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Abstract

Public school choice has evolved rapidly in the past two decades, as districts roll out new
magnet, dual-language, and themed programs to broaden educational opportunity. We use
newly collected national data to document that opt-in (voluntary) systems: (i) are the
modal design; (ii) are harder to navigate; and (iii) have participation that is concentrated
among more advantaged students. These facts suggest a striking inconsistency: districts
have largely adopted centralized assignment algorithms to broaden access, but most rely
on optional participation that fragments public education. We study the implications of
this design choice in the Los Angeles Unified School District, the largest opt-in system in
the country, combining nearly two decades of administrative data, randomized lotteries,
and quasi-experimental expansions in access. Participation is highly selective, consistent
with national evidence, and lottery estimates suggest that the students with the lowest
demand for choice schools are the ones who gain the most from attending. Opt-in partic-
ipation therefore embeds a selection mechanism that screens out high-return students and
leaves many effective programs with unused capacity. To evaluate system-level implications,
we estimate a structural model linking applications, enrollment, and achievement. Choice
schools are vertically differentiated and generate meaningful gains, but the opt-in partici-
pation rule—through high application costs and negative selection on gains—prevents these
benefits from reaching the students who need them most. Counterfactual simulations make
the design stakes clear: information and travel-cost reductions have limited effects, whereas
reforms that change the participation architecture eliminate core inefficiencies and deliver
the largest district-wide achievement gains. These results underscore that system design—
not school effectiveness alone—shapes who benefits from public school choice and to what
extent.
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1 Introduction

Over the last two decades, U.S. public school districts have aggressively expanded school
choice—opening new magnet schools, dual-language programs, theme-based academies, and
selective-admissions exam schools that collectively provide new intra-district options outside of
the traditional neighborhood system. These efforts were motivated by a desire to reduce per-
sistent inequities in educational opportunity and by competitive pressures from charter schools
(Betts et al. 2015; Hess et al. 2001; Kahlenberg et al. 2019; Lallinger 2024). The need for such
reforms is stark: within the same district, students who attend the lowest-performing schools
fall behind their peers at the highest-performing schools by roughly 0.20 standard deviations in
achievement per year, a gap that education researchers equate to about two-thirds of a grade
level of annual learning.! Yet, grafting choice onto a framework built on residential assignment
creates an immediate market design challenge: how should these new education markets be
organized so that access is equitable and seats are efficiently allocated? The potential benefits
of school choice—through competition and better student-school matches (Bruhn et al. 2023;
Campos and Kearns 2024; Hoxby 2003; Neilson 2021; Ovidi 2025)—will materialize only if fam-
ilies, especially those who stand to gain the most, are able to navigate these options and submit
informed applications.

This paper provides new evidence on the structure of public school choice systems and how
their design shapes educational opportunity. To motivate our analysis, we begin by document-
ing the national landscape of school choice—and how districts have tackled the market design
problem—based on original data collected from the nation’s 150 largest school districts. En-
rollment in non-neighborhood public schools of choice has more than doubled over the past two
decades, with enrollment shares now exceeding those of the charter sector. We also uncover sub-
stantial heterogeneity in how families are incentivized to participate. Most large districts (64%)
have adopted algorithms to assign students to schools, but a majority also require parents to
proactively “opt-in” and submit applications. By contrast, only nine percent of districts require
all students to submit preferences by mandate, as is done in cities like New York and Boston
(Abdulkadiroglu and Sénmez 2003; Abdulkadiroglu et al. 2017). Districts with opt-in participa-
tion also provide less clear information and have more complex applications, creating frictions
that raise the cost of entry. Consistent with this, we document marked under-representation
of economically disadvantaged students in choice schools. These patterns highlight the concern
that voluntary participation in school choice programs may segment the public schooling system
by allowing the most advantaged students to leave behind their less advantaged peers.

Motivated by these findings, we study the consequences of design: how do the institutional
features of opt-in systems shape achievement and inequality, and more generally, how would
other designs perform? To frame our analysis, we borrow from Roth (2015)’s focus on questions
of who, what, and the how of markets. Who opts-in? This question relates to students: are the
characteristics of market participants different from those who opt-out? What do they choose?
This question relates to whether choice schools are vertically differentiated and deliver real

benefits for those who take them up. How do market design features shape outcomes? This

"We calculate this statistic by averaging the 90-10 differential in within-district test score growth across all
U.S. districts that have at least 10 schools reported in the Stanford Education Data Archive (SEDA). SEDA has
harmonized test scores to be comparable across states and districts (Fahle et al. 2024).



question relates to the institutional details—such as the participation rules and the information
environment—that can amplify or dilute the interaction between who participates and the
options that are available.

To bring these questions into focus, we turn to the Los Angeles Unified School District
(LAUSD), the largest voluntary public choice system in the U.S. and a uniquely rich environ-
ment for analyzing how design shapes participation and outcomes. Treated as its own district,
LAUSD’s choice program would have the 23rd-highest enrollment in the country, serving roughly
110,000 students annually. Notably, the number of choice options has more than doubled in the
past two decades, reflecting both parental demand and competitive pressures from the rapidly
expanding charter sector. LAUSD’s choice school portfolio now includes hundreds of mag-
net programs, fifty affiliated charters, and an expanding set of dual-language and theme-based
schools. Our analysis relies on nearly two decades worth of detailed application records, linked
to district-wide administrative student data containing achievement and other key outcomes.
Importantly, the data also include information on the randomized admission lotteries conducted
at oversubscribed choice programs. We focus on middle-school applications, where achievement
impacts can be observed soon after enrollment.

Our analysis of who participates in LAUSD’s opt-in choice system combines two exercises: a
descriptive characterization of applicants and a quasi-experimental analysis of how participation
responds to the expansion of programs. Choice schools in LAUSD’s opt-in system attract a
student body that is more racially diverse while also being more economically and academically
advantaged. Applicants have much stronger academic preparation—the baseline achievement
is roughly 0.80 higher than non-applicants—and are less likely to be low-income or English-
learners. Proximity also plays a central role—students who live closer to a choice program
are much more likely to apply. To better understand the importance of distance, we leverage
the unprecedented expansion of LAUSD’s choice sector, which generated quasi-random changes
in access. Event study estimates show that neighborhoods experiencing reductions in relative
distance saw participation rates rise by 17 percent on average. These findings demonstrate
that while academically advantaged students tend to sort into choice programs, supply-side
policy—through program expansion or reductions in travel costs—can broaden access. Whether
that expanded participation translates into achievement gains and reduced inequality, however,
depends on which students stand to gain the most from attending a choice program.?

Next, we turn to nearly two decades of lottery data to examine which students gain the most
from opting-in. Motivated by our analysis of application behavior, we estimate how treatment
effects vary with distance to a choice program. We find that students who live close to choice
programs benefit the most from attendance: The difference in reduced form impacts between
students in the first and the fifth quintile of distance to choice school is roughly 0.1¢. This
finding suggests that students with the lowest unobserved demand to “opt-in” also stand to

gain the most from attendance.®> We further probe this interpretation with two supplemental

2Indeed, prior work studying selection into Charter schools has found that variation in distance predicts
patterns of application behavior and treatment effect heterogeneity consistent with inverse-Roy style sorting
(Walters 2018).

3More formally, suppose that distance serves as a barrier (i.e. a cost shifter) to application; in that case, our
results would imply that the students who gain the most (i.e. those who live closest to a choice program) also
face the lowest cost to apply; hence, they will submit an application even at low-levels of latent demand.



exercises. The first leverages the fact that application rates vary greatly by student subgroups
(e.g., race or baseline ability) to ask whether students with low observable demand also benefit
more. The second leverages plausible preferences for homophily (as in Corradini and Idoux
2025) to further probe the role of unobservable determinants of demand in a manner that is
similar in spirit to the distance-based patterns. In both cases, we find similar results: low-
demand predicts a larger benefit. Thus, taken together, our results to this point suggest that
opt-in designs generate allocative inefficiency by screening out high-return students.

A key policy implication of this reduced form evidence is that the optional nature of partic-
ipation can limit the benefits of public school choice. To evaluate whether system-level reforms
could improve outcomes, we develop and estimate a structural model linking school applica-
tions, enrollment, and achievement. The model recovers the distribution of treatment effects
for all students—mnot just the set of students who currently select into choice programs through
the opt-in system. We use a generalized Roy model of application and enrollment demand that
follows prior literature (Walters 2018) by linking idiosyncratic school preferences to potential
outcomes. The link provides control functions for selection and parameterizes treatment effect
heterogeneity. For identification, we leverage two distinct sources of variation: randomized
admission offers at oversubscribed programs and policy-driven expansions of LAUSD choice
schools that altered students’ relative distance. While lottery offers are standard for identi-
fication in this literature, there has been concern over the use of cross-sectional instruments
based on distance (e.g. Carneiro and Heckman 2002). Rather than relying on cross-sectional
differences in student proximity, we therefore exploit the quasi-experimental changes induced
by the choice sector’s expansion, which we show balance well on baseline attributes. Together,
these features provide plausibly exogenous variation that allows us to obtain credible estimates
of causal effects, which feed into our final counterfactual analysis of how various alternative
policies shape enrollment patterns and student achievement.

Our selection-corrected estimates show that choice schools are higher quality, generating
average treatment effects of 0.290 and 0.240 for math and ELA achievement, respectively.
These findings from LAUSD provide evidence that districts facing competitive pressures—such
as from charter schools—respond by creating a vertically differentiated product and expanding
it. At first glance, the combination of vertical differentiation and strong selection based on
prior achievement into choice schools through an opt-in application design might exacerbate
educational inequality. However, we find a negative association between preferences and causal
effects, indicating that those most likely to opt in also gain the least—patterns consistent with
our earlier reduced-form analysis. The difference in average effects between students with the
weakest and strongest proclivity for choice school enrollment is on the order of magnitude of
-0.300, indicating that selection into treatment based on gains dilutes the impacts of opt-in
systems on inequality in achievement outcomes. Overall, the characterization of treatment
effects for the entire population demonstrates that there is scope for improvements in district-
level achievement.

With the structural estimates in hand, we turn to our counterfactual analysis exploring how
alternative policies affect sorting and academic performance relative to a baseline simulation
of LAUSD’s current opt-in system. Throughout the counterfactuals, we hold fixed the existing

menu of programs and school capacities. Our analysis starts by examining participation-focused



policies that lower key access barriers. These include simulations of (i) information interventions
that lower search frictions (Ainsworth et al. 2023; Campos 2024; Corcoran et al. 2018; Deming
et al. 2014; Figlio and Rouse 2006; Hastings and Weinstein 2008; Neal and Root 2024), and
(ii) busing-type policies that reduce travel costs (Angrist et al. 2022; Setren 2024; Trajkovski
et al. 2021). We then turn to studying overall system design features by simulating outcomes
under (iii) a decentralized market (in which families can apply to multiple schools and receive
multiple offers) and (iv) centralized assignment with mandatory participation and deferred
acceptance (Lincove and Valant 2023). Finally, we combine participation-enhancing policies
with a mandatory assignment regime to evaluate how these reforms jointly shape sorting and
achievement. In theory, these counterfactual policies can expand access by lowering information
barriers or application costs and encourage participation among students who stand to gain the
most. At the same time, each reform also introduces trade-offs as broader participation changes
who enrolls and can create capacity pressures, motivating formal counterfactual analysis of how
assignment design reshapes access, sorting, and achievement.

We find that general or targeted information interventions modestly broaden participation,
while mandates mechanically increase participation. As participation widens, average achieve-
ment rises, with the largest gains under a fully centralized system (i.e., mandating participation
and using a central clearinghouse for assignment). By contrast, a decentralized market results
in more advantaged students occupying more seats in vertically differentiated schools and re-
sults in modest gains in district-level achievement relative to the opt-in status quo. Pairing
reduced travel costs (via a busing-like policy) with centralization produces modest additional
gains, highlighting that high application costs in an opt-in system are more of a barrier than
travel costs. In terms of winners and losers of the fully centralized system, we find that all
groups experience improvements in average outcomes. These results reflect the elimination of
two distinct inefficiencies present in an opt-in system. The first is negative sorting on gains,
whereby students with substantial gains to participating self-select out of participation. The
second is substantial slack in the system, as many seats at high-quality schools go unfilled. Cen-
tralizing participation mostly eliminates both forms of inefficiency, producing achievement gains
of 0.018¢0 and 0.0160 for math and ELA, respectively. The impacts on students who actually
enrolled in choice schools (i.e., the treatment on the treated impacts) amount to 0.18 — 0.210,
compared to 0.08 — 0.11¢ in the status quo opt-in allocation.

To further characterize the potential gains from our counterfactual policies, we conduct a
simulation that removes all frictions and allocative inefficiencies by directly matching students
to schools to maximize district-level achievement.* Relative to this achievement-optimal bench-
mark, we find that centralization captures nearly 50 percent of the potential district-level gains
in math and ELA, while combining centralization with busing captures over 55 percent. Al-
though none of the policies we study reach the achievement-optimal allocation, the remaining
gap points to a fundamental limitation: even when participation is universal and capacity is
fully used, demand for effective schools remains imperfectly aligned with school quality. As we

demonstrate quantitatively, this misalignment arises because families’ preferences reflect a mix

“In the language of Abdulkadiroglu et al. (2025), this is the “Treatment Effect Maximizing Allocation”
(TEMA) and solves a linear program that maximizes student achievement subject to capacity constraints as
proposed by Shapley and Shubik (1971).



of academic, social, and informational factors, leading many to favor schools that are not the
most effective. Consequently, while centralization substantially improves the efficiency of school
assignment, the overall gains from reform are bounded by how demand for school effectiveness
shapes equilibrium outcomes.

Our analysis yields two policy lessons. First, rapidly expanding district-run choice programs—
often introduced to stem enrollment losses and charter school competition—are vertically differ-
entiated and, on average, raise student achievement, indicating that districts respond competi-
tively when the K-12 landscape shifts. Second, layering voluntary choice on top of neighborhood
assignment poses a market-design challenge, and the approach most districts now use appears
to deepen inequality in access to opportunity: negative sorting on gains produces allocative
inefficiencies, while complex applications and limited outreach leave many high-quality seats
empty. Thus, expanding families’ options marks real progress, yet its promise will be met only
when assignment mechanisms are tuned to distribute those opportunities equitably—the devil
is in the details.

The main contribution of this paper is to the literature on education market design and
student outcomes. Across education, health, nonprofit service delivery, and numerous other
domains, market design research has shown that well-structured allocation mechanisms can
substantially improve welfare (Abdulkadiroglu et al. 2017; Prendergast 2017; Roth 2015). We
begin by documenting how school districts across the U.S. have chosen to organize their edu-
cation markets—ranging from decentralized systems and canonical mechanisms in the market
design literature (Abdulkadiroglu and Sénmez 2003) to the less-studied opt-in design. Prior
work shows that uncoordinated school choice policies generate substantial mismatch, while
reforms that centralize and coordinate assignment mechanisms yield large welfare gains (Ab-
dulkadiroglu et al. 2017; Avery et al. 2025). Yet, evidence on how transitions to centralized
systems affect student outcomes—the dimension policymakers are most responsive to (Agar-
wal et al. 2025)—remains limited. We fill this gap by providing a comprehensive analysis of
how outcomes vary under the most prevalent design, the opt-in system, and by assessing how
alternative market structures and policy choices would influence aggregate achievement and
inequality. This work advances our understanding of how education market design translates
into market-level changes in student outcomes.

A related literature examines how to improve the performance of centralized assignment
systems. This includes work on enhancing the quality of information about schools and ad-
mission probabilities (Ainsworth et al. 2023; Andrabi et al. 2017; Arteaga et al. 2022; Campos
2024; Corcoran et al. 2018; Corradini 2023; Corradini and Idoux 2025; Neal and Root 2024) and
on the trade-offs between strategy-proof mechanisms and those that capture cardinal prefer-
ences (Agarwal and Somaini 2018; Calsamiglia et al. 2020; Kapor et al. 2020). Our data reveal
wide variation across U.S. districts in both information environments and mechanism adoption,
underscoring the importance of this existing work while also highlighting a largely overlooked
design element—the opt-in structure. Drawing on canonical models of self-selection (Heckman
and Vytlacil 2005; Walters 2018; Willis and Rosen 1979), we show that participation itself is
a critical margin through which design influences both outcomes and allocative efficiency. In
doing so, we extend the literature by demonstrating that participation design can be a powerful

policy lever for improving student outcomes—one whose welfare implications may diverge from



its effects on achievement. While the existing body of work has focused on frictions, conditional
on participation, we show that the first-mile problem of opting in is a first-order concern.

