = 0,
so ecological regression is still unbiased. While the ecological regression line
(red dashed) does not travel through Y (0) or Y (1) (green), the slope of the
ecological regression line is equal to the difference between Y (1) and Y (0).

Our next result characterizes the identifying power of assumptions that
sign the within-group (across neighborhood) association.

Proposition 5 (Bounds Based on the Sign of the Within-Group Associa-
tion).

(i) If δW ≥ 0, then

D ∈
[
D−

MOB , Min
{
D+

MOB, DER

}]
(ii) If δW ≤ 0, then

D ∈
[
Max

{
D−

MOB, DER

}
, D+

MOB

]
(iii) The bounds in (i) and (ii) are sharp.
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We now proceed analogously to derive bounds based on the sign of the
between-group (within-neighborhood) association. First, Proposition 6 char-
acterizes the bias of the neighborhood model estimator:

Proposition 6 (Bias of the Neighborhood Model Estimator for the Differ-
ence in Group Means).

DNM −D =
−δB

Var(X)

The following Corollary directly follows:

Corollary 3. The neighborhood model estimator, D̂NM , is unbiased if and
only δB = 0.

Freedman et al. [1991] noted that the neighborhood model point-identifies
E[Y | X,N ] under a related but stronger condition, that there is no system-
atic difference in the outcome between groups within any neighborhood, i.e.,
E[Y |0, N ] = E[Y |1, N ] for all N .

Together with Proposition 1, Corollaries 2 and 3 establish that except
in degenerate cases, the assumptions justifying the ecological regression and
neighborhood model estimators are mutually exclusive:

Corollary 4. If D ̸= 0, then either: (i) the ecological regression estima-

tor, D̂ER, is biased; (ii) the neighborhood model estimator, D̂NM , is biased;
or (iii) both ecological regression and the neighborhood model estimator are
biased.

The following result uses Proposition 6 to derive sharp bounds for D
based on the sign of the between-group association.

Proposition 7 (Bounds Based on the Sign of the Between-Group Associa-
tion).

(i) If δB ≥ 0, then
D ∈

[
DNM , D+

MOB

]
(ii) If δB ≤ 0, then

D ∈
[
D−

MOB , DNM

]
(iii) The bounds in (i) and (ii) are sharp.
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It is interesting to compare the bounds in Proposition 7 based on δB to the
bounds in Proposition 5 based on δW . Both bounds make use of information
about the sign of a conditional association to narrow the method of bounds
interval in one direction. However, whereas the bounds based on δB are
strictly within the interior of the method of bounds interval, the same is not
true of δW . The explanation for the difference is that the estimates from
ecological regression are not guaranteed to be feasible, whereas the estimates
from the neighborhood model are necessarily within the method of bounds
interval.

The bounds in Proposition 7 are conceptually related to the “bounded
variation” approach considered in Manski [2018], which can entail impos-
ing an assumption on the sign of E[Y |X = 1, N ] − E[Y |X = 0, N ] to de-
rive bounds for E[Y |X,N ].15 Because our focus is on E[Y |X] rather than
E[Y |X,N ], Proposition 7 requires only that this sign restriction hold on av-
erage across values of N . See Section 5 for additional discussion.

Whereas the bounds in Propositions 5 and 7 are based on assumptions
about the respective signs of δW and δB, in some settings it may be more
credible to assume that δW and δB share the same sign as one another, with-
out taking a stance on what that shared sign is. For example, the researcher
may have theoretical or institutional reasons to expect that contextual ef-
fects reinforce the individual-level (within-neighborhood) difference, such as
through mutually reinforcing social norms. We refer to this condition as
contextual reinforcement, and formally define it as follows:

Definition 1. Contextual Reinforcement is satisfied if δW · δB ≥ 0.

Proposition 8. (Identification of Group Differences with Contextual Rein-
forcement)

If δW · δB ≥ 0, then:
(i) If DER ≥ DNM , then

0 ≤ DNM ≤ D ≤ Min
{
D+

MOB , DER

}
(ii) If DER ≤ DNM , then

Max
{
D−

MOB , DER

}
≤ D ≤ DNM ≤ 0

(iii) The bounds in (i) and (ii) are sharp.

15More generally, Manski [2018] considers identification of p(Y,X,N) given assumptions
that constrain the possible values of p(Y |X = 1, N)− p(Y |X = 0, N). When Y is binary,
this term is equal to Cov(Y,X|N), the analogue of δB for a specific N .
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The following Corollary follows directly:

Corollary 5. If contextual reinforcement holds, then

Sign(D) = Sign (DER −DNM)

The following Theorem summarizes our results so far and provides corre-
sponding results for cases in which both conditional associations have known
signs but contextual reinforcement does not hold.

Theorem 1 (Identification of D with Monotone EI). Table 1 provides sharp
bounds for D under the specified information. If it is known that contextual
reinforcement holds, the bounds on D in one of the shaded table cells will
apply.

Proof. The results for each cell in the table have been proven by the previous
propositions except for those in which δB and δW have opposite signs. For
the cell in which δB ≥ 0 and δW ≤ 0, the claim is that:

D ∈
[
max{DNM , DER, D

−
MOB}, D

+
MOB

]
.

Proposition 4 and Proposition 6 together show thatD ≥ DER andD ≥ DNM ;
Proposition 3 gives that D ≥ D−

MOB – which, combined with the previous
inequalities, gives the lower bound – and that D ≤ D+

MOB; the bound is thus
proved. To see that the bound is sharp, note that first of all it is a subset of
[D−

MOB, D
+
MOB], so by Lemma 2 every D̃ within the range is feasible (with

respect to the constraints of [Y , Y ] and Yn) with some distribution Ỹ . But
note that δB ≥ 0 ⇐⇒ D ≥ DNM and δW ≥ 0 ⇐⇒ D ≥ DER; both these
must hold for all D̃ in the interval, so all such D̃ are feasible. The bound is
thus sharp. A similar approach gives the sharp bound for the δB ≤ 0 and
δW ≥ 0 cell.

4 Identification of Group Means

This section provides results relating to the use of monotone ecological infer-
ence for identifying the group means, Y 0 and Y 1. The ecological regression
estimates for the levels of the group means are biased under the same con-
dition, and in a related manner, as the ecological regression estimate for the
difference in group means described in Proposition 4. A similar parallel exists
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for the neighborhood model estimates of the group means compared to the
neighborhood level estimate for the difference in group means. The nature
of these relationships are formalized in the following two propositions.

Proposition 9 (Bias of Ecological Regression for Group Means).

Y 1
ER − Y 1 =

δW (1− E[X])

Var(XN)

Y 0
ER − Y 0 = − δW E[X]

Var(XN)

Proposition 10 (Bias of Neighborhood Model Estimator for Group Means).

Y 1
NM − Y 1 = − δB

E[X]

Y 0
NM − Y 0 =

δB
1− E[X]

Applying these results in the manner employed in the prior subsection
yields the following identification results on Y 1 and Y 0.

Theorem 2 (Identification of Y 1 with Monotone EI). Table 2 provides sharp
bounds for Y 1 under the specified information. If it is known that contextual
reinforcement holds, the bounds on Y 1 in one of the shaded table cells will
apply.

Theorem 3 (Identification of Y 0 with Monotone EI). Table 3 provides sharp
bounds for Y 0 under the specified information. If it is known that contextual
reinforcement holds, the bounds on Y 0 in one of the shaded table cells will
apply.

Finally, we have so far assumed that group membership is binary. Suppose
instead that there are G+1 discrete groups, indexed by g ∈ {0, 1, ..., G}. To
identify E[Y |G = g], we can define Xg ∈ {0, 1} to indicate whether or not
an individual belongs to group g,

Xg = 1 ⇐⇒ G = g

and then apply the bounds in Table 2 with respect to Xg instead of X. Note
that unlike the binary case, the relevant conditional associations will differ
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for each group. For example, the within-group association that determines
the bias of the ecological regression estimator for E[Y |G = g] is given by

δgW = E[Cov(Y,Xg
N |X

g)],

where Xg
N = E[Xg | N ]. Similarly, the between-group association that deter-

mines the bias of the neighborhood model estimator for E[Y |G = g] is given
by

δgB = E[Cov(Y,Xg|N)].
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5 Identification of Neighborhood-Specific Group

Means

Our focus so far has been on identification of the overall group means, Y x =
E[Y |X = x], as well as the difference in overall group means, D = Y 1−Y 0. In
some settings, a researcher may seek to learn a group mean within a specific
neighborhood, Y x

n = E[Y | N = n,X = x] , or the difference in group
means within that neighborhood, Dn = Y 1

n − Y 0
n .

16 In this section, we
consider the identifying power of monotone ecological inference for studying
neighborhood-specific group means.

As a starting point, note that the method of bounds provides sharp
bounds on Y x

n and Dn for each n and x under the same assumptions imposed
by Propositions 2 and 3 [Duncan and Davis, 1953, Cho and Manski, 2008].
We will refer to the endpoints of these intervals for a specific neighborhood
n using the following notation:

Y x
n ∈

[
Y x−
MOB,n , Y

x+
MOB,n

]
and

Dn ∈
[
D−

MOB,n , D
+
MOB,n

]
where Y 1+

MOB,n = min
{

Yn

Xn
, Y
}
, Y 0−

MOB,n = Yn−min{Yn,XnY }
1−Xn

, Y 0+
MOB,n =

min
{

Yn

1−Xn
, Y
}
, Y 1−

MOB,n = Yn−min{Yn,Y (1−Xn)}
Xn

, D+
MOB,n = Y 1+

MOB,n − Y 0−
MOB,n,

and D−
MOB,n = Y 1−

MOB,n − Y 0+
MOB,n.

Monotone ecological inference entails sharpening these bounds at the
neighborhood-level by imposing sign restrictions on various aspects of the
unobserved individual-level relationship between Y , X, and N . Consider
first the neighborhood-level analog to the between-group association,

δB,n := Cov(Y,X|N = n).

Whereas δB describes the average between-group variation within neighbor-
hoods, δB,n depends on the between-group variation for a specific neighbor-
hood.

16Using the terminology of Cross and Manski [2002], the overall group mean corresponds
to the “short regression” of Y on X whereas the neighborhood-specific group mean corre-
sponds to the “long regression” of Y on X and N .
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Manski [2018] previously considered the identifying power of the sign of
δB,n for studying Y x

n . Because we will draw on his result below, we reproduce
it using our notation in the following proposition:

Proposition 11 (Bounds Based on the Sign of the Neighborhood-Specific
Between-Group Association [Manski, 2018]).
(i) If δB,n ≥ 0 for some n ∈ N then:

Dn ∈ [0, D+
MOB,n],

Y 1
n ∈ [Yn, Y

1+
MOB,n],

and Y 0
n ∈ [Y 0−

MOB,n, Yn].

(ii) If δB,n ≤ 0 for all n ∈ N then:

Dn ∈ [D−
MOB,n, 0],

Y 1
n ∈ [Y 1−

MOB,n, Yn],

and Y 0
n ∈ [Yn, Y

0+
MOB,n].

(iii) The bounds in (i) and (ii) are sharp.

We next consider the identifying power of assumptions on the neighborhood-
specific analog to the within-neighborhood association, which has not to our
knowledge been considered in prior research. Let µx(xn) denote the condi-
tional expectation of Y for a member of group x in a neighborhood with
group-prevalence xn

µx(xn) = E[Y | X = x, Xn = xn]

We restrict our focus to neighborhoods with group-prevalence values for
which the first derivative of µx(·) exists for x = 0 and x = 1, and we denote
those derivatives by µ′

x(·)

µ′
x(xn) = lim

u→0

1

u

(
E[Y | X = x, Xn = xn + u]− E[Y | X = x, Xn = xn]

)
For neighborhood n, define the local within-neighborhood association δW,n

as
δW,n = Xn µ

′
1(Xn) + (1−Xn)µ

′
0(Xn)

where Xn = E[X|N = n]. Conceptually, δW,n captures the within-group
association between the mean of the outcome, Y , and the group-prevalence
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of the neighborhood, XN , among neighborhoods with similar levels of group-
prevalence. It differs from δW in that δW depends on a summary measure
of the relationship between Y and XN across all neighborhoods, whereas
δW,n reflects the “local” relationship between Y and XN among a set of
neighborhoods with similar levels of group prevalence.

Although µ0 and µ1 are unobserved, we do observe the overall regression
function, µ(xn) := E[Y | Xn = xn], which is the mixture of the group-specific
regression functions

µ(xn) = xn µ1(xn) + (1− xn)µ0(xn). (5)

We also observe the derivative of the overall regression function, µ′(xn),
which, by construction, is guaranteed to exist.

Differentiating (5) yields

µ′(xn) = µ1(xn)− µ0(xn) + xn µ
′
1(xn) + (1− xn)µ

′
0(xn)

= Dn + δW,n

Thus, given knowledge of δW,n, the derivative of the conditional expectation
function, µ′(xn), provides information about the group means in neighbor-
hoods with group-prevalence xn.

In addition to assuming knowledge of the sign of δW,n, it will be convenient
to assume that each neighborhood with the same prevalence Xn has the same
average outcome - i.e. E[Y |X = x,N = n] = E[Y |X = x,XN = Xn].