We also relate to the literature on how school choice intensifies sorting and stratification
across schools. Urquiola (2005) shows that greater inter-district (Tiebout) choice in the United
States is associated with sharper segregation of students across districts. In Chile, Hsieh and
Urquiola (2006) find that a nationwide voucher program increased between-school stratification
by socioeconomic status and ability, with little evidence of system-wide gains. In more recent
work, Munteanu (2024) shows that expanded high school choice in Romania raises the variance
of test scores and ability sorting without raising mean performance, while Machado and Szerman
(2021) document that the introduction of a centralized college admissions platform in Brazil
changes the academic and geographic composition of entrants to selective programs. Other
work has found that preferences and travel costs also sharply limit school choice effectiveness
and contribute to sorting (Idoux 2022; Laverde 2024), while reforms that target participation
barriers can improve outcomes (Bergman 2018; Setren 2024). Our findings contribute to this
literature by emphasizing that system design, and importantly, the participation rule, is a first-
order determinant of student sorting and subsequently reshapes academic outcomes.

Finally, our findings connect to the literature on how public schools respond to competi-
tion (Bau 2022; Campos and Kearns 2024; Crema 2022; Figlio and Hart 2014; Gilraine et al.
2021; Hoxby 2000, 2003). Charter schools now educate roughly seven percent of all public
school students and have been shown to be vertically differentiated across multiple contexts
(Abdulkadiroglu et al. 2011; Angrist et al. 2013; Dobbie and Fryer Jr 2011), contributing to
declining enrollment in traditional districts nationwide (Mumma 2022). Our work departs from
these facts and assesses public school district’s response to this competition. We show that
public school choice has also grown substantially with enrollment now rivaling the charter sec-
tor. Drawing on original data and new analysis, we develop a taxonomy of how school districts
structure their education markets and demonstrate that expanding intra-district choice options
are also vertically differentiated. In doing so, we show that districts are responding compet-
itively, and that the institutional details of market organization carry significant implications

for school districts’ competitive response to outside competition.

2 Public School Choice Systems Across the U.S.

While charter schools have attracted substantial media coverage and policymaker attention in
recent years, an equally important transformation has taken place within traditional public
school districts themselves. Many large districts now operate extensive “intra-district” choice
systems that allow families to select among magnet, dual-language, and themed programs out-
side their neighborhood zones. Figure 1 plots enrollment shares in district-run choice schools

and local public charter schools in the 150 largest school districts.® These statistics show that

SFor enrollment, all data are from the Common Core of Data (U.S. Department of Education, National Center
for Education Statistics 2024). For a given district, a local charter is defined to include all Charter schools that
either share the district’s Local Education Agency ID or that operate in a zip-code served by a traditional public
school with that district’s LEAID. To identify district-operated choice schools, we rely on the Common Core’s
magnet flag, since other forms of choice are not reliably recorded. In a few states (e.g., Ohio), magnet status is
not reported. For that reason, we also count a school as a within district choice option if it contains the word



the share of students enrolled in publicly operated choice schools has more than doubled since
1999 and consistently exceeded charter school enrollment. As a whole, more than 14% of all stu-
dents are now educated in a district-run choice option—over 40% larger than the corresponding
market share going to local charters. Appendix Figure A.1 uses data covering all U.S. districts

and shows similarly large growth in choice school enrollment.

Figure 1: Public School Choice and Charter School Enrollment Trends (150 Largest Districts)
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Notes: This figure reports enrollment shares for charter schools and district-operated choice schools (“District
Option”) for the 150 largest school districts. Data are from the Common Core of Data (U.S. Department of
Education, National Center for Education Statistics 2024). For a given district, a local Charter includes all
Charters that have the district’s Local Education Agency ID or operated in a zip-code served by a traditional
public school with that district’s LEAID. To identify district operated choice schools, we use the Common Core’s
magnet flag, since other forms of choice are not reliably recorded. In a few states (e.g., Ohio), magnet status
is not reported. For that reason, we also count a school as a within district choice option if the word “magnet”
appears in it’s name. The district operated choice numbers in this figure are potentially conservative, since many
districts have choice options (e.g., gifted and talented schools) which are not officially named as a magnet and
otherwise not easily identified. The 150 largest school districts are those which have the highest enrollment in
2019 and are not comprised exclusively of Charter Schools.

Yet, the impacts of this rapid expansion depend on the details of the choice systems imple-
mented in individual districts. Two dimensions are particularly important: whether participa-
tion is mandatory or voluntary, and how that design shapes who ultimately participates. These
features vary widely across districts. For that reason, it is useful to highlight a few concrete
examples. Boston Public Schools, for instance, requires that all families rank schools and sub-

mit them to a centralized clearinghouse, which then determines assignments using an algorithm

“magnet” in its name. Thus, the district-operated choice numbers in Figure 1 are almost surely an undercount,
since many districts also have choice options (e.g., gifted and talented schools) which are not officially designated
as a magnet and otherwise not easily identified in the Common Core.



(Abdulkadiroglu et al. 2006). In contrast, Miami-Dade County Public Schools defaults families
to neighborhood schools unless they voluntarily opt into a centralized system that determines
assignment. Districts also vary in the degree to which families are able or willing to participate.
Parents in many districts find the system complex and often misunderstand key features.® For
example, Chicago Public Schools recently responded to concerns about complexity by undertak-
ing large-scale efforts to simplify the choice system, with the stated goal of reducing inequities
in application behavior across socio-economic groups (Sartain and Barrow 2022). Taken to-
gether, these examples not only illustrate the diversity of local policies but also underscore the
limits of what we know: they come from just a handful of districts. To date, there has been
no systematic effort to document how choice systems are actually structured across the U.S.,
despite the fact that these design features are central to understanding their welfare effects.

To learn more about the structure of public school choice systems nationally, we collected
original data for the 150 largest U.S. school districts. Our goal was to understand how large
districts vary in the practical, market design features that shape how efficiently students are
allocated to schools. Data collection followed a hybrid approach: key information was obtained
through direct phone interviews with district representatives and systematic reviews of district
websites. We then combine this original data with publicly available data on enrollment shares
from the Common Core, producing a dataset that covers districts educating roughly 27 per-
cent of all U.S. public school students. Appendix B.1 provides additional details on the data
collection and summary statistics for the sample.

Our analysis of the data yields three key findings. First, the textbook model of mandatory
assignment is rare. The most common design instead features voluntary participation with
a centralized assignment algorithm. Panel (a) of Figure 2 plots the share of districts in our
sample that fall into four different categories of school choice systems: (i) no choice districts
that do not offer intra-district choices beyond residential moves, such as Hawaii (1.4%); (ii)
decentralized districts (e.g., Dallas ISD) that allow parents to submit applications and do not
use a centralized algorithm, thereby allowing families to hold multiple offers (34.7%); opt-in
districts (e.g., Clark County, Broward, Los Angeles) which use a centralized algorithm but
without mandatory participation (55.1%); and, mandatory districts (e.g., NYC, Houston) that
require participation and use a centralized algorithm (8.8%).” Taken together, these results
show that the majority of districts offer public school choice following an opt-in model. While
prior research has focused heavily on the properties and effectiveness of mandatory centralized
algorithms, our analysis reveals that such systems account for only a small share of districts
nationwide. By contrast, we are not aware of existing work that systematically studies the
design and performance of the opt-in systems with centralized assignment that characterize
most real-world school choice markets.

Our second key finding is that choice systems are easier to navigate when school changes are

more centralized. A district is classified as difficult to navigate if both the website and phone

5For example, recent reporting on San Francisco’s lottery system highlights how parents perceive the process
as confusing and stressful, emphasizing the gap between the system’s intended design and how it is understood
by families (Li 2025).

"In the case of no choice districts, we do not count hardship or capacity-contingent boundary waivers (such
as Hawaii’s Geographic Exception permits) as intra-district school choice, since such procedures are limited to
discretionary transfers rather than systematic options available to all families.



pathways required multiple steps to learn whether choice exists and how to apply. Panel (b) of
Figure 2 plots the share of districts found to be difficult to navigate using the categorization of
choice systems defined in the preceding paragraph. At one end of the spectrum, we find that
50% of districts that have no choice system, and hence require a residential move to change
schools, were found difficult to navigate, as were 20% of the districts which have decentralized
choice systems that require families to apply to schools one-by-one. At the other end of the
spectrum, over 7% of districts with mandatory participation were difficult to navigate. Opt-in
systems lie in between, with 12.3% of districts being difficult to navigate. These stark differences
raise a natural follow-on question: Does “who chooses” vary by system type?

Our final finding is that districts with a more centralized process for changing schools tend
to enroll a higher share of low-SES students in choice schools. Panel (c) of Figure 2 illustrates
this fact by plotting the average share of the free and reduced price lunch population enrolled
in a choice program.® At one end of the spectrum, we find that the typical district in our data
that does not offer any district choice option has only 3.3% of their low-SES student population
enrolled in a choice program of any kind, with the small share that does exist resulting from non-
district charters serving students in that area.? Similarly, choice programs in fully decentralized
systems also enroll a relatively small share of the low-SES population (11.6%). At the other end
of the spectrum, a typical district with mandatory participation and a centralized algorithm
enrolls nearly 30% of low-SES students in choice programs. Finally, we note that opt-in districts
tend to fall between these extremes, with the low-SES student enrollment share being 21.5%.
Interestingly, the results on low-SES enrollment exhibit an inverse pattern when compared to
navigation difficulty, suggestive evidence that the two might be connected.

In sum, our survey evidence establishes three key facts: (i) opt-in systems are most common
nationally, (ii) navigation is more difficult in less centralized systems, and (iii) disadvantaged
students are less likely to enroll in choice schools in those systems. Taken together, these findings
point to a central uncertainty: are the higher-SES students who tend to “opt-in” also those who
benefit most from district choice offerings, or are the lower-SES students who are “screened
out” by system complexity and other barriers to access the ones who would gain more? To
investigate these questions, we now turn to a case study that allows us to examine participation

and achievement effects in detail.

3 School Choice in LAUSD

Our national data collection demonstrated that the modal district-level system design is an
opt-in system. We now turn our attention to the largest opt-in district in the country, the
Los Angeles Unified School District (LAUSD). LAUSD provides a particularly rich setting for
analysis because of its scale, diversity, and detailed administrative data. We now provide a brief

overview of LAUSD’s choice landscape.

8 A small number of districts in our sample no longer report free and reduced price lunch enrollment as a result
of the movement towards universal meal programs. For that reason, we omit districts where less than 10% of
students have free and reduced price lunch from Figure 2.

9ncluding charters in our count of low-SES students enrolled in choice schools is important in order to create
an apples to apples comparison to districts like Washington D.C. and Denver where the unified enrollment systems
also include non-district charter schools.
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Figure 2: Different Systems of Choice Among the 150 Largest School Districts in the US
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Notes: This figure reports summary statistics from an original data collection from the 150 largest school districts. Panel (a) plots the share of districts falling into four
types of choice systems: “No district choice” refers to districts that do not offer an option to move across district-run programs other than through a residential move;
“Decentralized” refers to districts that allow students to apply to non-neighborhood schools or participate in choice programs such as magnet schools, but they do not use a
centralized clearinghouse. “Opt-in” districts allow families to submit applications through a choice-school clearinghouse, but participation in the algorithm is not mandatory.
“Mandatory” refers to districts that require families to submit preferences over schools and use a centralized algorithm or clearinghouse to match students. Panel (b) plots
the share of districts in each of these categories that had a choice system that was difficult to navigate. In the No District Choice category, difficult to navigate refers to
learning whether the district offers intra-district choice at all. Panel (c) plots by district-type the average share of low-SES students (measured by Free-and-Reduced Price
Lunch (FRPL) eligibility) who are enrolled in a choice program. A small number of districts no longer report FRPL enrollment as a result of the movement toward universal
meal programs. For that reason, we omit the six districts where less than 10% of all students receive free and reduced price lunch from the analysis in Panel (c).



3.1 Background on LAUSD’s Choice Programs

The LAUSD has long relied on attendance-zone boundaries to assign students, but since 1982,
it has layered on an evolving choice environment. That year, a court-ordered desegregation
mandate spurred the creation of 42 magnet programs and schools. Choice broadened further
in the 1990s with the advent of charter schools. Following California’s Charter Schools Act of
1992, LAUSD has served not only as an authorizer but also as the governing board for dozens
of charter schools. In the 2000s, a variety of pilot initiatives emerged, ultimately leading to the
launch of the Zones of Choice program for high-school students, a controlled choice environment
in a subset of neighborhoods.

More recently, during the past fifteen years, LAUSD has pursued an aggressive expansion of
its portfolio of choice schools. This growth reflects both competitive pressures from the charter
sector and concerns about declining district enrollment, particularly in historically underserved
neighborhoods. Beginning in the late 2000s, the district more than doubled the number of
magnet programs, introduced dozens of affiliated charter conversions, and steadily scaled up
dual-language and theme-based offerings. Figure 3 illustrates this trend, showing how the
number expanded markedly between 2004 and 2023—a response to declining enrollment trends.
Today, LAUSD is the largest district in the country to operate an opt-in system of choice, with

roughly 110,000 students enrolled annually across hundreds of district-run choice programs.

Figure 3: LAUSD Enrollment and Choice Availability
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Notes: This figure reports trends in LAUSD district-level enrollment and trends in the availability of LAUSD
choice programs. The solid black line shows LAUSD enrollment spanning Grades 1-12 between 2001 and 2023.
The dashed black line shows the total number of choice programs over the same period, where choice programs
include magnet programs, dual-language programs, and affiliated charter schools.

Against this backdrop of expansion, demand for choice seats is strong, with many programs

receiving more applications than available seats and, as further detailed below, conducting
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randomized admission lotteries. Yet, despite oversubscription at particular campuses, there is
nontrivial slack in the LAUSD choice system because capacity growth has outpaced demand
in recent years. In the period most relevant for our analysis (2004-2013), aggregate capacity
utilization across choice programs was around 60 percent. This coexistence of oversubscription
and slack is a central empirical fact that we return to below, as our counterfactual analyses
leverage available capacity to assess how changes in participation and application rules would
reallocate students across programs.

We now turn to a detailed examination of the prominent alternative choice schooling options
and how they relate to the education landscape in Los Angeles. Although this discussion is
specific to LAUSD, the varied offerings mirror those of numerous other school districts that
have embraced the portfolio management model (Hill and Campbell 2011; Hill 2013), with
distinctions, among others, arising in how school districts organize assignment of students to
schools (Marsh et al. 2021).

Magnet Schools LAUSD’s first foray into providing alternatives to neighborhood schools
came with its magnet school program, launched in 1982 as part of a court-ordered desegregation
plan. In the landmark Crawford v. Board of Education case, California courts found LAUSD
had an obligation to alleviate school segregation. After mandatory busing was largely halted
in 1981 due to a statewide ballot measure limiting state courts’ power to mandate busing, the
district turned to voluntary integration programs.

LAUSD’s magnet program crept along modestly through the 1980s and 1990s—going from
42 schools at inception to roughly 150 by 2000—but the 2010s saw a rush to expand magnet
offerings as charter schools began to chip away at district enrollment. Confronted with dozens
of lean, new charters in underserved neighborhoods, the district pivoted to more than double
its magnet offerings, from roughly 160 programs in 2008 to over 320 by 2018. Packaged into a
new unified enrollment platform, this was a deliberate strategic countermove to reclaim families
drawn to the rapidly expanding charter sector (Kohli et al. 2016; Los Angeles Unified School
District 2022). Throughout this paper, we treat each magnet program—whether it occupies an
entire campus or is co-located with other programs at the same school building—as a separate

choice option.

Affiliated Charter Schools LAUSD distinguishes between independent charters and affili-
ated charters, a model unique to the district’s policy structure. Independent charters are fully
autonomous non-profits with their own boards and that run their own admissions processes in
accordance with state-mandated lottery provisions. Affiliated charters, in contrast, are semi-
autonomous LAUSD schools. They are usually regular neighborhood schools that converted to
charter status but remain under district governance, with teaching staff still maintaining ties to
the local teacher union. Affiliated charters generally continue to serve their neighborhood at-
tendance area first and then use a lottery for any open seats for out-of-area students, effectively
behaving like district schools with expanded autonomy.

LAUSD’s affiliated charter sector evolved from a handful of early conversions in the 1990s
and early 2000s into a core pillar of the district’s choice portfolio by the late 2010s. What began

with isolated cases—such as Palisades Charter High School’s conversion in 1993—accelerated
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around 2009, when district leaders embraced charter conversion as a tactic to stem student
losses to competing independent charter schools. Over the ensuing decade, LAUSD authorized
the conversion of dozens of neighborhood campuses into affiliated charters. The district now
offers 52 affiliated charters, separate from the roughly 150 charter schools they serve as the
authorizing body for.

Other Choice Options LAUSD offers additional choice options, including Dual Language
programs and admission criteria schools. The former are primarily concentrated at the elemen-
tary level, and the latter consist of only a handful of programs. We provide further discussion

of these other, less common, choice options in Appendix B.3.

3.2 LAUSD’s School Assignment Policies

As highlighted, LAUSD is the largest opt-in district in the U.S., with its choice offerings be-
ginning with magnet programs created under the district’s court-ordered desegregation plan.
From their inception, LAUSD magnet schools have used a centralized lottery system to allocate
seats, with built-in design features to promote diversity. Unlike zoned schools, magnets accept
students citywide, so the district created a central application and lottery process. Early on,
magnets operated under racial enrollment quotas to fulfill their integration mission, often with
60 percent of seats reserved for predominantly Hispanic, Black, Asian, and Other Non-Anglo
students. This use of race in magnet assignments continued even after court supervision ended
and was later upheld as lawful despite California’s Proposition 209 ban on racial preferences,
since the magnet program had been part of a pre-1996 court-ordered remedy (American Civil
Rights Foundation v. Los Angeles Unified School District 2008).

Historically, LAUSD’s opt-in assignment system allowed families to rank at most one option—
a single-application design that features prominently in our empirical analysis. In recent years,
the system has expanded: families now submit rank-ordered lists for magnet and dual-language
programs through a Unified Enrollment platform, while district-run charters continue to run
their own applications systems. When students apply to oversubscribed programs, a single
tie-breaking lottery number is assigned to each applicant. In the most recent period, the tie-
breaking lottery numbers are still used and seats are allocated using a variant of Immediate
Acceptance (First-Preference-First). Participation frictions commonly emphasized in the K-12
market design discourse—e.g., search and information frictions, coordination costs, and the im-
plications of strategic complexity—are also present in LAUSD. The information environment
in LAUSD is relatively weak (Campos 2024; Campos and Neilson 2025), but the use of a co-
ordinated system likely helps (Abdulkadiroglu et al. 2017), while strategic considerations likely
disadvantage lower income families in the district (Abdulkadiroglu et al. 2006). Although these
frictions have been shown to be important and payoff relevant, the opt-in design is arguably a
much larger participation friction, especially when that is coupled with relative weak informa-

tion environments as Panel (b) of Figure 2 shows.
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3.3 Data and Samples

Our analysis draws on administrative data from the LAUSD spanning 2004-2017, with the
years chosen to avoid following students into the pandemic. We focus on cohorts of fifth grade
students who are potentially applying to choice schools for the following year. These data include
standard demographics, baseline standardized test scores in Math and English Language Arts
(ELA), residential Census block, and application information. We link fifth grade cohorts with
middle school outcomes in Grades 6-8 and construct two primary achievement measures: a Math
score and an ELA score. Each measure is defined as the student-level average of all available
standardized test scores in that subject across grades 6-8; when a subject-grade score is missing,
the average is computed over the remaining available scores.

We rely on three primary samples for our analysis. The first is a baseline sample, which
includes all fifth-grade cohorts observed in LAUSD between 2004 and 2017. This is the broadest
sample and is used for our descriptive analysis of who applies to choice programs and how
applicants differ from non-applicants. The second sample is restricted to students who applied
to an oversubscribed choice school program and participated in an admissions offer lottery that
we can observe over this same period. During our study period, roughly 90 percent of all
choice programs held at least one lottery. Lotteries are run within strata defined by the cross
of application year, student grade, program, race, and priority-points level, and our records
contain all fields needed to reconstruct these strata. For each lottery, the files report each
applicant’s randomly assigned number and whether an offer was ultimately extended.!® Since
distance features prominently in both the reduced form and structural analysis, we further
restrict this sample to students with valid geospatial data representing their home address,
since this is necessary to construct measures of distance to a nearby choice school. There are a
total of 1,033 lotteries contained in our sample of oversubscribed programs. The third sample
is a restricted version of our baseline sample constructed to estimate a structural model of
school applications and enrollments. The restrictions are as follows. Students must (i) have
non-missing geo-spatial data; (ii) enroll in an LAUSD school in sixth grade; (iii) have at least
one test score in Grades 6, 7, or 8; and (iv) be enrolled in the 2004-2013 academic years. This
final restriction is convenient for estimating the structural model as it covers a period in which
families could apply to at most one school, allowing us to sidestep common issues associated
with strategic play or the curse of dimensionality (Agarwal and Somaini 2018).

Appendix Table A.1 provides summary statistics that compare the three samples. Relative
to the baseline sample of fifth-grade cohorts, the lottery sample is an advantageously selected
subset of applicants, with stronger prior achievement—roughly 0.650 above district averages
in both Math and ELA—and somewhat different demographic composition. This pattern of
selection is similar to the differences that we describe in further detail in the next section,
comparing all applicants to non-applicants. By contrast, the structural sample resembles the
baseline population by construction: while it includes moderately more English learners and

slightly lower fifth-grade achievement, in general, it closely tracks the broader LAUSD cohorts.

10 A ppendix Section C details the lottery data and our procedure for inferring each lottery’s cutoff for extending
offers. We construct an indicator equal to one if an applicant’s random number lies on the offer side of the inferred
cutoff; this is our measure of receiving a lottery-based choice school offer.
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4 Who Participates in Choice Schools?

We begin by examining patterns of selection into Los Angeles Unified School District’s (LAUSD)
choice programs over the period 2004-2017. Table 1 presents descriptive statistics comparing
non-applicants (column 1), applicants (column 2), and the estimated differences between the
two groups (column 3). As shown in the top rows, participation in the school choice system is
limited, as only 20 percent of fifth-grade students in LAUSD submit an application to a choice
program.

Applicants differ systematically from the broader LAUSD student population along both
demographic and socioeconomic lines. Hispanic students, who constitute nearly 80 percent of
all non-applicant fifth graders, account for just 54 percent of applicants. In contrast, the shares
of Black, White, and Asian students are significantly higher among applicants, by 4, 12, and
8 percentage points, respectively, yielding a more racially diverse pool of applicants relative to
the overall student body. Applicants are also more socioeconomically advantaged. The share of
students identified as living in poverty is 14 percentage points lower among applicants, and the
share classified as English Learners is 21 percentage points lower, relative to non-applicants. Fe-
male students are also modestly overrepresented, comprising 51 percent of applicants compared
to 49 percent of non-applicants.

Turning to academic characteristics, choice applicants are substantially higher achieving
than their peers. Their baseline standardized test scores are nearly 0.8 standard deviations
higher in both English Language Arts (ELA) and mathematics. This degree of positive selection
on prior achievement is consistent with existing evidence from school choice settings. For
example, Abdulkadiroglu et al. (2011), Kline and Walters (2016), and Deming et al. (2014)
document that students applying to charter and other selective schooling options tend to be
drawn disproportionately from the upper tail of the prior achievement distribution.

Finally, the summary statistics demonstrate that student proximity to schooling options is
closely connected to application behavior. Applicants tend to live slightly further from their
nearest district school and relatively closer to a nearby choice school when compared to non-
applicants. Figure 4 explores this relationship directly by plotting binned averages of the share
of students applying to any choice program against relative distance to the nearest school.
As illustrated in the figure, application rates decline sharply as distance grows, falling from a
high just above 24 percentage points at the closest distance to a low of 18 percentage points
at the furthest distance. These patterns are consistent with a large body of prior research
documenting that distance is a critical factor in the demand for high-quality schooling options
(Abdulkadiroglu et al. 2020; Hastings et al. 2009; Laverde 2024; Walters 2018).

4.1 Does Distance Determine Participation? Evidence from Choice Expan-

sion

The descriptive patterns show that an applicant’s proximity to nearby choice school programs
is an important predictor of participating in LAUSD’s opt-in system. Of course, distance to
schools may simply be correlated with other unobserved factors—such as parental motivation,
information, or neighborhood characteristics—that also shape demand for choice schools. To

more clearly test the importance of distance as a shifter of demand, we use LAUSD’s rapid
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Table 1: Summary Statistics: LAUSD Grade 5 Students (2004-2017)

Non-
Applicants  Applicants Diff.

(1) (2) (3)

Observations 477,068 116,482 593,550
Student Share 0.80 0.20 -

Student Demographics

Hispanic 0.79 0.54 -0.25%%*
(0.02)
Black 0.09 0.13 0.04%**
(0.01)
White 0.07 0.19 0.12%**
(0.01)
Asian 0.03 0.11 0.08%**
(0.01)
Female 0.49 0.51 0.02%**
(0.00)
Poverty 0.75 0.60 -0.147%%*
(0.01)
English Learner 0.31 0.10 -0.27 %%
(0.01)
Standardized Test Scores
ELA -0.18 0.63 0.81%**
(0.03)
Math -0.16 0.60 0.77%**
(0.03)
Distance to District Schools
Nearest 0.73 0.81 0.08%**
(0.01)
Nearest Choice (Rel. Dist.) 0.59 0.51 -0.08%**
(0.02)

Notes: This table reports summary statistics that describe demographics, test scores, and proximity to school for
a sample of LAUSD fifth-grade cohorts between 2004 and 2017. Columns 1 and 2 report summary statistics for
students who did and did not apply to school choice programs in LAUSD, respectively. Column 3 reports mean
differences with an associated standard error in parentheses below. The top two rows report statistics regarding
their participation in the school choice process, the middle rows report student demographics and baseline test
scores, and the bottom rows report proximity-related information. For proximity statistics, we report distances
between a student’s Census block centroid and the nearest district non-choice school. We also report relative
distance to the nearest district choice school, where relative distance is defined as the difference between distance
to the nearest choice school and distance to the nearest district non-choice schools.

expansion of choice programs as an empirical testing ground.

As highlighted in Section 3, this expansion had a substantial impact on the availability of
programs: the district more than doubled the number of choice programs over the past two
decades, creating meaningful variation in access over time. Importantly, as shown in Appendix

Figure A.2, the expansion also reshaped geographic access across neighborhoods in Los Angeles.
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Figure 4: School Distance Predicts Participation in the Choice System
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Notes: This figure reports a binscatter plot assessing the relationship between students’ like-
lihood of applying to choice programs and relative distance to nearest choice programs within
LAUSD sub-districts. There are a total of six LAUSD sub-districts that segment the district
into large areas. Choice programs include magnet programs, dual-language programs, and
district-run affiliated charter schools. The sample comprises student-level data of all cohorts of
fifth-grade students from 2004 to 2017.

Panels (a) and (b) map the distance to the nearest choice school in 2004 and 2023, respectively,
with the darker shading in the latter year reflecting the expansion of choice schools throughout
the city. Panel (¢) summarizes these changes by computing each area’s change in relative
distance, showing that neighborhoods in the northeastern Valley foothills (e.g., Sun Valley and
Shadow Hills), the western San Fernando Valley (e.g., Woodland Hills and West Hills), and
the Harbor Area (e.g., San Pedro and Wilmington) saw the largest increases in choice-program
access.

To test whether participation responds to access, we use an event study approach that
exploits the policy shock of choice program expansion by comparing changes in application
rates across neighborhoods that do experience entry to those that do not. Specifically, we
construct our sample as follows. Treated tracts are those with non-zero LAUSD enrollment
that experience a reduction in distance to the nearest choice school of more than half a mile in
a given year. Control tracts are those with non-zero enrollment that saw no change in distance
during the previous three academic years and that are sufficiently far away from treated tracts.
More specifically, to mitigate concerns about spatial spillovers, we exclude potential control
tracts located within 2.5 miles of a treated tract’s centroid. We then organize these treated and

”

control tracts into a stacked event-study sample, where each “event” corresponds to the first

year a tract experiences a qualifying distance reduction. In the stacked sample, we re-index
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time relative to that event year, pooling across all cohorts to trace out dynamic responses to
improved access.!!
Our formal analysis relies on the stacked sample, where we estimate the following event-

study specification:

Yits = Qs + s + Z Br Dt + Unts, (1)
k1

where Y},;5 is an outcome for neighborhood n in event-time ¢ and stack s, a5 are neighborhood-
by-stack fixed effects and ays are event-time-by-stack fixed effects, and Dy, = 1{event-time =
k} x 1{Neighborhood n is treated}, and unts is an error term. The inclusion of stack-specific
fixed effects restricts to within-stack comparisons of changes in outcomes between treated and
control units. The coefficients (B represent average differences in changes in outcomes between
treated and control units between time k and the year before treatment (k = —1).

Figure 5 reports results from our event study analysis of choice program demand. We observe
a sudden jump in applications that is precisely timed with the expansion. Neighborhoods that
experience entry see a roughly 20% increase in neighborhood application rates. Neighborhoods
that experience entry were also trending similarly to control neighborhoods in the years leading
up to the event, providing reassurance for the parallel-trends assumption underlying our design.
Taken together, these results confirm that improvements in geographic access meaningfully raise
participation in LAUSD’s opt-in system. In line with the cross-sectional patterns documented
in Table 1 and Figure 4, the quasi-experimental evidence reinforces that distance is a key
determinant of choice-school demand rather than a mere correlate of unobserved neighborhood
or family characteristics.

In sum, our choice program entry event study results show that reductions in distance
meaningfully raise participation. This analysis highlights access costs as a central margin in
LAUSD’s opt-in system. This pattern aligns with prior studies highlighted above that treat
distance as a cost shifter in school choice (e.g., Walters 2018), and therefore naturally raise the
question: if distance shifts who applies, does it also shape who benefits when an offer arrives?
We provide evidence on this question in Section 5 by testing for distance-graded heterogeneity

in lottery-based impacts.

5 Impacts of Choice Schools: Lottery-Based Evidence

Having established who participates in LAUSD’s opt-in choice system, our next goal is to ex-
amine which students gain the most from attending these programs. We use a flexible approach
to estimating causal effects of enrollment in choice schools that exploits the district’s random-

ized admission lotteries. Oversubscribed programs allocate seats using random priority number

"The data construction begins with a block-level sample where we calculate changes in distance in order to
assign blocks to treatment and control status based on the block’s distance and whether the areas have non-
zero LAUSD enrollment. We aggregate the blocks that meet the treatment and control definitions to the tract
level. This process discards partially treated blocks (i.e., those that experience smaller reductions in distance).
Although the block-level provides the most granular measure, enrollment counts at the block level fluctuate
substantially across cohorts, often cycling from a few students to none. Aggregating to the tract level smooths
out these fluctuations and yields a more stable unit of analysis.
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Figure 5: Changes in Application Rates in Response to Choice School Entry
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Notes: This figure reports event-study estimates based on Equation (1) where the dependent variable is the log
of the neighborhood applications for choice schools. The event study specification is based on identifying the
first academic year in which a neighborhood (census tract) experiences a reduction in its distance to the nearest
choice school of more than 0.5 miles. Control tracts exhibit no change in distance over the prior three academic
years, and are located at least 2.5 miles from the centroid of any treated tract to mitigate spatial spillovers. Only
tracts with non-zero LAUSD enrollment are included in the sample. We report 95-percent confidence intervals
where standard errors are robust and clustered at the neighborhood level.

lotteries within strata defined by program, year, grade, priority points, and race combinations.!?

Motivated by the evidence on application behavior and proximity in the preceding section,
we estimate how the reduced form impacts of winning an offer vary with baseline distance to
the nearest choice school. Specifically, we estimate the ITT effect within distance bins using

the following specification:

5 5
Yo = oy + ) B (Zi x HQi = @) + Dk L(Qs = q) +us, @)
g=1 q#1
where Y; is a post-lottery achievement outcome for student i, (); identifies their quintile of
baseline distance to the nearest choice school, ;) are lottery fixed effects, and Z; is an indicator
denoting whether applicant i received an offer in the lottery.!®> Because Z; is randomized within
each lottery stratum, the 3, identify ITT effects within distance bins. Appendix Table A.2

provides evidence of lottery offer balance across baseline student co-variates for each baseline

121,AUSD has yet to reach unitary status so still operates with a court-mandated desegregation order and many
programs have race-specific quotas.