Assumption 1. For every neighborhood n,

E[Y |X = x,N = n] = E[Y |X = x,XN = Xn]

In words, Assumption 1 requires that any two neighborhoods that have
the same group-prevalence will also share the same mean outcomes by group
(at least in expectation). Under this assumption, knowledge of the sign of
δW,n facilitates identification as follows:

Proposition 12.
(i) Suppose that δW,n ≥ 0. Then:

Dn ∈
[
D−

MOB,n min
{
µ′(Xn), D

+
MOB,n

}]
,

Y 1
n ∈ [Y 1−

MOB,n,min
{
Y 1+
MOB,n, Yn + (1−Xn) · µ′(Xn)

}
],

and Y 0
n ∈ [max

{
Y 0−
MOB,n, Yn −Xn · µ′(Xn)

}
, Y 0+

MOB,n].
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(ii) Suppose that δW,n ≤ 0. Then:

Dn ∈
[
max

{
µ′(Xn), D

−
MOB,n

}
, D+

MOB,n

]
,

Y 1
n ∈ [max

{
Y 1−
MOB,n, Yn + (1−Xn) · µ′(Xn)

}
, Y 1+

MOB,n],

and Y 0
n ∈ [Y 0−

MOB,n,min
{
Y 0+
MOB,n, Yn −Xn · µ′(Xn)

}
].

(iii) The bounds in (i) and (ii) are sharp in the absence of further informa-
tion.

When Assumption 1 does not hold, the bounds in Proposition 12 identify
the group means or differences for the set of neighborhoods with the same
group prevalence as the target neighborhood n. We formalize this claim and
provide a proof in Proposition 16 of the Online Appendix.

Finally, consider the possibility that the researcher has information not
about the individual signs of δW,n and δB,n but rather that these two (lo-
cal) associations share the same sign as one another. This local analog to
contextual reinforcement can substantially aid in identification:

Proposition 13. Suppose that δB,n · δW,n ≥ 0. Then either:

(i) µ′(Xn) ≥ 0, and

Dn ∈
[
0,min

{
µ′(Xn), D

+
MOB,n

}]
,

Y 1
n ∈

[
Yn,min

{
Yn + (1−Xn)µ

′(Xn), Y
1+
MOB

}]
,

and Y 0
n ∈

[
max

{
Y −
MOB,0, Yn −Xnµ

′(Xn)
}
, Yn

]
;

or

(ii) µ′(Xn) ≤ 0, and

Dn ∈ [max
{
µ′(Xn), D

−
MOB,n

}
, 0],

Y 1
n ∈ [max

{
Y 1−
MOB,n, Yn + (1−Xn)µ

′(Xn)
}
, Yn],

and Y 0
n ∈ [Yn,min

{
Yn −Xnµ

′(Xn), Y
0+
MOB,n

}
].

(iii) The bounds in (i) and (ii) are sharp.
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6 Empirical Application

To illustrate the benefits of monotone ecological inference in a concrete set-
ting, we investigate the question of partisan polarization in COVID-19 vac-
cine uptake. This question has been of acute interest to policymakers, aca-
demics, and the media, both for COVID-19 response specifically and broader
questions of trust in public health authorities [Milligan, 2021, Collins, 2024].17

Unfortunately, most research in the U.S. context has had to rely on ecological
inference, as joint individual data on vaccination status and partisan mem-
bership is not available for a large nationally representative set of individuals
[e.g., Albrecht, 2022, Ye, 2023].18

Our primary data set consists of county-level data from 3,115 counties
on COVID-19 vaccination uptake and partisanship. We measure vaccination
uptake as the share of county residents who had received one or more COVID-
19 vaccination as of December 31, 2021, obtained from the Centers for Disease
Control and Prevention [2024]. We measure partisanship as the fraction of
voters in the county who cast their ballot for the Republican candidate in the
2020 presidential election, obtained from the MIT Election Data and Science
Lab [2020].19

Using our previous notation, Y indicates whether an individual is vacci-
nated, X indicates whether an individual is Republican, and N indicates the
county in which the individual resides. The share of vaccinated individuals
in a county is between Y = 0 and Y = 1. Our goal is to use the county-level
data to estimate the partisan vaccination gap, which we define as the differ-
ence in the mean vaccination rate of Republicans relative to Democrats and
third party voters, D = E[Y |X = 1]− E[Y |X = 0].

Figure 2 plots the binned county-level data. The figure shows a clear
downward trend: counties with more Republicans tend to have lower vacci-

17Jones and McDermott [2022] provide a helpful conceptual discussion and review of
the literature.

18An alternative methodological approach is to collect individual-level survey data on
vaccine uptake and political affiliation; such research designs avoid the need for ecological
inference but often face limitations based on sample size, representativeness, and response
bias.

19We focus on this measure of partisan ideology rather than Republican party voter
registration to be consistent with the prior EI research on the topic. A second reason
is that a meaningful share of voters are registered as independent, and the ideologies
associated with voters in this group is likely to vary widely across different counties around
the country.
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nation rates. The pattern is consistent with the possibility that Republicans
are vaccinated at lower rates than Democrats. However, this interpretation is
potentially subject to the ecological fallacy; counties with more Republicans
may have lower vaccination rates for reasons unrelated to partisan composi-
tion [Ye, 2023]. Indeed, the method of bounds interval for the partisan vac-
cination gap ranges from -77.4 to 52.8 percentage points. The width of the
MOB interval implies that the county-level data does not provide much in-
formation about the magnitude or even direction of differences in vaccination
rates between Republicans and Democrats, at least without further assump-
tions. Point identification approaches also diverge sharply: the neighborhood
model and ecological regression imply respective partisan vaccination gaps
of -5.5 and -47.9 percentage points.

Figure 2: County Vaccination Rate by County Republican Vote Share
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Notes: The figure reports county-level COVID-19 vaccination rates by the
share of voters in the county who voted for the Republican candidate in the
2020 presidential election. Counties are grouped into 100 equal-population
bins. The neighborhood model estimates for the mean vaccination rates
among Republicans and non-Republicans are respectively denoted by the
lower and upper red dotted lines. The ecological regression line is in black.

Sharpening identification through monotone ecological inference involves
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making assumptions about two conditional associations. First, the between-
group association, E [Cov(Y,X|N)], refers to differences in vaccination up-
take between Republicans and Democrats living in the same county. Prior
research provides some basis for expecting the between-group association
to be negative; there are well-documented partisan differences in informa-
tion sources that are not fully mediated through neighborhood [Iyengar and
Hahn, 2009, Peterson et al., 2021], and the prominent Republican politicians
featured on more conservative media outlets were more likely to espouse
anti-vaccination beliefs and/or downplay the health risks associated with the
COVID-19 virus [Hornsey et al., 2020, Gollwitzer et al., 2020, Albrecht, 2022].
Second, the within-group association, E [Cov(Y,XN |X)], refers to differences
in vaccination uptake among individuals of the same political party who
live in neighborhoods with differing concentrations of Republican voters.20

Like the between-group association, there is some reason to believe that the
within-group association is negative. For example, Republican counties tend
to be lower income and more rural (Figure S2), which are factors associated
with lower access to public health services like vaccinations [Sun and Monnat,
2022, Hernandez et al., 2022, Parolin and Lee, 2022].