13We use distance to the nearest choice school rather than distance to the specific program each student
applied to in order to avoid endogeneity concerns: families may strategically apply to distant programs if they
particularly value those schools, creating spurious correlations between distance and treatment effects. The
nearest-choice-school measure provides a more exogenous proxy for baseline access costs.
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distance bin. The last row of the table reports results from a joint test that all of the coefficients
are identically zero, and we consistently fail to reject the null. For inference, we cluster standard
errors at the lottery level. We report estimates of 3, and test the hypothesis Hy : 31 = Bs.

Figure 6 reports our main reduced-form estimates.'* Panel (a) of Figure 6 shows that
Math ITT effects vary sharply with baseline distance to the nearest choice school: students in
the nearest quintile gain roughly 0.05¢ when they receive an offer, whereas those in the most
distant quintile lose about 0.050, and we reject equality across quintiles. Panel (b) displays
qualitatively similar patterns. First-stage offer effects are comparable across distance quintiles
(0.38-0.45; Appendix Table A.3), implying that the heterogeneity is not driven by take-up
differences. Moreover, because the first and fifth quintile effects are opposite in sign, scaling to
IV will mechanically magnify the dispersion in impacts evident in Figure 6.

How should we interpret this pattern of results? The distance-based gradient in treatment
effects is consistent with findings from Walters (2018), who documents similar heterogeneity
in charter-school lotteries: students who live farther from charter schools—those facing higher
application costs and thus revealing stronger demand—tend to experience smaller achievement
gains once enrolled. This pattern implies a form of reverse Roy sorting, in which students
with the greatest willingness to participate are not those who benefit the most. In our setting,
reductions in distance appear to draw in additional applicants who are observably similar but
differ in their unobserved inclination to apply, revealing that geographic frictions screen out
many students with potentially large gains.

This reverse-Roy interpretation based on latent demand raises two main concerns. First,
distance is potentially correlated with observable student characteristics, such that the distance
achievement gradient may reflect other forms of observable treatment-effect heterogeneity.!®
To explore this possibility, we proceed in two steps. We define subgroups based on baseline
characteristics and measure their demand using subgroup application rates; Appendix Figure
A .4 plots the resulting treatment-effect estimates against each subgroup’s application rate.
Because each point corresponds to a subgroup and its complement (e.g., low- versus high-
achiever), we can compare within each pair; in nearly all cases, the group with the higher
demand has the smaller estimated treatment effect, further evidence of reverse-Roy sorting.
Next, we ask whether this observable heterogeneity can account for the distance gradient itself.
To do so, we augment Equation (2) with interactions between offers and these same observable
characteristics. Figure 7 reports the results: controlling for effect heterogeneity with respect
to baseline achievement, poverty status, and other demographics leaves the distance gradient
virtually unchanged, indicating that the pattern in Figure 6 is not driven solely by observable
heterogeneity and instead points to an important role for unobserved demand.

Second, one might worry that distance is not the only plausible proxy for unobserved de-

mand. To probe this concern, we construct an alternative index measuring how similar each

4The heterogeneity revealed in our main results is obscured when we estimate a pooled specification that
ignores distance; the average ITT of winning an offer is negative at —0.027¢ (p < 0.01) and —0.0360 (p < 0.01)
for Math and ELA, respectively. This is driven by the disproportionate representation of students with negative
achievement benefits at farther distances from nearest choice school in the lottery sample. As will become clear
in our structural exercise in Section 7.2, we find that a significant share of students who observably apply to
choice schools are “Type 3” students that experience negative gains (see Figure 11).

5For example, suppose high-ability students both live closer and benefit the most from choice schools. Then
the distance gradient in Figure 6 would simply reflect subgroup treatment effect heterogeneity.
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Figure 6: Oversubscribed Choice School Lottery Effects by Distance Quintile
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Notes: This figure reports reduced form effects of receiving an offer on Math and ELA achievement in Panel (a)
and Panel (b), respectively. We report estimates for different quintiles of distance to choice school at baseline.
The estimates come from a regression of achievement—Math or ELA—on lottery strata fixed effects, main effects
for distance quintiles, and interactions of offers and distance quintiles. We report estimates of the interactions in
each sub-figure. We report 95-percent confidence intervals that use robust standard errors clustered at the lottery
strata level. We also report p-values from hypothesis tests that test the null hypothesis that the distance-specific
effects are equal and another test that tests the null hypothesis that the distance effects are jointly equal to zero.
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Figure 7: Robustness of Distance Gradient in Achievement Impacts
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Notes: This figure reports results that assess the robustness of the estimated distance gradient, the difference in
estimated impacts of winning a lottery for students who live closest and furthest away from their nearest choice
school. All estimates are based on Equation (2) where the coefficients of interest are interactions between a lottery
offer indicator and indicators for distance quintiles based on the students’ residential address and their distance
to choice schools. The left-most results correspond to results from our baseline specification for ELA (gray) and
math (black) achievement, respectively. Each additional pair of estimates augments the baseline model with a
main effect for the corresponding covariate—e.g., Achievement or Suspensions—and an interaction between a focal
covariate and offer indicators. We then calculate the estimated quintile 1 (Q1) and quintile 5 (Q5) difference in
reduced form effects and report that with its associated 95 percent confidence interval. We use robust standard
errors that are clustered at the lottery strata level.

applicant is to the typical applicant in their lottery. Intuitively, prior research such as Hast-
ings et al. (2009) and Corradini and Idoux (2025) documents that parents and students value
homophily—preferences for peers who are observably similar to themselves. Thus, students who
are “outliers” in the distribution of applicant characteristics must have stronger idiosyncratic,
unobserved tastes for the program.'® Lottery effects by quintiles of this index (Appendix Figure
A.3) display a nearly identical negative gradient: students least similar to their peers—those
likely to have the strongest unobserved demand for the program—experience the smallest gains.
These results reinforce the interpretation that unobserved demand is an important source of
treatment effect heterogeneity that we will need to incorporate into our structural analysis in

the next section.

6 Beyond Lottery Effects

The lottery-based analysis provides valuable evidence on the effects of choice programs for
families who apply. However, as shown in Table 1, less than a quarter of all families submit
an application, and an even smaller subset appears in the highly selected lottery sample. To

understand how the opt-in design shapes aggregate outcomes and inequality, we must look be-

We quantify this by computing the Euclidean distance between each applicant’s observable characteristics
and those of the average applicant to their program, producing a simple peer-similarity index.
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yond these applicants. Doing so requires a framework that connects application and enrollment
decisions to potential outcomes, allowing us to generalize treatment effects to the broader pop-
ulation not currently engaged with the system. Equally important, such a framework provides
the foundation for counterfactual policy analysis—enabling us to evaluate how alternative de-
signs, such as reducing application costs or mandating participation, would change district-wide
outcomes. In this section, we develop such a model, linking choice school demand to potential

outcomes in a way that allows us to address the paper’s core questions.

6.1 Setup and Timing

Our framework models the optimal choice problem faced by forward-looking students and their
families when deciding whether to apply to a LAUSD choice program and which program to
select. The figure below illustrates the sequence of decisions and events in our model. In
Stage 1, consistent with our interest in LAUSD and its policies during the 2004-2013 academic
years, each rising sixth-grade student i chooses whether to apply to a single choice school
program j € {1,---,J}, with the binary variable A;; indicating an application to school j.
Students are always guaranteed access to their default neighborhood school, denoted j = 0.
In Stage 2, each choice school j > 0 makes admission offers to applicants, with Z;; denoting
whether the student receives an offer; when schools are oversubscribed, admission is determined
by randomized lotteries, generating exogenous variation in offers. In Stage 3, students make
enrollment decisions over programs, denoted by F; € {0,1,---,J} where E; = 0 indicates
neighborhood school attendance. Finally, students attend their chosen schools, take achievement

exams, and realize academic outcomes Y; in Stage 4.

Figure 8: Stages of Decisions and Outcomes in the Model

Students submit Schools make Students enroll Students earn
applications A;; offers Z;; in schools F; test scores Y;
I I I I I
Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Notes: This figure summarizes key decisions and endogenous variables in our model.

6.2 Student Preferences

Let ¢ € 7 index rising sixth-grade students in LAUSD and j € J index the set of choice schools.
FEach student may apply to any choice school and, if admitted, enroll there; otherwise, they
default to their neighborhood school (j = 0) which varies across neighborhoods. We define
the indirect utility of student ¢ from enrolling in choice school j relative to their neighborhood
school as:

Ui; = Uij — U,

so that U}; > 0 indicates a strict preference for choice school j over the default.
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This utility difference is specified as follows:

Ui = 0; + Be Xi + 6 — (Wp Dyj + p2 DY + ¥paDij x X;) + €5, (3)

v;(0:,X3,D5)

where X is a vector of observable student-level characteristics, and D;; measures the residential
distance between student ¢’s address and school j. In our framework, the term ; measures the
mean popularity of choice school j and serves as the component that absorbs average differences
in school quality and preferences over achievement. This model allows for two main sources of
choice school preference heterogeneity for each student 7. The first is observable preference
heterogeneity embedded in the vector X;, which includes race, socioeconomic status, baseline
achievement, neighborhood quality, and baseline peer achievement scores among other common
demographic characteristics. The preference vector 8. does not depend on j, implying that
observable preference heterogeneity applies uniformly across all choice schools. Second, the
term 6; allows for unobservable preference heterogeneity. We model the travel costs of distance
flexibly by specifying a quadratic function for D;; that also features an interaction between
distance and the observable student characteristics X;. Finally, €;; represents idiosyncratic
heterogeneity in student tastes for specific school-student pairings, which also encompasses
school-specific match effects in realized achievement.

The individual taste parameter 6; plays an important role in our model of student prefer-
ences. A few points about 6; are worth highlighting for our subsequent analysis. First, because
0; enters identically for every j > 0, it shifts all choice-school utilities in the same direction,
implying symmetric substitution patterns between choice schools. Second, we must make as-
sumptions on 6;’s distribution F'(6;) to make the model tractable. We flexibly approximate
F(6;) via a finite mixture of K-many normals. Third, as we detail further below in our model
of achievement, we allow student achievement outcomes to depend on 6;, where it captures the

relationship between unobserved choice school demand and potential achievement outcomes.

Application Decisions: The application decision depends on both preferences for schools
outlined in Equation (3), the probability of receiving offers, and application costs. Consistent
with the LAUSD application rules in place from 2001 to 2013, we model each family as being per-
mitted to apply to a single program.!” The application vector is defined as A; = (A;1,--- , Aiy)
where A;; is the indicator for whether student ¢ applies to school j. Similarly, the offer vector
is Z; = (Zi1,- -+, Z;y) where the indicator Z;; denotes receipt of an offer. As noted above,
offers are realized from a lottery embedded in the centralized assignment system conditional
on student ¢ applying and school j being oversubscribed. Students face different probabilities,
denoted 7;;, of receiving a lottery-based offer to school j based on priority groups defined based

on sibling status, race, and neighborhood proximity. Given the uncertainty in admissions, the

1"While our baseline model reflects LAUSD’s historical one-application regime, we relax this restriction in the
“decentralized” counterfactual scenario (Section 8), where families are permitted to submit multiple applications.
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expected utility from a choice set that includes an offer from j, Z;; = 1, is:

w(Ziy = 1] X5, Di,0;) = log 1+ exp((3; +6:) + B X

(4)
— (¢Yp Dij + ¥p2 Di2j + Ypz Dij ¥ Xz))) +,

where « is Euler’s constant. Therefore, the ex-ante expected utility from applying to j is:
G(Aij =1 | Xl,Dl,Gz) == TFiju(Zij =1 | Xl,DZ,GZ) + (1 - 7rij)’7- (5)

Students weigh expected utility from different choices of application vectors against their
application costs. Let a = (a1,--- ,ay) denote a possible choice school application vector. The
utility cost of submitting this set of application choices is given by c(a, X;, ;) and 7; governs
unobserved application cost heterogeneity. We assume 7; ~ N (0, 03]), and the realizations of 7;

are known to each student. Application costs are assumed to have the following form:

c(a, Xi,ni) = 1{X; a; > 0} x (exp(pe + Xifiex) + i), (6)

where the parameters u. and g, are the mean application cost common to all applications and
the heterogeneous application costs with respect to observables, respectively. The unobserved
application cost 7; is only incurred when a student chooses to apply to the given school. The
functional form of application costs allows us to separately identify preference heterogeneity
from cost heterogeneity.

Putting this all together, students select an application vector A; € J U {0} that maximizes
their utility:

A = arg max Z <e(aj =1] XZ-,DZ-,Oi)> —c(a, Xi,ni). (7)
J

Equation (7) does not have a closed form expression, so we follow standard approaches in
approximating the choice probabilities using a logit kernel smoother (Train 2009; Walters 2018).

For a small A\, we can approximate the application choice probabilities as:

exp <{zj e(a; = 1| Xi, Dy, 0) — c(a,Xi,m)}/A>

Pa(A; =a | Xi,D;,60;,m) = ;o (8)

S exp <{zj e(a; =1 X, Dy, 03) — ela, X, m)}/A)
where o’ is the index over the set of possible application vectors.

Enrollment Decisions: When students submit applications, they subsequently receive an
offer set O; that includes the single choice school to which they applied and their default
neighborhood school; students who did not apply have only their neighborhood school in O;.
At the time of enrollment decisions, we introduce post-lottery preference shocks &;;, which follow
a Type I Extreme Value distribution. These shocks capture the possibility that some students
may apply to a choice school, receive an offer, yet ultimately decline enrollment. Conditional on
the realized offer set and the vector of covariates (Z;, X;, D;j,0;), the probability that student

i enrolls in school j—conditional on receiving on offer—is therefore given by a standard logit

25



over the available options:

exp(v;(X;, Dy, 6;))

P E: . Z:1,X,D’9 = )
(B = | Zij i» Di, 0:) > ireo, exp(vy(Xi, Dj, 60;))

9)

where v;(.) denotes systematic utility. Equations (8) and (9) demonstrate that both observable
and latent tastes for choice schools, 6;, influence application and enrollment decisions. In the
achievement outcome model specified below, it is this model-implied variation that we use to
account for selection into both application and eventual enrollment. We return to this below,

but first discuss estimation of the model.

Estimating Preference and Cost Parameters: Conditional on the unobservable terms 6;
and 7;, Equations (8) and (9) imply that the likelihood contribution of student ¢ who submits

application A;, receives offer vector Z;, and enrolls in school FEj; is:
L(Ai, Zi, E; | Xi, Dy, 03,m) = Pa(Ai | Xi, Dy, 05,mi) x P(Zi]Ai, Xi) x Pr(E; | Zi, Xi, Dy, 0;),

where P(Z;|A;, X;) is the probability mass function of offers, conditional on applications. In
practice, we integrate out the random coefficients 6; and 7; by simulating draws from the

postulated distributions:

10
x Pp(E;| Z;, X;, Dy, 0) dF (0,1 | X, D;).

In our main analysis, we assume K > 1, implying that the density is:

K
AP (6,11, D;) = ( X puo(6: v, o) ) o(0:0,3) 0 di,
k=1
Therefore, the individual likelihood contribution in the general case is:

K
L(A;, Zi, Bi | Xy, D;) = Zpk(/PA(Ai | X3, Di, 0,n) x P(Zi| A, X;)
i (11)
x Pg(E; | Zi, Xi, D;,0) ¢(0; i, o) ¢(n;0,07) db d77>7

where py correspond to the type-k share, a quantity that is also estimated in the K > 1 case. We
maximize the simulated log likelihood function in Equation (11) using all Grade 5 students in
the sample. We recover a vector of parameters, Q = ({3;}, Bz, YD, ¥D2, s fhexs Lk Oks Dk }> On)-

See Appendix Section D for further details on the demand model and estimation.

Identification of Demand Parameters: Before turning to the model of student achieve-
ment in the next section, we briefly discuss the identification of our choice school demand
model. We organize our discussion around three ingredients: (i) enrollment preferences where
identification is aided by randomized offers Z;; (ii) application costs identified from extensive

margin behavior; (iii) the idiosyncratic preferences for choice schools 6; recovered from the joint
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behavior of application and enrollment decisions.

First, consider the enrollment decision within our model. Here, we highlight that random-
ized choice-school offers Z; are realized after applications are submitted, ensuring that they are
exogenous to unobserved tastes and application costs. This timing implies that Z; is excluded
from the application decision and helps identify the mean utilities J; from observed enrollment
patterns. Variation in Z; within lottery strata provides random changes in the feasible enroll-
ment set, allowing the model to trace how take-up varies across schools and thereby recover mean
utilities and preference loadings. Cross-sectional differences in enrollment behavior identify 3.
by comparing how choice school demand varies with demographics and baseline achievement,
while the degree to which otherwise similar students vary enrollment with respect to changes
in distance identifies the travel-cost parameters (e.g., ¥p and ¥ ps).