More generally, there are reasons to expect that the two conditional as-
sociations share the same sign as one another, whether that sign is positive
or negative. One mechanism through which such contextual reinforcement
may operate is network effects, such as social norms or peer effects. In par-
ticular, people’s health behaviors are known to be influenced by the people
around them [Sato and Takasaki, 2019, Klaesson et al., 2023], and in Re-
publican counties, a larger share of the people with whom one interacts are
likely to be Republican. Thus if the Republicans in a neighborhood tend to
be more skeptical of COVID-19 vaccinations (i.e., the between-group associ-
ation is negative), that is likely to reduce the vaccination rate among both
Democrats and Republicans living in that neighborhood. In the words of
one author, “In many communities, wearing a mask or getting a [COVID-19]
vaccine became a political statement, with many Republicans arguing that
these actions violated their individual freedoms and were unnecessary any-
way” [Albrecht, 2022]. Along similar lines, for many people, vaccine uptake
may depend in part on local policies, such as whether vaccines are man-

20That is, the within-group association refers to vaccination uptake gaps between Re-
publicans living in counties with more Republicans compared to Republicans living in
counties with fewer Republicans, and between Democrats living in counties with more
Republicans compared to Democrats living in counties with fewer Republicans.
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dated for public sector employees [Howard-Williams et al., 2022]. Thus, if
Republicans exhibit more vaccine hesitancy, we would expect that counties
in which more Republicans live would be more likely to elect leaders that
do not adopt pro-vaccine policies, leading to lower vaccine rates for county
residents, whether Democrat or Republican.21

The foregoing discussion provides a theoretical basis for the contextual
reinforcement assumption in this setting. We empirically validate the as-
sumption by drawing on an auxiliary dataset that contains individual-level
data on vaccination status, political party registration, and neighborhood.
We construct this dataset by matching a national dataset of voter registra-
tion records [L2, 2024], which contain individual-level data on political party,
to a large dataset of electronic health care records [Balraj et al., 2023], which
contain individual-level data on COVID-19 vaccination status. Appendix
B provides a further description of the underlying data sources and of our
matching procedure. The final matched dataset contains approximately 1.3
million registered Republicans and Democrats in 2,576 counties and 49 states,
plus the District of Columbia.22

Figure 3 uses the auxiliary data to plot vaccination rates by (binned)
county-level Republican vote share, separately for Republicans and Democrats.
The figure provides visual support for contextual reinforcement: the Republi-
can bins tend to lie below the Democratic bins with similar partisan makeup
(so that the between-group association is negative) and both the Republi-
can bins and Democratic bins exhibit a downward sloping trend (so that the
within-group association is also negative). Formal statistical tests regard-
ing the sign of these quantities yield the same conclusion (see Table S2).
Based on these results, we adopt the contextual reinforcement assumption
to interpret the county-level analyses.23

21Analogously, Patterson [2022] finds that states with Republican governors were less
likely to quickly adopt stay-at-home orders during the pandemic, and that individuals in
those states exhibited less social distancing as a result.

22While this is a large linked dataset, most of the literature has not been able to secure
such individual-level data due to data restrictions, hence relying primarily on aggregate
data [see Albrecht, 2022, Ye, 2023].

23A limitation of this analysis for assessing contextual reinforcement is that the set
of individual included in the auxiliary dataset may not be representative of the overall
population due to the nature of selection into our electronic health records data or non-
random match rates with the voter registration data. We obtain similar results when we
replicate the analysis using alternative matching criteria to construct the auxiliary sample
(Table S3) and when we re-weight the auxiliary data based on individuals’ observable
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Figure 3: Vaccination Rate by Vote Share and Political Party Membership
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Notes: The figure uses the matched auxiliary data set to report Covid-19
vaccination rates by county-level Republican vote share for individuals
registered as Republicans (red) and individuals registered as Democrats
(blue). Individuals are grouped into ten equal-sized bins based on the
Republican vote share for the county in which they live. The average
vertical difference between the blue and red points reflects the estimated
sign of δB. The average slope of the linear best fit lines reflects the
estimated sign of δW .

When contextual reinforcement holds, Corollary 5 establishes that we
can identify the sign of the difference in group means based on the sign
of the difference between the ecological regression and neighborhood model
estimators. As shown in Figure 4, we find that this difference is positive
(p < .01), implying that Democrats are vaccinated at higher rates than

characteristics to more closely match the national population (Table S4). A different
limitation is the potential for discordance between the partisanship measure contained
in the auxiliary data (party registration) and the one employed in our main county-level
analysis (presidential vote share).
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Republicans. In turn, the contextual reinforcement bounds from Proposition
8 imply that the partisan vaccination gap is between -47.9 and -5.5 percentage
points (95% CI: -51.8 to -5.1).

Figure 4 summarizes our results under various identifying assumptions.24

If δW or δB was assumed to be zero, the partisan vaccination gap would be
point-identified at -47.9 or -5.5 percentage points, respectively. Conversely,
without any assumptions beyond the observed data, the method of bounds
interval for the partisan vaccination gap ranges from -77.4 to 52.8 percent-
age points. Turning to monotone EI, as discussed above there are plausible
reasons to expect δB ≤ 0 as well as δW ≤ 0. Imposing these sign restrictions
individually respectively tightens the method of bounds interval by 45% and
22%. Finally, under contextual reinforcement, our preferred identifying as-
sumption, we can conclude that the partisan vaccination gap is between -47.9
and -5.5 percentage points, an interval that is 67% smaller than the one ob-
tained from the method of bounds.

We also demonstrate how our method may be used to more precisely
bound county-specific vaccine disparities. For purposes of this exercise, we
assume that the sign assumptions discussed above hold not only for δB and
δW but locally for each county as well. To calculate the implied bounds, we es-
timate µ′(Xn) using population-weighted local linear approximation with an
Epanechnikov kernel, with bandwidth chosen through 10-fold cross validation
(Figure S3). Based on this estimated derivative, we use Proposition 13(ii) to
calculate county-level bounds on the Democrat and Republican vaccination
rates. For Contra Costa County, which leans left-of-center politically, we
estimate that the Republican vaccination rate is between 0.50 and 0.77 and
that the Democrat vaccination rate is between 0.77 and 0.87. For Galveston
county, which leans right-of-center politically, the respective bounds for Re-
publicans and Democrats are from 0.36 to 0.57 and from 0.57 to 0.89. Each
of these intervals is substantially narrower than the corresponding interval
derived from the method of bounds (see Figure 5).

24Figure S1 provides corresponding results for mean vaccination rates among Democrats
and Republicans.
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Figure 4: Identification of Partisan Vaccination Gap Using Monotone EI
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Notes: The partisan vaccination gap is defined as the proportion of
vaccinated Democrats subtracted from the proportion of vaccinated
Republicans. A negative gap indicates that a higher proportion of
Democrats than Republicans are vaccinated. Red bars are 95% confidence
intervals following [Imbens and Manski, 2004]; the confidence intervals are
based on standard errors from a county-level bootstrap with 1000 bootstrap
replicates.

7 Conclusion

We study the classic statistical challenge of ecological inference (EI). Our
results clarify the nature of the biases associated with canonical EI methods
for point-identifying group outcomes and differences at the population-level.
We use those results to derive novel partial identification results based on
assumptions about the sign of the conditional associations between the out-
come of interest and group membership or neighborhood. Although our
approach requires additional structure relative to assumption-free tools like
the method of bounds, the payoff to that additional structure can be sub-
stantially tighter bounds for the parameter of interest. In our empirical
application, we illustrate how one can reason about the sign of the relevant
conditional associations based on institutional knowledge and/or auxiliary
individual-level data. Under plausible assumptions, the county-level data we
rely on allows us to conclude that the Covid-19 vaccination rate among Re-
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Figure 5: County-Specific Bounds
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Notes: This figure shows the Method of Bounds for the partisan vaccination
gap for each county (red). The county-level bounds, based on the
assumptions in Proposition 13, are shown in gray, and the estimated
derivative of the conditional expectation function of the vaccination rate by
county partisan makeup is shown in black. The implied bounds for Contra
Costa County, California, and Galveston County, Texas, are highlighted in
green.

publicans is between 5.5 and 47.9 (95% CI: 5.1 and 51.8) percentage points
lower than the corresponding rate among Democrats.
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Appendix: Additional Proofs of Propositions

Proof of Lemma 1. We can write

DNM =
E[XNYN ]

E[XN ]
− E[(1−XN)YN ]

E[1−XN ]
=

E[XNYN ]− E[YN ]E[XN ]

E[XN ](1− E[XN ])
=

Cov(XN , YN)

E[XN ](1− E[XN ]
.

Multiplying and dividing by Var(XN), recognizing that E[XN ](1−E[XN ]) =

E[X](1 − E[X]) = Var[X], and noting that DER = Cov(XN ,YN )
Var(XN )

yields the
claim.

Lemma 2 (Feasibility of Intermediates). Suppose that we have two feasible
marginal distributions (Y 1, Y 0) = (A1, A0) and (Y 1, Y 0) = (B1, B0), where
feasible means that Y j

n ∈ [Y , Y ] for j in {0, 1} and Yn = XnY
1
n +(1−Xn)Y

0
n .

Then:

(i) for any α ∈ [0, 1], the pair of marginals (Y 1, Y 0) = (αA1 + (1 −
α)B1, αA0 + (1 − α)B0) is feasible in the same sense and has disparity
Dα := αDA + (1− α)DB where DA = A1 − A0 and DB = B1 −B0.

(ii) If DA ≤ DB are two feasible values for disparity in the sense above
with (Y 1, Y 0) = (A1, A0) and (Y 1, Y 0) = (B1, B0) respectively, then for any
D ∈ [DA, DB], D is feasible as well, and a (possibly non-unique) feasible
distribution which gives rise to D is the α-mixture over (A1, A0) and (B1, B0)
where α = DB−D

DB−DA
.

Proof. (i) To show feasibility, we need that for each n ∈ N :

XnY
1
n + (1−Xn)Y

0
n = Yn

Y 0
n , Y

1
n ∈ [Y , Y ]
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So consider the α-mixture over the distributions A and B, i.e.:

Y 1 = αA1 + (1− α)B1,

Y 0 = αA0 + (1− α)B0.

We designate the neighborhood-level distributions by Y 1A
n and Y 0A

n for (A1, A0)
and Y 1B

n and Y 0B
n for (B1, B0). Define

Y 1α
n = αY 1A

n + (1− α)Y 1B
n

Y 0α
n = αY 0A

n + (1− α)Y 0B
n .

Since Y 1α
n is in between Y 1A

n and Y 1B
n , we must have that Y 1α

n , Y 0α
n ∈ [Y , Y ],

and similarly for Y 0α
n . We also have that

XnY
1α
n + (1−Xn)Y

0α
n = Xn(αY

1A
n + (1− α)Y 1B

n ) + (1−Xn)(αY
0A
n + (1− α)Yn0B)

= α(XnY
1A
n + (1−Xn)Y

0A
n ) + (1− α)(XnY

1B
n + (1− α)Y 0B

n )

= αYn + (1− α)Yn

= Yn.

Thus, the choice of Y 1α
n , Y 0α

n is feasible for each n, and (Y 1α, Y 0α) is feasible
overall.

For disparity, note that:

Y 1α − Y 0α = αA1 + (1− α)A0 − (αB1 + (1− α)B0)

= αDA + (1− α)DB.

(ii) First note that α = DB−D
DB−DA

∈ [0, 1]. (i) then implies that the α-

mixture over (A1, A0) and (B1, B0) is feasible, and has disparity:

Dα = αDA + (1− α)DB =
DB −D

DB −DA

·DA +
D −DA

DB −DA

·DB = D.

Thus, D is feasible, and the α-mixture gives rise to it, as desired.

Proof of Proposition 1. Applying DNM = γDER to Propositions 4 and 6
gives:

D − δB
Var(X)

= γ

(
D +

δW
Var(XN)

)
=⇒ D(1− γ) =

δB
Var(X)

+
γδW

Var(XN)
=

δB + δW
Var(X)

.

Dividing both sides by (1− γ) yields the claim.
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Proof Sketch of Proposition 2. First consider the constraints that the ob-
served data impose on the neighborhood-level means. In particular, we know
that:

Yn = XnY
1
n + (1−Xn)Y

0
n =⇒ Y 0

n =
Yn −Xn · Y 1

n

1−Xn

;Y 1
n =

Yn − (1−Xn) · Y 0
n

Xn

.

Thus, increasing Y 1
n necessarily requires decreasing Y 0

n , and vice versa. Ad-
ditionally, we know that Y 1

n , Y
0
n ∈ [Y , Y ]. We can therefore rewrite the

constraints as limits on Y 1:

Y 1
n ≥ Yn − Y (1−Xn)

Xn

;Y 1
n ≤ Yn − Y (1−Xn)

Xn

;Y 1
n ≤ Y , Y 1

n ≥ Y ,

where the first two inequalities correspond to setting Y 0
n to the highest and

lowest possible values, respectively. Consolidating these constraints yields
tight bounds for Y 1

n :

Y 1−
MOB,n := max

{
Yn − Y (1−Xn)

Xn

, Y

}
≤ Y 1

n ≤ min

{
Yn − Y (1−Xn)

Xn

, Y

}
=: Y 1+

MOB,n.

A similar calculation yields the corresponding bounds for Y 0
n :

Y 0−
MOB,n := max

{
Yn − Y Xn

1−Xn

, Y

}
≤ Y 1

0 ≤ min

{
Yn − Y Xn

1−Xn

, Y

}
=: Y 0+

MOB,n.