Next, our second point of discussion focuses on the application side of the model given its
central importance for analyzing counterfactual policies that shift participation in the choice
system. Given enrollment preference parameter estimates, the application decision depends on
the expected utility of enrolling at each school j and on the known offer probabilities ;; implied
by the lottery rules and capacities. Because offers are realized after applications, Z; is excluded
from this decision, and the enrollment-side preference estimates ensure that we are separating
participation frictions from tastes rather than conflating them. In the baseline model, where
each student can submit at most one choice-school application, identification of the application
cost parameters comes from variation in the propensity to apply at all—that is, from over-
all application rates vary across cohorts, neighborhoods and demographic groups as expected
utilities and 7;; change. This extensive-margin identification of application frictions parallels
approaches that separate preferences from participation/search costs in education markets (e.g.,
Fu 2014).18

Finally, the third point that we highlight is that the idiosyncratic parameter 6; acts as a
common “taste for choice schools” that shifts both application and enrollment utilities. It is
disciplined by the joint behavior of application and enrollment decisions: stronger substitution
toward choice schools at enrollment and higher propensities to apply when expected option
values rise both load onto 6;. This is a standard finite-mixture/random-coefficients identifica-
tion argument: multiple observed margins that share a latent factor help recover its location
dispersion (Train 2009). In our K > 1 specification, the mixture parameters {6; Mkaff;%} are
recovered from heterogeneous responsiveness on the enrollment and application margins, while

distance identifies travel disutility, so 6; is not correlated with geography.

18 Andrews et al. (2020) recommend transparent, low-burden diagnostics that clarify which descriptive moments
discipline particular parameter estimates in structural models, while emphasizing that such exercises speak to
transparency and local informativeness rather than formal identification. In this spirit, we shed light on the key
features of our data that drive the fixed application-cost estimate. We focus on this parameter and scale it from 0.5
to 1.5 of our main estimate; we then recompute the model-predicted overall application rate, holding enrollment-
side preference parameters at their estimates and using the known offer probabilities implied by the lottery rules,
and compare the prediction to the observed rate. Appendix Figure A.5 shows our results and demonstrates that
predicted and empirical application rates coincide at the estimated value, while small deviations produce sharp
over- or under-prediction, mirroring the single-crossing diagnostic in Autor et al. (2019).
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6.3 Student Achievement Model

We are interested in a model of the causal effects of choice schools on the average student in the
district. Our framework posits that students choose schools optimally implying that students
enrolled at any given school are not a random sample of the population. We address selection by
allowing mean potential outcomes to depend on the unobserved preferences that shape school

enrollment using two primary approaches. Specifically, we begin by assuming;:
E[Yij| Xi, Di, 7] = aj + 70Xi + 76X x 1{j > 0} + hj(ri) j=0,1,---,J, (12)

where the indicator 1(j > 0) denotes whether school j is a choice program, h;(.) is a function
that satisfies Eh;(7;)|X;]=0, and 7; € {1,---, K} represents the latent type indicating which
component distribution of F'(#) generates 6;.

Our approach imposes the following restrictions. First, we exclude the lottery offer vector Z;
from the achievement potential outcomes, a standard approach in the school choice literature.
This assumption embodies the idea that lottery offers have no direct impacts on achievement.
Second, we exclude D; from the achievement equation, so that residential proximity influences
achievement only through its role in shaping the costs of application and enrollment. This
restriction parallels the use of distance instruments in the charter school literature and rules
out direct effects of commuting distance on test scores once school choice is held fixed. Third, we
assume application costs c(a, X;,7;) are unrelated to potential outcomes, so that heterogeneity
in costs influences selection into the applicant pool but not academic achievement directly.
Fourth, we exclude the post-lottery preference shocks &;; from potential outcomes, reflecting
the view that these shocks capture idiosyncratic realizations of taste at the enrollment stage
rather than achievement-relevant information.

Taken together, these restrictions imply that any bias plaguing ordinary least squares esti-
mates of the choice school effect is due to preference heterogeneity governing application and
enrollment decisions captured by an individual’s type 7;. In practice, we impose the following
parametric restrictions on hj. Let Ty, = 1(7; = k) with }°; T, = 1. Our parameterization of h;
assumes:

hi(ri) = > Tk + > verTir x 1{j > 0}. (13)

k£1 k£1

The parameters 7, and 7. allow for flexible heterogeneity in terms of selection on levels and
selection on gains into the choice sector. That is, each type’s achievement in the untreated
state (attending a neighborhood school) is allowed to differ and the causal impacts of choice
school enrollment are also allowed to freely vary. A finding that v > vy > 0 for ¥ > k is
indicative of positive selection into the choice sector on achievement levels. Similarly, finding
that e > e > 0 is indicative of positive selection on achievement gains. By allowing for
type-specific selection parameters, the model allows for rich sorting patterns that do not need
to be symmetric across types.

As an alternative approach, we can model selection by allowing potential outcomes to depend

directly on the unobserved preferences 6;. Specifically, we assume:

E[Y;j‘ XZ,DZ,QZ] = —F’yéXz +")/éXz X 1{] > O} +gj(0i)a j = 0,1,"' ,J (14)
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where g;(.) is a function that satisfies E[g;(6;)|.X;]=0. We follow prior work by assuming a
linear functional form for g; (Abdulkadiroglu et al. 2020; Bruhn et al. 2023; Otero et al. 2023;
Walters 2018). That is, we assume:

gj(ei) = Y90; + vep0i x 1{j > 0}. (15)

In this model, the parameters «y and .9 serve the same interpretive roles as before, capturing
selection on achievement levels and on treatment gains, respectively. If v > 0, then students
with stronger idiosyncratic tastes for choice schools tend to have higher achievement, regardless
of their eventual enrolled school. Evidence that ., > 0 implies that families select schools
based on achievement-based comparative advantage.

Our assumptions imply that we can write control functions for both models as the following

quantities:
Elhj(7i) | X5, Di, Ai, Zi i) = > ki + Y YekDip ¥ 1{E; > 0} (M1)
k#1 k#1
E[g](el) | Xi,Di,Ai, Zsz] = ’)’99;( + ’}/690;( X 1{Ez > 0} (MQ)

In the first expression, pf, = E[Ti;|X;, D;, As, Z;, E;] is the posterior probability of belong-
ing to type k, conditional on observed choices which are functions of student attributes, rel-
ative distance, application decisions, lottery offers, and enrollment decisions. Similarly, 6] =
El0;|X;, D;, A;, Z;, E;] is the posterior mean of ;. All posterior means are calculated by sim-
ulations after estimating the demand model. As in Heckman (1979), the p}, or 6 terms serve
as a control function that accounts for the non-random sorting of students across schools. By
conditioning on the simulated posterior of 6; or type probability p;;, the model accounts for
unobserved preference heterogeneity that jointly influences school enrollment and achievement,
allowing us to obtain unbiased estimates. Having the control functions in hand, we estimate the
empirical analogs of Equations (12) and (14) in a specification that is augmented with neigh-
borhood and year effects. Importantly, the outcome model is not restricted to lottery applicants
and accounts for selection into application and enrollment, allowing us to characterize treatment

effect heterogeneity for the entire population.

Identification of the Student Achievement Parameters: Identification of the student
achievement model relies on variation in lottery offers and relative distance. Intuitively, lot-
tery offers provide exogenous variation in terms of who enrolls, conditional on applying, while
variation in distance changes the composition of the applicant pool. The advantage of includ-
ing neighborhood and year effects is that they allow us to leverage policy-induced changes in
distance for identification, rather than relying solely on cross-sectional variation. This fea-
ture of our approach provides a source of variation that is plausibly exogenous with respect to
achievement outcomes.

Distinct from related prior work on charter school demand and achievement in Walters
(2018), our design exploits policy-driven changes in proximity generated by LAUSD’s rapid
expansion of choice programs. As established in Section 4.1, new program entry substantially

increases local application rates (Figure 5). Here, we extend that evidence to the key identifi-
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cation question for achievement: do these proximity shocks alter who applies on observables, or

do they primarily shift latent demand?

Figure 9: Changes in Student Composition in Response to Choice School Entry
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Notes: This figure reports event-study estimates based on Equation (1) where the dependent variable is a
neighborhood-level composition index among applicants to choice schools. The composition index is constructed
by first calculating the fitted values from a regression of student-level achievement on a vector of baseline covariates
and then averaging the fitted values among applicants within a candidate neighborhood. We report 95-percent
confidence intervals where standard errors are robust and clustered at the neighborhood level.

To assess composition, we construct a tract-level composition index that is constructed by
first calculating the fitted values from a regression of student-level achievement on a vector of
baseline covariates and then averaging the fitted values among applicants within a candidate
tract. We then estimate the same stacked event-study used for applications but replace the
outcome with this index (and its components). Figure 9 shows flat pre-trends and no dis-
cernible post-entry shifts in the index. In short, expansions draw in more applicants without
systematically changing the observable composition of applicants.

We also verify that changes in proximity to choice schools are not systematically related to
student characteristics. Figure 10 summarizes results from student-level regressions that exam-
ine whether relative distance to the nearest choice school is correlated with baseline characteris-
tics. When the specification includes only academic year fixed effects (circle markers), distance
is moderately correlated with several key student observables (e.g., race and poverty measures).
However, once both year and neighborhood fixed effects are included (triangle markers)—so
that identification comes from within-neighborhood changes in proximity—the estimated cor-
relations largely shrink and are uniformly small. This pattern confirms that variation in access
induced by new school openings is not predicted by observable student characteristics.

Taken together, these facts line up with the achievement model introduced above: proximity
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Figure 10: Correlations Between Choice School Distance and Student Characteristics
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Notes: This figure reports coefficients from student-level regressions testing whether proximity to choice schools
is correlated with baseline characteristics. Each coefficient corresponds to a regression of a given characteristic on
relative distance to the nearest choice school, defined as the difference between a block’s distance to the nearest
choice program and the nearest non-choice neighborhood school. The sample includes all fifth-grade students
from 2004-2017. Circle markers correspond to specifications with only academic year fixed effects, while triangle
markers include both neighborhood and year fixed effects, isolating within-neighborhood changes in distance. We
report 95-percent confidence intervals where standard errors are robust and clustered at the neighborhood level.

shocks raise applications among students who are observably similar but differ in their latent
preference for choice schools, #;. We therefore use two sources of quasi-experimental variation to
identify achievement effects and their heterogeneity: (i) randomized lottery offers, which shift
enrollment conditional on applying, and (ii) expansion-induced changes in relative distance,
which shift the composition of applicants on unobservables (i.e., 6;) rather than average observed
traits. The inclusion of neighborhood and time effects ensures that identification is driven by

within-neighborhood timing variation, not cross-sectional differences in baseline access.

7 Model Estimates and Causal Effects

In this section, we first report estimates of the structural model of application and enrollment
demand. We then summarize causal effects for the entire population of LAUSD students,
uncovering some of the allocative inefficiencies of opt-in systems. Last, we conclude with an

analysis of the alignment of school-specific demand and school-specific causal effects.

7.1 Model Fit

We estimate three variants of our model that vary in the number of components K in the

mixture of normals used to approximate the distribution of unobserved preference heterogeneity.
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Appendix Table A.5 reports model fit statistics and shows that the log-likelihood is maximized
with a three-type model (K = 3), although the incremental gain relative to the two-type
specification is modest. Any further improvement in fit beyond the three-type model is also
modest, so we adopt the three-type model as our preferred specification. The model with two-
types nonetheless represents an important improvement in fit relative to the single-type case,
leading us to reject the simple specification. We report estimates for the two-type mixture
model in Appendix Tables A.6 and A.7.

We next conduct an out-of-sample validation to assess the overall fit of our preferred model
that uses a three-type mixture distribution. Specifically, we estimate the model in a 25%
random training sample and assess the fit using the remaining 75%. We run 200 simulations in
which we use parameter estimates from the training sample to simulate applications, offers, and
enrollment in the holdout sample. We then compare simulated averages to actual data across a
range of moments that capture school-level and group-by-school-level behavior.

Appendix Figure A.6 compares school-level aggregates (maroon triangle markers) and group-
by-school level aggregates (gray circle markers). Panel (a) shows visually that the model is
able to match school-specific application demand closely. For applications, the model fore-
casts school-specific demand accurately on average with a forecast coefficient equal to 0.99
(std. err. = 0.043). Panel (b) shows similarly strong performance for enrollment, with a fore-
cast coefficient equal to 0.97 (std. err. = 0.034). For both stages, we find that the model
predictions of application and enrollment behavior are forecast unbiased. Overall, the model
is able to reproduce aggregate and group-specific moments in the holdout sample, providing
reassuring evidence for its ability to capture important determinants governing selection into

application and enrollment.

7.2 Demand Model Estimates

Table 2 summarizes our demand model estimates. Panel (a) reports estimates of the utility
and application cost parameters from our preferred mixture model. Column 1 shows estimates
of the utility parameters J; and 3, while Column 2 presents estimates of the distance cost
parameters ¥ p, ¥pe, and ¥p,. In the top row of Column 1, the constant (main effect) is the
average of school utility intercepts (i.e., 0;). The estimated constant is negative and indicates
that the average student prefers their neighborhood school to a typical choice school, even in
the absence of application or distance costs. Consistent with prior evidence on the importance
of travel distance for school choice (e.g., Hastings et al. 2009; Laverde 2024), the estimated
distance cost parameter is statistically significant, confirming that distance exerts a strong
deterrent effect on demand. Based on these estimates, the implied mean utility distance for a
typical choice school is equivalent to traveling approximately 2.75 miles (0.897/0.325). Column
3 reports estimates of the natural logarithm of fixed costs (i.e., . and pie;). The estimate for
the main effect indicates that application costs are substantially larger than travel costs.
Although the average utility of a typical choice school is negative, the standard deviation is
about 3.2 miles, indicating that popularity varies widely. Some schools are so attractive that,
absent travel or application costs, virtually all students would apply. In terms of observable

heterogeneity, the estimates in Column 1 indicate that Black and Hispanic students express
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Table 2: Demand Estimates: Mixture Model

Panel (a): Estimates for Observable Parameters

Utility Distance Cost  Log Cost
(1) (2) 3)
Main Effects -0.897 0.325 0.209
[1.037] (0.005) (0.014)
Female 0.002 0.002 0.002
(0.023) (0.003) (0.003)
Black -0.106 -0.016 -0.035
(0.057) (0.007) (0.008)
Hispanic -0.106 0.012 0.065
(0.039) (0.005) (0.006)
White -1.098 -0.131 -0.083
(0.045) (0.007) (0.007)
Poverty 0.070 0.015 0.014
(0.026) (0.004) (0.004)
LEP -0.276 -0.016 0.010
(0.040) (0.005) (0.005)
Speaks English at Home -0.137 -0.024 -0.010
(0.031) (0.004) (0.004)
Baseline ELA 0.175 0.000 -0.033
(0.018) (0.002) (0.003)
Baseline Math 0.202 0.006 -0.018
(0.018) (0.002) (0.003)
Neighborhood Median Income -0.059 0.001 0.005
(0.005) (0.001) (0.001)
Baseline Choice Enrollment 1.275 -0.076 -0.097
(0.038) (0.004) (0.007)
Baseline Peer Quality 0.123 -0.026 -0.026
(0.028) (0.004) (0.005)

Panel (b): Estimates for Unobservable Parameters

I o Pr(K; =k)
(1) (2) 3)
Type 1 -0.876 0.189 0.446
(0.046) (0.062)
Type 2 0.430 0.125 0.488
(0.042) (0.043)
Type 3 2.749 0.541 0.066
(1.051) (0.039)
Cost Heterogeneity 0.363
(0.006)

Notes: This table reports demand model results (Section 6.2) estimated via simulated maximum likelihood with
300 draws for taste heterogeneity (6;) and cost heterogeneity (7;). Panel (a) reports observable heterogeneity:
the first row gives main effects for distance and log cost; school mean utilities are shown as averages with
noise-adjusted SDs in brackets; remaining rows are heterogeneity terms. Panel (b) reports unobservables: a
mixture-of-normals for tastes (means in col. 1, SDs in col. 2, type probabilities in col. 3) and mean-zero normal
costs with the SD in col. 2. Standard errors are in parentheses.

weaker preferences for choice schools than Asian students. Limited English proficiency students

also show lower demand. Consistent with Table 1, students with higher incoming achievement

33



both value choice schools more and face lower application costs, helping explain the strong
sorting of higher-achieving students into these schools.