Turning from the neighborhood-level to the population, note that ap-
plying the law of iterated expectations followed by Bayes rule allows us to
write:

Y 1 =
∑
n∈N

Pr[N = n|X = 1]Y 1
n =

∑
n∈N

Pr[X = 1|N = n] Pr[N = n]

Pr[X = 1]
Y 1
n =

∑
n∈N

Xn pn
E[X]

Y 1
n .

Next, note that there are no additional constraints that limit the dis-
tribution of Y across neighborhoods. The maximum possible value of Y 1 is
therefore obtained when Y 1

n is as high as possible for all n and Y 0
n is as low as

possible, and vice versa for the minimum possible value of Y 1. Substituting
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Y 1+
MOB,n into the above expression yields:

Y 1 ≤
∑
n∈N

Xn pn
E[X]

Y 1+
MOB

=
∑
n∈N

Xn pn
E[X]

min

{
Yn − Y (1−Xn)

Xn

, Y

}

=
∑
n∈N

pn
min

{
Yn − Y (1−Xn), Y Xn

}
E[X]

=
E[min

{
YN − Y (1−XN), Y XN

}
]

E[X]
:= Y 1+

MOB

The claimed value for Y 1−
MOB and the method of bounds interval for Y 0 follow

similarly. Sharpness follows by construction: the endpoints were selected to
be (jointly) consistent with feasible neighborhood-level values of the outcome
and are thus themselves feasible. Finally, feasibility of the endpoints of the
interval implies the feasibility of each interior point; see Lemma 2.

Proof Sketch of Proposition 3. The largest differences in group means is ob-
tained when Y 1 takes on its largest feasible value and Y 0 takes on its smallest
feasible value, and vice-versa with respect to the smallest difference in group
means:

D ∈
[
Y 1+
MOB − Y 0−

MOB , Y 1−
MOB − Y 0+

MOB

]
The claimed bounds follow from substituting in the values of Y 1+

MOB, Y
1−
MOB,

Y 0−
MOB, and Y 0+

MOB from Proposition 2 and simplifying. Sharpness follows
from the sharpness of the bounds for the outcome means in Proposition 2
the pairs (Y 1+

MOB, Y
0−
MOB) and (Y 1−

MOB, Y
0+
MOB) are both feasible (since Y 1+

MOB is
the maximum value that leaves Y 0−

MOB still feasible, and so on), hence the
endpoints of the claimed bounds for D, Y 1+

MOB, Y
0−
MOB and Y 0−

MOB, Y
1+
MOB are

feasible values D can take on. Lemma 2 then implies that all points within
the bounds are also feasible; the bounds are thus sharp.

Proof of Corollary 1. We will provide a proof for DNM (the proofs for Y 1
NM

and Y 0
NM are analogous). We will show that DNM lies within the interior

of the method of bounds interval for D provided in Proposition 3. Feasi-
bility then follows from the sharpness of that interval. To show that DNM
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lies within the method of bounds interval, recall that we can express DNM =
E[XN YN ]−E[XN ]E[YN ]

Var(X)
, so thatD+

MOB−DNM ≥ 0 ⇐⇒ E[min
{
YN − Y (1−XN), Y XN

}
−

XN YN ] ≥ 0, A sufficient condition under which this inequality holds for the
expectation is that it holds for each n,

0 ≤ min
{
Yn − Y (1−Xn), Y Xn

}
−Xn Yn

= min
{
Yn − Y (1−Xn)−Xn Yn, Y Xn −Xn Yn

}
= min

{
(Yn − Y )(1−Xn), (Y − Yn)Xn

}
.

The inequality follows from the fact that Yn ∈ [Y , Y ]. The proof that DNM ≥
D−

MOB is analogous.

Proof of Proposition 4. To begin, note that:

DER =
Cov(Y,XN)

Var[XN ]

=
E[Cov(Y,XN |X)] + Cov(E[Y |X],E[XN |X])

Var[XN ]

=
δW

Var[XN ]
+

Cov(E[Y |X],E[XN |X])

Var[XN ]
,

where the first equality follows from definition of DER, the second from the
law of total covariance, and the third from the definition of δW . It thus
suffices to show that Cov(E[Y |X],E[XN |X]) = D · Var[XN ].

To do so, first note that:

E[XN |X = 1] =
∑
n∈N

Pr[N = n|X = 1] ·Xn =
∑
n∈N

Xn · pn
Pr[X = 1]

Xn =
E[X2

N ]

E[X]

where the first equality follows by the definition of conditional expectation
and the second by Bayes’ Rule. Similarly,

E[XN |X = 0] =
∑
n∈N

Pr[N = n|X = 0] ·Xn =
∑
n∈N

(1−Xn)pn
Pr[X = 0]

·Xn =
E[X]− E[X2

N ]

1− E[X]

Turning to the main issue:

Cov(E[Y |X],E[XN |X]) = E [E[Y |X] · E[XN |X]]− E[E[Y |X]] · E [E[XN |X]]

= E [E[Y |X] · E[XN |X]]− E[Y ] · E[X]
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where the second equality follows by the law of iterated expectations. Now
note that:

E [E[Y |X] · E[XN |X]] = Pr[X = 1] · (E[Y |X = 1] · E[XN |X = 1])

+ (1− Pr[X = 1]) · (E[Y |X = 0] · E[XN |X = 0])

= E[X] ·
(
E[Y |X = 1]

E[X2
N ]

E[X]

)
+ (1− E[X]) ·

(
E[Y |X = 0] · E[X]− E[X2

N ]

1− E[X]

)
= E[Y |X = 1]E[X2

N ] + E[Y |X = 0] · E[X]− E[X2
N ] · E[Y |X = 0]

Collecting terms, this equals:

E[X2
N ] (E[Y |X = 1]− E[Y |X = 0]) + E[Y |X = 0] · E[X] = E[X2

N ] ·D + E[X] · E[Y |X = 0]

Substituting this result back into Cov(E[Y |X],E[XN |X]), we have:

Cov(E[Y |X],E[XN |X]) = E[X2
N ] ·D + E[X] · E[Y |X = 0]− E[X] · E[Y ]

= E[X2
N ] ·D + E[X] · (E[Y |X = 0]− E[Y ])

But note that:

E[Y |X = 0]− E[Y ] = E[Y |X = 0]− E[X] · E[Y |X = 1]− (1− E[X]) · E[Y |X = 0]

= E[X] · E[Y |X = 0]− E[X] · E[Y |X = 1]

= −E[X] ·D

Substituting this back into the previous equation, we have:

Cov(E[Y |X],E[XN |X]) = E[X2
N ] ·D + E[X] · (−E[X] ·D)

= D ·
(
E[X2

N ]− E[X]2
)

Finally, since E[XN ] = E[X], the latter term is E[X2
N ]− E[XN ]

2 = Var[XN ].
We therefore have that:

Cov(E[Y |X],E[XN |X]) = D · Var(XN)

proving the result.

Proof of Proposition 5. (i) If δW ≥ 0, then by Proposition 4 we have that

D = DER − δW
Var(XN)

≤ DER.
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By Proposition 3, we have that D ∈ [D−
MOB, D

+
MOB] as well. Since D ≤

D+
MOB and D ≤ DER, D ≤ min{DER, D

+
MOB}. Combining these yields the

claimed bound.

(ii) Proof is similar to (i): if δW ≤ 0, then Proposition 4 shows that
D ≥ DER, and combining this with Proposition 3 yields the claimed bound.

(iii) We prove sharpness of (i) and (ii) follows similarly. First note
that under (i), it must be that D−

MOB ≤ DER, because δW ≥ 0 =⇒
D ≤ DER by Proposition 4 and D−

MOB ≤ D by Proposition 3. Thus,
[D−

MOB,min{D+
MOB, DER}] ⊆ [D−

MOB, D
+
MOB]. Proposition 3 implies that for

every D̃′ ∈ [D−
MOB, D

+
MOB], there exists a distribution Ỹ resulting in D = D̃

consistent with the constraints on Yn, i.e. Ỹ
x
n ∈ [Y , Y ] for all x ∈ {0, 1} and

all n, and Xn · Ỹ 1
n + (1 − Xn)Ỹ

0
n = Yn for all n. Since D̃ ≤ DER, such a Ỹ

must also have δW ≥ 0 (again by Proposition 4). But this means that for
all D ∈ [D−

MOB,min{D+
MOB, DER}], there exists a distribution Ỹ consistent

with all constraints. The bounds are thus sharp.

Proof of Proposition 6. Recall that:

DNM =
Cov(XN , YN)

Var(X)

Apply the Law of Iterated Expectations to rewrite Cov(XN , YN) as Cov(X, Y )−
E[Cov(X, Y |N)]. Note that the latter term is δB. Substitute this into DNM ,
which gives

DNM =
Cov(X, Y )− δB

Var(X)
.

Recognizing Cov(X,Y )
Var(X)

= D and re-arranging yields the claim.

Proof of Proposition 7. (i) Note first that Corollary 1 shows that DNM ∈
[D−

MOB, D
+
MOB]. Now, by Proposition 3, we always have thatD ∈ [D−

MOB, D
+
MOB];

Proposition 6 shows that δB ≥ 0 =⇒ D ≥ DNM . Thus, we must have
D ≥ DNM ≥ D−

MOB and D ≤ D+
MOB; combining these yields the claimed

bound.
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(ii) follows similarly: Proposition 6 sows that δB ≤ 0 =⇒ D ≤ DNM ,
and combining with Proposition 3 and Corollary 1 yields the claimed bound.

(iii) For sharpness, we focus on (i); (ii) follows similarly. Note that
DNM ≤ D−

MOB =⇒ [DNM , D+
MOB] ⊆ [D−

MOB, D
+
MOB]; the sharpness re-

sult of Proposition 3 thus implies that for all D̃ ∈ [DNM , D+
MOB], there

exists a distribution Ỹ such that Ỹ x
n ∈ [Y , Y ] for x ∈ {0, 1} and all n, and

XnỸ
1 + (1−Xn)Ỹ

0 = Yn for all n resulting in D = D̃. But by Proposition
6, Ỹ results in δB ≥ 0 as required. Ỹ is thus feasible; since this is true for all
D̃ in the bounds, the bounds are thus sharp.

Proof of Proposition 8. First note that since DNM = DER · γ (Lemma 1),
the fact that 0 ≤ γ < 1 implies that Sign(DNM) = Sign(DER) and |DER| ≥
|DNM |. So it must always be true that either 0 ≤ DNM ≤ DER or DER ≤
DNM ≤ 0. At the same time, applying Propositions 4 and 6 and the fact
that δW · δB ≥ 0 shows that D must be in between DNM and DER.

There are thus two cases. In the first case, 0 ≤ DNM ≤ DER and D ∈
[DNM , DER]; since D ≤ D+

MOB by Proposition 3, we also have that D ≤
min{DER, D

+
MOB}. Combining these bounds yields (i). In the second case,

DER ≤ DNM ≤ 0 and D ∈ [DER, DNM ], and Proposition 3 shows that
D ≥ D−

MOB. Combining these inequalities yields (ii).
We now turn to (iii). We prove sharpness for (i), and (ii) follows similarly.

First note that by Corollary 1, DNM is feasible in terms of the constraints
on Yn, and thus in particular DNM ≥ D−

MOB; at the other end, trivially
min{D+

MOB, DER} ≤ D+
MOB. The range

[
DNM ,min{D+

MOB, DER}
]
is thus a

subset of [D−
MOB, D

+
MOB], and the sharpness guaranteed by Proposition 3 thus

implies that for all D̃ in the range, there is a feasible distribution Ỹ giving
rise to D = D̃ with Ỹ 1

n , Ỹ
0
n ∈ [Y , Y ] and XnỸ

1
n + (1 − Xn)Ỹ

0
n = Yn. Thus

the range is consistent with Yn constraints. At the same time, Propositions
4 and 6 together imply that for any D̃ ∈ [DNM , DER], any Ỹ that gives rise
to D = D̃ will also have Sign(δW ) = Sign(δB) and thus δW · δB ≥ 0. But[
DNM ,min{D+

MOB, DER}
]
is also a subset of [DNM , DER]. Thus, δW · δB ≥ 0

for all D̃ in the range. The bounds given are thus sharp.

Proof of Proposition 9. Consider the claim for the bias of Y 1
ER. It is enough
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to show that δW = Var(XN )
1−E[X]

· (Y 1
ER − Y 1). We have:

Y 1
ER = E[YN ] +

(
Cov(YN , XN)

Var(XN)

)
(1− E[XN ]).

Multiplying both sides by γE[X], simplifying, and using Y 1 = E[XY ]/E[X]
shows that:

Cov(XN , YN)− γ Cov(X, Y ) =
Var(XN)

1− E[X]
· (Y 1

ER − Y 1).

Applying the definition of γ, the fact that D = Cov(X, Y )/Var(X), and the
bias formula from Proposition 5 shows that Cov(XN , YN) − γ Cov(X, Y ) =
δW ; and chaining these equalities together proves the claim. The claim for
Y 0
ER − Y 0 follows similarly.

Proof of Proposition 10. Similar to Proposition 9, we rely on algebraic cal-
culation: if we substitute in E[XNYN ] = Cov(XN , YN) + E[X]E[Y ] into the

equation Y 1
NM −Y 1 = E[XNYN ]−E[XY ]

E[X]
and apply the Law of Total Covariance,

we can show that:

Y 1
NM − Y 1 =

Cov(XN , YN)− Cov(X, Y )

E[X]
=

−δB
E[X]

,

which proves the claim. A similar approach shows the claim for Y 0
NM−Y 0.