Heterogeneity in the distance cost parameters is modest, but application costs vary more.
Relative to Asian students, the results in Column 3 indicate that Hispanic students face larger
application costs, while Black and White students face lower application costs. Application costs
are lower for students with higher baseline achievement. Students enrolled in choice schools at
the time of application also face lower application costs.

Finally, Panel (b) reports summary statistics for the parameters that govern the distribution
of unobserved preferences. The results show that preference heterogeneity is substantial, while
cost heterogeneity is more limited. The estimated means from the three-type mixture model
in Column 1 suggest that there is a type that dislikes choice schools, with mean pu; = —0.876,
another that moderately likes choice schools with po = 0.430, and a third type that strongly
prefers choice schools with us3 = 2.75. The type-specific standard deviations in Column 2
range from 0.19 to 0.54, underscoring meaningful within-type heterogeneity in choice school
preference. Column 3 indicates that the population splits roughly evenly between Type 1,
which tends to dislike choice schools (45 percent), and Type 2, which moderately likes them
(49 percent), while Type 3-students with strong preferences for choice schools represent only
7 percent of the population but are over-represented among applicants and enrollees. As for
cost heterogeneity, we estimate the standard deviation is 0.36, roughly one-third the size of the
observable costs for the average student in the population.

In sum, the estimates show that choice schools are generally less attractive than neigh-
borhood schools, with travel and application costs further discouraging participation. Unob-
servable preference heterogeneity—likely reflecting differences in information access, parental
engagement, and other frictions—also weakens demand, since most students fall into Type 1
(strong distaste for choice schools) or Type 2 (moderate idiosyncratic tastes). Together, these
patterns clarify the main barriers shaping participation in LAUSD’s opt-in system: sizable ap-
plication costs that deter families from pursuing more effective schools, and wide dispersion in
tastes that likely arises from information frictions and uneven parental motivation. Regardless
of the underlying micro-foundation, the evidence indicates that high barriers to participation
limit the allocative efficiency of opt-in systems. The details of how families are allowed to
participate matter: without adequate information provision or institutional support to reduce
application costs, demand for choice schools—and the system’s ability to deliver their benefits

to the students who need them most—will remain constrained.

7.3 Causal Effects on Student Achievement

Table 3 reports the selection-corrected parameter estimates based on the student achievement
model specified by Equations (12) and (14).!? Columns 1-4 report results for the parameteri-
zation that allows for type-specific heterogeneity, while Columns 5-8 correspond to the linear

control function results. We report estimates for math and ELA achievement separately.

19 Appendix Table A.8 reports bootstrapped estimates that take into account estimation error in the posterior
means and type probabilities that we use as control functions. Results based on our bootstrap exercise are
quantitatively similar as our main results.
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Table 3: Student Achievement Model Estimates

Model 1: Type Probabilities Model 2: Linear Control Function
Math ELA Math ELA
Neighborhood Choice Neighborhood Choice Neighborhood Choice Neighborhood Choice
School School Diff. School School Diff. School School Diff. School School Diff.
(70) (Ve) (70) (7e) (70) (7e) (70) (7e)
(1) (2) (3) (4) (5) (6) (7) (8)
Main Effects 0.290 0.243 0.252 0.226
[0.160] [0.113] [0.158] [0.111]
Female -0.022 -0.009 0.111 0.002 -0.022 -0.010 0.111 0.001
(0.002) (0.007) (0.002) (0.006) (0.002) (0.007) (0.002) (0.006)
Black -0.196 0.029 -0.161 0.027 -0.197 0.028 -0.161 0.027
(0.011) (0.022) (0.010) (0.020) (0.011) (0.022) (0.010) (0.020)
White -0.004 -0.027 0.001 -0.027 -0.004 -0.033 0.001 -0.030
(0.012) (0.021) 0.009) (0.021) (0.012) (0.021) (0.009) (0.021)
Hispanic -0.149 -0.004 -0.119 0.012 -0.150 -0.009 -0.119 0.010
(0.010) (0.020) (0.008) (0.019) (0.010) (0.020) (0.008) (0.019)
Asian 0.211 -0.062 0.075 -0.042 0.210 -0.059 0.075 -0.041
(0.014) (0.025) (0.010) (0.022) (0.014) (0.025) (0.009) (0.022)
Poverty 0.010 -0.011 0.003 -0.006 0.010 -0.012 0.003 -0.007
(0.003) (0.010) (0.002) (0.007) (0.003) (0.010) (0.002) (0.007)
LEP -0.087 0.037 -0.171 0.010 -0.087 0.041 -0.171 0.012
(0.004) (0.013) (0.003) (0.014) (0.004) (0.013) (0.003) (0.014)
Median Income -0.005 -0.006 -0.006 -0.006
(0.002) (0.002) (0.002) (0.002)
English Home -0.070 0.009 -0.059 0.044 -0.070 0.009 -0.059 0.044
(0.004) (0.012) (0.004) (0.010) (0.004) (0.012) (0.004) (0.010)
Baseline Math 0.526 -0.038 0.182 -0.023 0.526 -0.037 0.182 -0.023
(0.004) (0.009) (0.002) (0.006) (0.004) (0.009) (0.002) (0.006)
Baseline ELA 0.210 0.012 0.591 -0.016 0.210 0.014 0.591 -0.016
(0.003) (0.007) (0.003) (0.008) (0.003) (0.007) (0.003) (0.008)
Baseline Peer Quality -0.149 0.032 -0.095 0.024 -0.147 0.036 -0.094 0.025
(0.012) (0.018) (0.009) (0.014) (0.012) (0.019) (0.009) (0.014)
Pr(Type 2) -0.053 -0.167 -0.006 -0.118
(0.032) (0.047) (0.023) (0.040)
Pr(Type 3) 0.076 -0.385 0.102 -0.309
(0.015) (0.039) (0.012) (0.032)
Choice School Preference 6; 0.023 -0.076 0.029 -0.071
(0.003) (0.009) (0.003) (0.007)
Nghd., Year, Sub-district FE v v v v
Observations 334,166 334,166 334,166 334,166

Notes: This table reports estimates of Equation 12 (Cols 1-4) and 14 (Cols 5-8). The odd columns (1, 3, 5, and 7) report baseline coefficients (70); the even columns (2, 4,
6, and 8) report choice-enrollee interactions (vy.). The total effect for choice students is 79 + 7. The “Main effects” row gives the enrollment-weighted average choice effect;
noise-adjusted SDs are in brackets. All specs include Census-block, year, and sub-district fixed effects. No main effect for Median Income is shown because it is collinear with
block FEs; its interaction is identified from within-block variation in the choice indicator.



Both models paint similar pictures of the average effects of choice schools. The constant
(“main effects” row) reports the enrollment-weighted average school-level causal effects, with the
estimated standard deviation below in brackets. In the type-specific model, these main effects
represent the impact of the average choice schools for Type 1 students—those with the lowest
idiosyncratic demand for choice schools. Columns 2 and 4 indicate that, for these students,
attending an average choice school boosts test scores by 0.290 in Math and 0.240 in ELA,
with standard deviations of 0.160 and 0.11¢ across schools, respectively. In the linear control
function, the first row shows that choice schools typically boost test scores for the average
LAUSD students by 0.25¢ in math and 0.230 in ELA (Columns 6 and 8), with a similar
estimated heterogeneity across schools (e.g., standard deviations of 0.160 and 0.158). Taken
together, the estimates imply that some choice schools boost scores substantially, while others
are roughly comparable to neighborhood schools, and a subset exhibit negative causal effects.
These findings indicate that the question of what students access through the choice sector is
a vertically differentiated set of schools. They are generally more effective than neighborhood
schools, and the evidence suggests that the school district is responding to charter competition
by creating vertically differentiated options that families can sort into.

The subsequent rows of Column 2 and Column 4 (Column 6 and 8) report treatment effect
heterogeneity estimates in terms of observables and unobservables. All else equal, Black students
tend to experience larger gains from enrolling in choice schools, while Asian students experience
relatively negative gains. Treatment effects tend to decline with baseline achievement, indicating
that higher-achieving students benefit less from enrollment. Overall, these patterns in observable
effect heterogeneity, which were not specifically targeted in the estimation, line up well with the
reduced form results in Figure A.4. The totality of the evidence reinforces the broader narrative
of negative selection on gains: students with characteristics associated with lower application
rates (e.g., those with low baseline achievement) tend to experience larger treatment effects.

In terms of idiosyncratic tastes, Column 1 and Column 3 of Table 3 shows that students
with larger estimated tastes for choice schools are positively selected—Type 3 students with
the largest estimated tastes for choice schools perform 0.08-0.10c better on standardized ex-
ams than Type 1 students regardless of the school they enroll in—a finding that is consistent
with descriptive evidence in Table 1. Columns 5 and 7 paint a similar picture via the linear
dependence of 6; and achievement. Columns 2 and 4 report a negative association between
preferences and causal effects. Type 2 student’s causal effects are 0.12-0.17¢ lower than Type
1 students, and Type 3 students have causal effects that are 0.31 — 0.38¢ lower than Type 1
students, patterns that are consistent with negative selection on achievement gains. The linear
control function approach reveals similar patterns: a one-unit increase in 6; is associated with
a roughly 0.07 — 0.08¢ decrease in choice school causal effects, about one third of the average.
The negative selection on achievement gains we find adds to the growing body of evidence of
this kind of sorting in education and other settings (Chyn 2018; Cornelissen et al. 2018; Kline
and Walters 2016; Walters 2018).

To aid interpretation of these selection patterns, Appendix Figure A.7 summarizes choice-
school preferences for the subset of students who appear in the lottery sample. We begin by
taking the posterior estimates of 6; for the full population, ranking these values, and constructing

percentile measures. We repeat this procedure for an overall preference index, which is defined
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as I; = B.X; + 0;. We then attach these percentile ranks to the lottery applicants to show
where they lie in each distribution. Panel (a) plots percentiles of 6; itself, and Panel (b)
plots percentiles of the combined preference index. Across both measures, lottery applicants
are sharply concentrated in the far right tail: very few fall below the 80th percentile, and a
substantial mass lies in the top decile. This pattern places the lottery sample almost entirely
among students with the strongest idiosyncratic tastes for choice schools—those most likely
to be Type 3 and, as the achievement estimates above show, the group with the smallest
(and sometimes negative) causal effects. This figure, therefore, highlights a central allocative
inefficiency of the opt-in system: the students most inclined to apply are precisely those who
stand to benefit the least from attending choice schools. We next use a more direct visualization
of type-specific causal effects to summarize these reverse-Roy patterns.

Finally, Figure 11 provides a complementary, visual summary of the relationship between
enrollment preferences and causal effects by plotting Type-specific average causal effects. Re-
call that demand for choice schools is increasing with the type index. We see that Type 1
and 2 students, who have weak or moderate tastes for choice schools, have positive and rela-
tively large-in-magnitude treatment effects from choice school enrollment. In contrast, Type 3
students—those with the strongest choice school tastes—have negative effects. Taken together
with Appendix Figure A.7, which shows that lottery applicants are drawn disproportionately
from the high-preference (likely Type 3) tail of the distribution, this figure makes the reverse-
Roy pattern transparent. In summary, our analysis of causal effects reveals two takeaways:
(i) choice schools are vertically differentiated, likely reflecting a competitive response of school
districts in response to growing competition, and (ii) there is stark heterogeneity in treatment
effects—a finding that alludes to allocative inefficiency in terms of district-level achievement

maximization.

7.4 Demand for School Effectiveness

The preceding analyses show that those students who exhibit strongest demand for choice
schools also tend to realize relatively worse achievement gains. This pattern points to an
allocative inefficiency of the opt-in design, where willingness to participate is not tightly aligned
with school effectiveness. We next examine this relationship more directly by exploring how
demand varies with school-level causal effects.

Are more effective schools relatively more popular? Figure 12 provides a visualization that
suggests that demand is not higher for high-achieving schools. Specifically, the figure reports
the bivariate relationship between school-specific average causal effects («;) and demand scaled
in miles (based on ¢; and the distance cost parameters). If anything, the relationship be-
tween school effectiveness and school popularity is negative. The misalignment of demand and
school effectiveness adds to the mounting evidence finding weak relationships on this margin
(Abdulkadiroglu et al. 2020; Ainsworth et al. 2023; Rothstein 2006).

The misalignment of demand with school effectiveness could be due to a host of reasons. A
preference for peers is often advanced as an explanation for these kinds of empirical findings
(Rothstein 2006). At the same time, it is unclear if peer quality acts as a proxy for school

quality in environments with substantial information frictions. In the same spirit that lack of

37



Figure 11: Choice School Causal Effects by Preference Type
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Notes: This figure plots causal achievement effects for the three types implied by our demand model outlined
in Section 6.2. Table 3 reports the parameter estimates we used to construct these type-specific estimates. We
report 95 percent confidence intervals where standard errors are robust and clustered at the school level, and use
the delta method where appropriate. We report effects for Math and ELA in black and maroon, respectively,
using 334,166 students.

information inhibits applying to choice schools, lack of information about school effectiveness
dampens potential demand for effective schools by either a lack of awareness or inducing families
to select schools based on other attributes that are weakly correlated with school effectiveness.
Information interventions that target this information friction have been successful at boosting
demand (Ainsworth et al. 2023; Campos 2024), but the multifaceted nature of demand will
always limit the extent to which these interventions can completely align demand with school

quality (Beuermann et al. 2023).

7.5 Robustness and Additional Validation

The causal effects we estimate rely on our measures of latent demand adequately summarizing
selection into application and enrollment. Appendix Figure A.6 demonstrated that our demand
model reproduces a variety of moments in a holdout sample. This provides reassuring evidence
that the model replicates key selection patterns we aim to account for with our counterfactual
analysis. We now discuss two additional exercises that bolster the strength of our claim.

First, we address potential identification concerns. As outlined in Section 6.3, we rely on
lottery-based offers and policy-induced variation in access to estimate our model of enrollment
and achievement. Both instruments are excluded in the student achievement outcome equa-
tion, but one may worry that our effect heterogeneity is conflated by potential distance-based

heterogeneity. Appendix Table A.9 reports estimates of a model that accounts for distance-
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Figure 12: Demand for Effective Choice Schools
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Notes: This figure reports the relationship of estimated school effectiveness and demand, where demand is in miles
of willingness to travel. School effectiveness is estimated in a model that adjusts for selection into application
and enrollment using the posterior mean control function estimates from the estimated demand model.

based heterogeneity in treatment effects and results are essentially unchanged. Note that this
model still leverages the same identifying variation as results in Table 3, but assesses whether
distance-based treatment effect heterogeneity explains away the 6-based heterogeneity in causal
effects. This robustness check tests for direct effects of distance and finds them negligible, with
our core findings robust to a distance-based gradient. The relatively weak distance gradient also
suggests that the lottery-based distance heterogeneity reported in Figure 6 was indeed reflective
of unobservable preference-based heterogeneity.

Second, we conduct a more formal validation exercise for our outcome model. One assess-
ment of the model’s reliability is to implement a lottery-based “forecast” test following Angrist
et al. (2017). We do this by using randomized offer variation to check whether changes in
predicted student outcomes, denoted Y;, move one-for-one with lottery-induced changes in ob-
served outcomes Yj. Concretely, we construct a model-based prediction Y; for each student’s
achievement using our model from Section 6.3 and the school that each student attends. Be-
cause oversubscribed lotteries shift enrollment (thereby shifting Y;), we can use the randomized
offers Z; as an instrument for the model-based predicted outcomes. We can then estimate a
2SLS model where the second-stage focuses on the relationship between Y; and Y; after con-
ditioning on the appropriate lottery-strata fixed effects. As our test, we focus on whether the
2SLS estimate for the coefficient on Y; is equal one, since a value of one indicates the model’s

predictions are unbiased for the causal effects revealed by the lotteries. We also summarize
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this with a visual IV plot: for each lottery, we plot the first-stage offer effect on Y; against the
associated reduced form offer effect on Y;.

Appendix Figure A.8 reports the visual IV plot. The plot shows a tight, approximately linear
relationship between each lottery’s first stage and the reduced form impact. The estimated
forecast coefficient is 0.91, and we are unable to statistically reject it equals one. Notably,
the results also show relatively modest dispersion around the estimated slope. This evidence
suggests that our outcome model predicts treatment effects that are commensurate to observed
lottery-based treatment effects. Equipped with validated causal effects, we now turn to an

assessment of district-level policies and their impacts on aggregate student achievement.

8 Counterfactual Policy Analysis

Our findings to this point suggest that participation in LAUSD’s choice system—an opt-in
structure—remains limited and uneven, with substantial heterogeneity in both who applies and
how much schools contribute to student achievement. These patterns raise the possibility that
alternative policies and system design could reshape the distribution of achievement by altering
how families access and engage with choice programs. To explore these possibilities, we use the
estimated structural model to simulate policy counterfactuals by adjusting key parameters that
capture how different features of system design affect application behavior, enrollment behavior
and achievement outcomes.

Our counterfactual analysis evaluates participation-targeted policies and how application
and enrollment system design influences shape sorting and achievement outcomes. LAUSD’s
current opt-in structure serves as the baseline simulation, providing a benchmark for com-
parisons with scenarios that incorporate either targeted policy interventions or system-level
reforms. Our analysis begins by focusing on two participation-focused policies that can operate
within any public choice framework and address key barriers to entry: (i) information inter-
ventions that reduce search frictions and improve families’ understanding of available options,
modeled as increases in 6;, the parameter capturing access to information; and (ii) reductions
in travel costs—for example, through universal busing programs—implemented as downward
adjustments to the distance cost parameters. Next, we examine two system-level reforms: (iii)
mandatory participation as implemented in New York City and Boston, modeled by setting ap-
plication cost parameters to zero; and (iv) decentralized choice markets, in which families may
apply to multiple schools and, in the absence of a centralized clearinghouse, can receive multi-
ple offers. Collectively, our simulations capture the dominant system designs adopted by nearly
all large districts—roughly 99 percent, as shown in Figure 2—and incorporate participation-
enhancing policies, such as busing and information interventions, that many districts have

implemented.?°

20Given that our counterfactuals involve realigning students to schools, it is natural to wonder whether incorpo-
rating peer effects into the model could change key conclusions. To explore this possibility, we plot reduced form
school-specific achievement effects against their lottery induced impacts on peer quality (Appendix Figure A.9).
If peer quality is an important driver of student outcomes, we would expect a strong correlation between these
two variables. Instead, we find essentially no relationship between changes in peer quality and own-achievement
effects. This suggests that incorporating peer effects is unlikely to undermine the key conclusions of the counter-
factual analysis.
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On the supply side, we hold fixed the set of choice schools, their locations, and their school-
level utilities (6;) and achievement effects («;). We also fix each program’s race-specific seat
capacities and run admissions within program-year-grade-priority points-race strata, mirroring

21 Maintain-

LAUSD’s lottery practice and the district’s court-ordered desegregation regime.
ing these race-specific seat targets in all counterfactuals ensures that any changes we report
come from family decision-making (who applies and enrolls) rather than from relaxing bind-
ing integration mandates. Admissions continue to follow the same lottery rules and capacity
constraints as in the baseline LAUSD system, but each policy counterfactual induces changes
in demand that we must account for when students decide to apply to schools. For each rel-
evant policy counterfactual, we calculate equilibrium admission probabilities that schools set
under the demand structure implied by the policy change. Our assumptions ensure that the
counterfactuals isolate how changes in family decision-making—rather than school expansion
or reorganization—affect participation and achievement. As previewed, we compare simulated
outcomes under each policy to the baseline opt-in allocation to assess how alternative designs
would reshape access, participation, and aggregate achievement. Appendix Section E provides
further details on the counterfactual exercises.

Before discussing policies that substantially alter system design, we hold constant the status-
quo opt-in design and focus on policies that explicitly target access with informational inter-
ventions. These exercises examine how improving families’ access to information affects school
choice decisions and, in turn, achievement outcomes. The findings outlined in Table 3 suggest
that inducing students with lower 6; to apply will lead to increases in system-wide learning.
Specifically, we simulate two experiments in our model designed to approximate the types of
information provision strategies commonly studied in the literature (Agte et al. 2024; Ainsworth
et al. 2023; Andrabi et al. 2017; Hastings and Weinstein 2008). Both simulations use an adjusted
preference parameter 6, = 6; + Ay in the application and enrollment decisions of the model,
while preserving the original 6; when calculating student achievement.

In the initial general information experiment, we set Ay to a type-specific one standard de-
viation (reported in Column 2 of Table 2) for a randomly selected subset of students, capturing
imperfect compliance and heterogeneity in take-up. In the next, school-targeted experiment, we
focus only on students enrolled in low-achieving schools, defined as those with average achieve-
ment below the district average, and apply the same Ay increase to 6, for a random subset
within this group to mimic targeted outreach. Together, these scenarios illustrate how infor-
mation provision could shift participation and sorting in LAUSD’s choice system by narrowing
informational gaps across families.

Figure 13 summarizes the gains from the information interventions relative to LAUSD’s
existing opt-in policy, showing two bars for Math and ELA outcomes, respectively. The first
two sets of bars on the left show that both information interventions produce extremely modest
achievement gains, not exceeding half of a percent of a standard deviation in district-level
achievement. Table 4 provides additional insights, demonstrating application rates increase

from 16 percent to roughly 20 percent, and the number of occupied seats increases by 11-

21 As noted in Section 3, choice programs have used racial enrollment quotas that have historically reserved a
large share of seats for students from PHBAO (Predominantly Hispanic, Black, Asian, and Other non-Anglo)
neighborhoods; these requirements persisted after court supervision ended and were upheld as lawful given their
pre-1996 remedial origin.
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12 percentage points from a base of 55.3 percent. By demographic group, Asian and White
students have the largest enrollment responses in percentage-point terms to both information
campaigns, as has been shown in prior reduced form work (Corcoran et al. 2018). These
skewed take-up rates produce minimal impacts on district-level achievement, given that the
affected students induced to participate (particularly Asian) have relatively weaker achievement
gains (see Table 3 and Appendix Figure A.10). Overall, information campaigns have scope to
produce reallocations of students between schools as has been shown in prior work (Agte et al.
2024; Campos 2024; Hastings and Weinstein 2008), but are not enough to overcome substantial

barriers to participation that are present in opt-in systems.

Figure 13: Estimated Effects of Counterfactual Policies on District-Level Achievement
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Notes: This figure reports mean changes in district-level standardized achievement for Math (grey) and ELA
(maroon) relative to a baseline simulation of LAUSD’s current opt-in system. We consider participation-targeted
policies: General Information, which raises the information parameter 6; for a randomly selected 50% of students;
Targeted Information, which raises 6; for a randomly selected 50% of students enrolled in schools whose average
achievement is below median; and Busing, which sets distance costs to zero. We also consider two system-level
designs: Decentralized choice, which allows families to submit multiple applications and hold simultaneous offers
while schools run independent lotteries, and Mandatory application, which sets application costs to zero, requires
a rank-ordered list (which may include the neighborhood school), and assigns seats via deferred acceptance. We
also report combinations of these components (Mandatory 4+ Busing; Mandatory + Information; Mandatory +
Information + Busing) and an Achievement-Optimal benchmark that assigns students in order of modeled match
quality. Each scenario is simulated 100 times and we report average effects; for cases with school-run lotteries,
we recompute equilibrium best-response admission probabilities under policy-induced demand (see Appendix
Section E).

Next, we evaluate the impact of creating expanded busing policies as a means of addressing

travel barriers limiting participation. Busing policies have a long history of broadening access
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to schools, particularly in connection with court-ordered desegregation efforts.?> While exist-
ing evidence on busing is mixed—Angrist et al. (2022) find minimal achievement impacts from
traveling longer distances to schools with higher achieving peers, Setren (2024) reports sub-
stantially improved long-run outcomes in the Boston’s METCO program, and Bergman (2018)
detect gains (and some negative externalities) in a busing program for the Bay Area—we bring
these ideas into our structural framework. Because we estimate sizable travel costs in the con-
text of our model of LAUSD’s opt-in system, a policy that would improve busing availability
or its salience may induce more participation from disadvantaged groups that are least likely to
participate.

The results presented third from the left in Figure 13 show that implementing a busing
program that removed travel costs would raise district-level achievement by roughly one percent
of a standard deviation, with more pronounced effects for white students. ?* Under this regime,
Table 4 shows that 33 percent of families participate and 86 percent of seats are occupied, a
substantial improvement from the baseline opt-in system. Consistent with reductions in travel
costs drawing in relatively disadvantaged students, the effects on the set of enrolled students
(i.e., the treatment on the treated) increase by 4 percent of a standard deviation for both Math
and ELA. Although these estimates provide an encouraging benchmark for the achievement
gains, a key caveat for policy is that our simulation is silent about the costs imposed by a
regime that would reduce travel costs by such a substantial margin.

Because access-targeting in the opt-in context still leaves substantial non-participation, we
now assess two system-level alternatives. We begin by considering a decentralized system
that lets families submit multiple applications and allows schools to run independent lotter-
ies, yielding multiple simultaneous offers. To implement this policy, we introduce a marginal
per-application cost to discipline portfolio size in the model. The ability to submit multiple
applications has the potential to thicken the market and reduce slack, but portfolio expan-
sion creates congestion that can discourage marginal entrants. Next, we consider a mandatory
system that requires every student to submit a rank-ordered list and coordinates offers via a
deferred acceptance clearinghouse with uncapped list lengths. In this counterfactual, we set
application costs to zero, while families still weigh preferences and travel costs when ranking.
By removing application frictions and eliminating multi-offer congestion, the system increases
participation, fills capacity, and reallocates students toward higher-gain seats. Prior work finds
that transitions to centralized assignment can improve welfare (Abdulkadiroglu et al. 2017).
Together, these counterfactuals highlight the core trade-off: decentralization buys thickness
at the cost of congestion and selective participation, whereas mandatory centralization trades

administrative reach for broad access and coordinated assignment.

22In Los Angeles, busing was once part of court-ordered integration efforts, and today the district operates a
voluntary busing program that facilitates access to magnet programs (Blume 2019).
238ee Appendix Figure A.10 for race-specific results for each counterfacutal considered in this section.
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Table 4: Analysis of Participation Reforms and and Alternative Choice Systems

Panel (a): Baseline Simulation

All Student Choice Enrollee
Participation (%) Achievement (o) TOT (o) Demographic Group Choice Enrollment (%)
Choice
Apply Seats Filled Math ELA Math ELA Asian  Black Hispanic =~ White Low SES
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Opt-in (Voluntary) 15.72 55.33 . . 0.111 0.078 17.47 7.68 5.01 14.36 5.78

Panel (b): Alternative Policies/System Impacts (Relative to Baseline)

All Student Choice Enrollee
Participation Gains (%) Achievement Gains (o) TOT Gains (o) Demographic Group Choice Enrollment Gains (%)
Choice
Apply Seats Filled Math ELA Math ELA Asian  Black Hispanic =~ White Low SES
) (2) 3) 4) () (6) (7) (8) (9) (10) (11)

Broad Information +3.84 + 11.43 + 0.003 + 0.002 +0.015 + 0.014 +221 +219 +115 +2.05 +1.27
Targeted Information + 3.90 + 11.85 + 0.003 + 0.002 +0.012 +0.012 +154 4231 +129 +1.67 + 1.40
Busing Program + 17.45 + 30.33 + 0.009 + 0.007 +0.042 + 0.040 +156 +335 +326 +9.35 +3.83
Decentralized -5.28 + 18.53 + 0.003 + 0.002 -+ 0.001  -0.001 +709 4401 +145 4472 + 1.87
Mandatory App. + 69.12 + 42.49 + 0.018 + 0.016 +0.105 + 0.103 -14.53 +3.06 +4.94 +15.74 +5.33
Mandatory App. + Busing + 83.07 + 44.39 + 0.021 +0.019 +0.123 +0.121 -15.00 +229 +5.21 + 1841 + 5.61
Mandatory App. + Broad Info + 70.00 + 42.76 + 0.018 + 0.016 +0.106 + 0.104 -14.55 +2.99 +4.97 + 16.05 +5.35
Mandatory App. + Broad Info + Busing + 83.17 + 44.41 + 0.021 +0.019 +0.124 4 0.121 -15.01  +2.27  +5.22 + 1843 + 5.61
Maximized Achievement - + 44.67 + 0.038 + 0.034 +0.258 4 0.245 -16.67 + 299 +5.88 + 18.83 + 541

Notes: This table reports simulated results from our model of application, enrollment, and achievement.

Panel (a) reports results for the baseline opt-in system. Panel

(b) reports counterfactual impacts, expressed as the difference relative to the baseline scenario. We report the percent of students that apply to choice schools as their
most-preferred option (Column 1), and the percent of choice school seats that are filled (Column 2). For achievement, we report district-wide achievement (Columns 3 and 4)
and treatment on the treated estimates (Columns 5 and 6). Demographic outcomes include the percent of students within each racial or income-group enrolling in a choice
school (Columns 7-11). The General Information scenario increases the 6; of a randomly selected 50% of students in the district, while the Targeted Information scenario
increases the 0; of a randomly selected 50% of students who are enrolled in schools whose average achievement is below median. The No Travel Costs scenario mirrors a
generous busing policy that sets travel costs to zero. The Decentralized scenario allows families to submit multiple independent applications to schools, which then run their
own lotteries, potentially generating multiple simultaneous offers. The Mandatory scenario eliminates application costs, allowing families to rank their neighborhood school
as their most-preferred option and assignments are done via a deferred acceptance mechanism. For each counterfactual, we simulate the economy 100 times. For scenarios
that retain school-run lotteries (information, busing, and decentralized choice), we calculate equilibrium best response admissions probabilities that schools would set under

the changed demand implied by the policy (see Appendix Section E for details).



The results in Figure 13 and Table 4 show that the decentralized system yields only modest
gains in district achievement—comparable in size to information interventions—despite having
larger impacts on choice school seat utilization. The mechanism is straightforward: as fami-
lies expand their application portfolios, equilibrium admission probabilities fall, which induces
some marginal families to stop applying and overall participation drops by about 5 percentage
points. Among those who remain, most still secure at least one offer, so capacity is used more
fully relative to the opt-in baseline. The composition of applicants shifts toward families with
lower application costs, producing a more advantaged pool and smaller treatment-on-the-treated
(TOT) effects for ELA scores, even as district averages tick up slightly. In short, decentraliza-
tion discourages entry overall and re-sorts seats toward cost-insensitive families, yielding small
district gains.

Our next set of system-level results shows that a transition to a mandatory system with
a deferred acceptance mechanism for assignment raises achievement levels by roughly 0.020 in
both Math and ELA. The TOT effects for choice school enrollees also increase substantially
by about 0.10c. These impacts are driven by a 69.1 percentage point increase in the share of
all families applying to a non-neighborhood school as their most-preferred option (recall that
“apply” is defined as ranking a non-neighborhood school first; families who comply with the
mandate by listing only their neighborhood school are counted as non-applicants). This evidence
suggests that application costs are the empirically dominant barrier to participation under opt-
in systems. As a result of its impacts on participation, the mandatory deferred acceptance
system eliminates essentially all of the excess capacity among choice schools in the district,
with 98 percent occupied seats compared to only 55 percent at baseline. Taken at face value,
the transition to mandatory participation reallocates students across schools, reaches students
who stand to gain more in terms of causal effects, and thereby raises district-level achievement.

Having demonstrated that a mandatory system with deferred acceptance produces the
largest system-level gains, our next set of simulations examines whether combinations of poli-
cies can further expand these gains. To explore this possibility, we augment the mandatory
participation regime with the generous busing policy that eliminates travel costs. In this en-
vironment, 99 percent of families apply to a choice school, an important increase from the
mandatory participation regime without the stronger busing regime. Although the bump in
demand is sizable, this translates into only a modest change in the number of seats filled,
given that capacity constraints are essentially binding in the case of mandatory participation.
Consequently, district-wide and TOT achievement gains are marginally changed relative to the
mandatory-only case. Simulations that pair the information campaign with mandatory partic-
ipation (with or without busing) deliver similarly small incremental gains, reflecting the same
capacity constraint.