Proof of Proposition 11. (i) Note first of all that Dn ≤ D+
MOB,n by construc-

tion; note further that D+
MOB,n ≥ 0, so [0, D+

MOB,n] is non-empty. Now, note
that:

δB,n := Cov(Y,X|N = n) = E[Y ·X|N = n]− E[Y |N = n] · E[X|N = n]

= E[Y |X = 1, N = n] ·Xn − E[Y |N = n]Xn

= Xn · (E[Y |X = 1, N = n]− E[Y |N = n])

Since Yn is a convex combination of Y 1
n and Y 0

n , δB,n ≥ 0 ⇐⇒ Y 1
n ≥

Y 0
n ⇐⇒ Dn ≥ 0. Thus, δB,n ≥ 0 =⇒ Dn ∈ [0, D+

MOB,n]. For Y
1
n , note that

Yn ≤ Y 1+
MOB,n by construction, and Y 1

n ≥ Y 0
n =⇒ Y 1

n ≥ Yn (again since Yn is

a convex combination of Y 1
n and Y 0

n ); thus, Y
1
n ∈ [Yn, Y

1+
MOB,n]. For Y

0
n again

Y 0
n ≥ Y 0−

MOB,n by construction, and similarly Y 0
n ≤ Y 1

n =⇒ Y 0
n ≤ Yn.
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(ii) follows similarly, with inequalities reversed as implied by δB,n ≤ 0.

(iii) We focus on (i), and (ii) follows similarly. First note that Y 1
n =

Y 0
n = Yn ∈ [Y , Y ] results in E[Y |N = n] = Yn and δB,n = Dn = 0. At the

same time, the choice Y 1
n = Y 1+

MOB,n ∈ [Y , Y ] and Y 0
n = Y 0−

MOB,n ∈ [Y , Y ]

results in E[Y |N = n] = Yn and D = D+
MOB,n by construction. Thus, the

endpoints of each range are feasible. As for the interior of the range, note
that for any D̃ ∈ [0, D+

MOB,n], choosing α = (D+
MOB,n − D̃)/D+

MOB,n and

letting Y 1
n = α ·Yn+(1−α) ·Y 1+

MOB,n and Y 0
n = α ·Y 0−

MOB,n+(1−α) ·Yn gives

D = D̃ (as described in the proof of Lemma 2). A similar argument can be
made for the interiors of [Yn, Y

1+
MOB,n] and [Y −

MOB,n, Yn]. The bounds are thus
sharp.

Proof of Proposition 12. (i) By construction, Dn ∈ [D−
MOB,n, D

+
MOB,n]. Now,

Dn = µ′(Xn) − δW,n, so δW,n ≥ 0 =⇒ Dn ≤ µ′(Xn). Thus, Dn ≤
min{D+

MOB,n, µ
′(Xn)}, yielding the claimed bound forDn. For Y

1
n , re-arrange

Dn = Y 1
n −Y 0

n as Y 0
n = Dn−Y 1

n , substitute this into Yn = XnY
1
n +(1−Xn)Y

0
n ,

and re-arrange to see that Y 1
n = Yn + (1 − Xn) · Dn. Combining this

with the just-proved result that δW,n ≥ =⇒ Dn ≤ µ′(Xn) shows that
δW,n ≥ 0 =⇒ Y 1

n ≤ Yn +(1−Xn) ·µ′(Xn). Since Y
1+
MOB,n ≥ Y 1

n by construc-

tion, we thus have that Y 1
n ≤ min{Y 1+

MOB,n, Yn+(1−Xn) ·µ′(Xn); combining

this with Yn ≥ Y 1−
MOB,n by construction yields the claimed bound. For Y −n0,

proceed similarly by substituting Y 1
n = Dn+Y 0

n into Yn = Xn·Y 1
n+(1−Xn)·Y 0

n

and solve for Y 0
n = Yn −Xn ·Dn; the bound follows analogously.

(ii) follows by reversing the inequalities with similar substitution.
(iii) We focus on (i), and (ii) follows similarly. First note that [D−

MOB,n,min{µ′(Xn), D
+
MOB,n}]

⊆ [D−
MOB,n, D

+
MOB,n]; any D̃n in the interior of the interval then corresponds

to some α-mixture over the (Y 1
n , Y

0
n ) = (Y 1+

MOB,n, Y
0−
MOB,n) and (Y 1

n , Y
0
n ) =

(Y 1−
MOB,n, Y

0+
MOB,n), which are feasible in terms of being in [Y , Y ] and result

in Yn by construction. As shown in Lemma 2, any D̃n in the interior can
be feasibly obtained by some α-mixture over the endpoints. And for the
all D̃n in the interior, D̃n ≤ µ′(Xn), so δW,n ≥ 0. The bounds for Dn are
thus sharp. For Y 1

n , similarly note that the endpoints Y 1−
MOB,n and Y 1+

MOB,n

(paired with their appropriate complements Y 0−
MOB,n and Y 1+

MOB,n) correspond

to Dn = D+
MOB,n and D−

MOB,n, and are feasible in terms of [Y , Y ] and result-

ing in Yn; by similar logic as before, any Ỹ 1
n in the interior can be constructed
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as some mixture over the endpoints and result in the equivalent mixture over
D−

MOB,n andD+
MOB,n.Since Y

1
n = Yn+(1−Xn)·µ′(Xn) is exactly the choice Yn

that makes Dn = µ′(Xn), then for all Yn ≤ {Y 1+
MOB,n, Yn+(1−Xn) ·µ′(Xn)},

the resulting Dn ≤ µ′(Xn) and D+
MOB,n, so δW,n ≥ 0. The bound for Y 1

n is
thus sharp as well. Y 1

n can be handled similarly.

Proof Sketch of Proposition 13. The bounds themselves follow by applying
Propositions 11 and 12 simultaneously. For sharpness we again focus on (i),
as (ii) is similar. Suppose µ′(Xn) ≥ 0. First note that Dn = 0 is achieved by
Y 1
n = Y 0

n = Yn ∈ [Y , Y ] and since min{µ′(Xn), D
+
MOB,n} ≤ D+

MOB,n, which

can be achieved by Y 1+
MOB,n, Y

0−
MOB,n, each D̃n in the interval be achieved by

some distribution that is feasible in terms of [Y , Y ] and resulting in Yn. So
it is enough to show that any such distribution will result in Sign(δB,n) =
Sign(δW,n). But this holds because δW,n ≥ 0 ⇐⇒ Dn ≤ µ′(Xn), and
δB,n ≥ 0 ⇐⇒ Dn ≥ 0, and both hold on the interior of the interval. A
similar argument can be made for the bounds on Y 1

n and Y 0
n .
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