Finally, the simulations above show that several implementable interventions raise achieve-
ment, which naturally prompts the question: can a district do even better? Put differently,
what is the maximum achievement attainable if a planner had full information and the au-
thority to match students to schools? To benchmark our results against this best case, we
compute an “achievement-optimal” allocation that assigns students solely to maximize district-
wide achievement. The procedure we follow has been coined the treatment effect maximizing
allocation (TEMA) by Abdulkadiroglu et al. (2025). As first proposed by Shapley and Shubik

45



(1971), this is the solution of a linear program that maximizes achievement subject to district
imposed capacity constraints. This “achievement-optimal” allocation delivers average gains of
0.038¢ in Math and 0.034¢ in ELA at the district level, fills all remaining choice capacity
(moving from 55% filled at baseline to nearly 100%), and raises treatment-on-the-treated ef-
fects to 0.37¢ (Math) and 0.320 (ELA). Therefore, the transition to mandatory participation
generates about half of the gains of the infeasible achievement optimal policy. As has been doc-
umented in a host of settings, demand for school effectiveness will always be a limiting factor
(Abdulkadiroglu et al. 2020; Ainsworth et al. 2023; Beuermann et al. 2023; Rothstein 2006).
Why does mandatory participation produce the largest benefits relative to opt-in or other
policies? Viewed from the perspective of questions on the “Who, What and How” of markets,
our education setting with a baseline opt-in system is subject to several allocative inefficiencies
in terms of achievement maximization. To begin, the evidence suggests that the “what” is a
vertically differentiated option, so there are potential achievement gains to be distributed to
students. The key question, then, is “who” accesses those gains. In Los Angeles and nation-
ally, opt-in systems disproportionately attract academically and socioeconomically advantaged
families, students who potentially stand to gain the least from access to more effective schools.
Turning to the “how,” our analysis of application and enrollment patterns linked to causal effects
confirms this: the families in the LAUSD who do opt in tend to experience smaller achievement
gains than the students who do not. Once we layer on additional details of the “how”—high
application costs, weak information environments, and barriers to participation—the result is a
system where advantaged students secure the bulk of available seats. A second inefficiency fol-
lows from the same barriers: many high-quality schools are left with unfilled seats. Thus, opt-in
systems simultaneously allow advantaged students to hoard scarce opportunities while leaving
capacity at effective schools unused, both outcomes that mandatory participation corrects. The
elimination of application barriers by de-facto mandatory participation broadens access and
reaches a more representative set of students, all the while ensuring all seats in higher quality

programs are filled.

9 Conclusion

Our analysis of LAUSD’s opt-in system demonstrates both the promise and the limits of expand-
ing school choice in public school districts. We provide evidence that public choice schools are
vertically differentiated and, on average, deliver meaningful achievement impacts. Yet, market
design details—optional participation in particular—ultimately blunts the potential benefits.
Because application costs deter many students, especially those who would gain the most from
attendance, effective schools often operate below capacity. At the same time, the students
who do navigate the application process are disproportionately advantaged. These twin fea-
tures of the opt-in system contribute to both inequality in educational outcomes and allocative
inefficiencies.

The central finding from our counterfactual analysis is that centralized, mandatory assign-
ment can deliver substantial gains. Such reforms reallocate students to more effective schools,
fill unused seats, and erode negative selection on gains. Centralization generates achievement

improvements roughly half as large as an achievement-maximizing allocation, underscoring the
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limiting influence of misaligned demand for school effectiveness. However, unlike lighter-touch
interventions that provide information or reduce travel costs via generous busing schemes, cen-
tralization directly addresses the dominant frictions of opt-in systems.

Taken together, our results demonstrate that centralization is not merely a matter of ad-
ministrative convenience, but a core design feature that strongly mediates school choice effec-
tiveness. More broadly, our findings highlight how institutional details shape the distribution of
educational opportunity: expanding families’ options marks progress, but whether these options
reach the students who stand to gain the most depends on how assignment mechanisms struc-
ture participation. Our findings also speak to the potential implications of recent state-level
voucher programs, which have expanded opt-in models and may produce the same inequities
and inefficiencies we document, with an unclear picture of their vertical quality. Overall, our
findings demonstrate the scope of policies that keep supply of effective schools fixed, but can
improve outcomes by system design that can lead to more effective allocations.

One question that we cannot answer is why opt-in systems remain so common in large U.S.
school districts. A political economy view is that reforms to assignment rules face organized
resistance from powerful incumbents and mobilized parent groups, making overhauls costly to
attempt and easy to derail—a point developed in the literature on political constraints in K-12
governance (e.g., Chubb and Moe 1988).24 A second, more market-based explanation is that
opt-in designs help districts retain families most likely to exit to charters or private schools—
typically higher-achieving students seeking high-achieving peers—by letting them self-select into
choice without mandating system-wide participation. This incentive is consistent with ongoing
debates about cream-skimming and the distributional consequences of decentralized or unified
enrollment systems (Kho et al. 2022). These are, of course, hypotheses. Future work could aim
to better understand the relative importance of political versus economic constraints. If opt-in
is the binding political equilibrium, the central task becomes identifying choice designs that

deliver system-wide gains despite that limitation.

21 Recent episodes illustrate how assignment-rule changes can trigger backlash: Wake County’s diversity-driven
reassignment provoked voter mobilization and a board takeover in 2009 (WRAL News 2009), and San Francisco’s
shift away from merit-based admissions at a flagship school prompted sustained controversy (The San Francisco
Standard 2022).
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A Appendix Figures and Tables

Figure A.1: District Choice and Charter School Enrollment Trends (National Data)
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Notes: This figure reports enrollment shares for charter schools and district-operated choice
schools (“District Option”) at the national level. Data are from the Common Core of Data
(U.S. Department of Education, National Center for Education Statistics 2024). For a given
district, a local Charter includes all Charter schools that have the district’s Local Education
Agency ID or operated in a zip-code served by a traditional public school with that district’s
LEAID. To identify district operated choice schools, we use the Common Core’s magnet flag,
since other forms of choice are not reliably recorded. In a few states (e.g., Ohio), magnet status
is not reported. For that reason, we also count a school as a within district choice option if
the word “magnet” appears in its name. The district operated choice numbers in this figure
are potentially conservative, since many districts have choice options (e.g., gifted and talented
schools) which are not officially named as a magnet and otherwise not easily identified.



Figure A.2: Expansions in Access to LAUSD Choice Schools
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(a) 2004: Distance to Nearest Choice School (b) 2023: Distance to Nearest Choice School (c) 2004-2023: Change in Relative Distance

Notes: This figure reports three maps covering the region of Los Angeles County that is served by the Los Angeles Unified School District (LAUSD). In each map, we plot
census blocks with their shading determined by different measures of proximity or changes in proximity, whose legend is reported in each panel. White-bordered polygons
overlaid on top of each map are middle school attendance zone boundaries for LAUSD schools. Panel (a) and Panel (b) display block-level distances to nearest choice schools
in 2004 and 2023, respectively. Panel (c) reports Census block level changes in relative distance to choice schools between 2004 and 2023, where relative distance is defined
as the difference between a block’s distance to the nearest choice program and the nearest non-choice neighborhood school.



Figure A.3: Lottery Effects by Similarity Index
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Notes: This figure reports reduced form effects of receiving an offer on Math and ELA achievement in Panel (a)
and Panel (b), respectively. We report estimates for different quintiles of a similarity index constructed using the
observable characteristics in Figure 7. Specifically, we standardize each covariate to have a mean of zero and a
unit variance, and then calculate the Euclidean distance of each student to the average applicant to that choice
program in that same year. The estimates come from a regression of achievement—Math or ELA—on lottery
strata fixed effects, main effects for preference index quintiles, and interactions of offers and preference quintiles.
We report estimates of the interactions in each sub-figure. We report 95-percent confidence intervals that use
robust standard errors clustered at the lottery strata level. We also report p-values from hypothesis tests that
test the null hypothesis that the preference-index effects are equal and another test that tests the null hypothesis
that the preference-index effects are jointly equal to zero.



Figure A.4: Subgroup Heterogeneity in Application Rates and Lottery Effects
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Notes: This figure reports subgroup heterogeneity in lottery-based treatment effects and application rates. As
indicated in the legend, each marker type represents results for a given student subgroup and its complement
(e.g., English versus Non-English Learner students). With the exception of baseline achievement, all subgroups
are based on binary pre-determined characteristics. In the case of achievement, we define high and low-ability
sub-groups as those above and below the median of baseline achievement. We omit creating a subgroup based
on suspensions, as it is a relatively rare outcome. The y-axis reports the given subgroups treatment effect (e.g.,
the effect of receiving an offer to attend a choice school for English Learners). All estimates are from separate
subgroup specific models where we regress an achievement outcome on the lottery offer Z; and lottery fixed effect.
The z-axis reports the corresponding choice-school application rate for a given subgroup, which we measure as
the share of all 5th graders who submitted at least one choice school application over our sample period. Panels
(a) and (b) report results for Math and ELA, respectively. Detailed estimates are included in Appendix Table
A4
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Figure A.5: Application Cost Identification Exercise
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Notes: This figure reports results from an identification exercise for the application costs in the model specified
in Section 6.2. The vertical axis corresponds to application rates in the simulated data while the horizontal axis
varies estimated application costs (c(a, X;, 7)), where we scale costs by corresponding number on the horizontal
axis. The black line reports the corresponding application rate as we scale costs while holding other parameters
of the model constant. For example, at scale factor equal to one, the value of the black line corresponds to
the simulated application rate when cost parameters are evaluated at the values that maximize the likelihood.
Similarly, at scale factor equal to 0.5, we scale costs by 0.5 and hold other parameters of the model constant at the
values that maximize the likelihood. The dashed black line corresponds to application rates observed in the data.
The intuition is that a moment is important for a parameter’s identification if, as we move across the scaling
factor axis, the values of simulated application rates change and cross the horizontal dashed line (i.e., the value
of that moment in the real-world data). Overall, this exercise provides graphical evidence of how application
costs are identified.



Figure A.6: Model Fit: Application and Enrollment
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Notes: This figure reports an assessment of the overall fit of the model based on out-of-sample validation. We
estimate our preferred model on a 25% random training sample and assess its fit on the remaining 75%. We run
200 simulations in which we use parameter estimates from the training sample to simulate applications, offers,
and enrollment in the hold-out sample. The figure plots school-level aggregates based on simulated averages and
the actual data. Panel (a) reports school-level observed number of applications in the holdout sample (y-axis)
against the model-predicted applications in the holdout sample (z-axis). Maroon markers correspond to schools,
or in other words, assess the fit at of school-level statistics, while the grey markers further interact school with
student observable attributes. Panel (b) reports similar statistics for enrollment.



Figure A.7: Distribution of Lottery Applicant Choice School Preferences
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Notes: This figure focuses on the sample of students who are in the lottery estimation sample (i.e., students who
applied to oversubscribed choice schools) and reports the distribution of their estimated posterior means of 6; and
a preference index measure in Panels (a) and (b), respectively. The preference index is defined as Z; = 3.X; + 6,
which can be interpreted as student ¢’s utility from enrolling in a choice school as a function of both observables
and unobservables. Both figures demonstrate that students that are actively engaging in the choice process are
drawn from regions of the distribution that are associated with the smallest learning gains.



Figure A.8: Model Validation: Visual Instrumental Variables Plot
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Notes: This figure reports results from a validation of our student achievement outcome model following Angrist
et al. (2013). Each dot in the figure represents results from an oversubscribed choice school lottery (specifically,
the N = 420 lotteries that overlap with the 2004-2013 time window used to estimate the structural model). The
“first-stage” (z-axis) is the estimated effect of a randomized offer Z; in the given lottery on the model-based
prediction of student achievement based on the model from Section 6.3. The “reduced form” (y-axis) is the
estimated effect of the same randomized offer Z; in the given lottery on observed achievement. Panels (a) and
(b) report results for the model that models selection according to Equations M1 and M2. The slope (i.e., the
IV “forecast coefficient”) equals 0.91 (0.06), so we cannot reject 1, indicating the outcome model predicts causal
impacts up to sampling error. All specifications include lottery-by-grade strata fixed effects.



Figure A.9: Choice School Peer Effect Analysis
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Notes: This figure reports lottery-based reduced form effects on own student achievement and school peer quality
for Math and ELA in Panel (a) and Panel (b), respectively. Each marker in a given plot corresponds to a choice
school, where the vertical axis reports the effect of winning an offer from the school on own achievement, and
the horizontal axis reports the effect of winning an offer from the school on enrolled school peer quality. All
estimated effects are conditional on lottery strata.



Figure A.10: Estimated Effects of Counterfactual Results on District-Level Achievement by
Race

=) _
~ .08
=
£
o .06
>
Q
S
< .04
€
3
E .02
w
£ 0 I I I R e = M
3 i
g
< -02
© O
& & é&% o \06 (O\QQ &L & R &
& 2 A N P
& 2 @ S &
& ,\'59 & {5@"\\ Qb'b\ &® Q]@?’
x
&Qb ¥ ey @
& ¥
sz?
[0 Black [ White [ Hispanic [ Asian
(a) Change in Group-Specific Achievement (Math)
@ o8 _
=
£
£ 06
>
Q
=
S
< .04
=
[}
°
=]
& 02
£
o [| E
© il Mo M= nn
s U
© >
«©° «© N & S ) © O &
@\Q 06\0 o \\Q}@ obq}o ‘27\)%\ & ) 3 OQ\\@
&° @?'\ & ® N ° © &
@ <2 ° 30 RS N &
&P @ x ©
3 A ©
W O &
<4 \a
&

[ Black [C—J White [ Hispanic [ Asian

(b) Change in Group-Specific Achievement (ELA)

Notes: This figure reports counterfactual achievement results from several scenarios for Black, White, Hispanic,
and Asian students. Panel (a) and Panel (b) provide results for Math and ELA achievement, respectively. We
consider participation-targeted policies: General Information, which raises the information parameter 6, for a
randomly selected 50% of students; Targeted Information, which raises 6; for a randomly selected 50% of students
who are enrolled in schools whose average achievement is below median; and Busing, which sets distance costs to
zero. We also consider two system-level designs: Decentralized choice, which allows families to submit multiple
applications and hold simultaneous offers while schools run independent lotteries, and Mandatory application,
which sets application costs to zero, requires a rank-ordered list (which may include the neighborhood school), and
assigns seats via deferred acceptance. We also report combinations of these components (Mandatory + Busing;
Mandatory + Information; Mandatory + Information + Busing) and an Achievement-Optimal benchmark that
assigns students in order of modeled match quality. Each scenario is simulated 100 times, and we report average
effects; for cases with school-run lotteries, we recompute equilibrium best-response admission probabilities under
policy-induced demand (see Appendix Section E).
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Table A.1: Summary Statistics for Main Analysis Samples

Sample

All
Grade 5 Lottery Structural

(1) (2) (3)

Student Demographics

Hispanic 0.74 0.57 0.76
Black 0.10 0.14 0.09
White 0.09 0.13 0.08
Asian 0.04 0.12 0.04
Female 0.49 0.51 0.50
Poverty 0.72 0.63 0.70
English Learner 0.27 0.08 0.32

Standardized Test Scores
Baseline ELA -0.01 0.67 -0.05
Baseline Math -0.01 0.65 -0.04

Distance to District Schools

Nearest 0.75 0.78 0.76
Nearest Choice (Rel. Dist.) 0.57 0.55 0.59
Students 593,550 27,203 337,661

Notes: This table reports summary statistics for the various analysis samples
we use throughout the paper. Column 1 reports statistics for the baseline
sample consisting of all fifth-grade students in LAUSD during our sample pe-
riod. Column 2 restricts the baseline sample to students who show up in our
lottery sample, indicating they applied to a choice program and the choice
program was oversubscribed. Column 3 restricts the baseline sample to stu-
dents who meet the restrictions defined in Section 3.3.
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Table A.2: Oversubscribed Choice Program Lottery Balance Analysis

Distance Quintile Q1 Q2 Q3 Q4 Q5

Variable Effect Control Mean Effect Control Mean Effect Control Mean Effect Control Mean Effect Control Mean

Female -0.005 0.507 0.021 0.511 0.004 0.506 0.004 0.497 -0.006 0.512
(0.014) (0.015) (0.015) (0.015) (0.013)

Black 0.005 0.057 0.002 0.065 -0.010 0.108 -0.010 0.168 0.010 0.277
(0.004) (0.006) (0.008) (0.009) (0.010)

Hispanic -0.006 0.765 -0.001 0.648 0.009 0.545 0.011 0.475 0.000 0.501
(0.008) (0.009) (0.010) (0.010) (0.012)

English Learner 0.005 0.074 -0.001 0.071 0.011* 0.054 -0.003 0.054 -0.004 0.061
(0.007) (0.007) (0.006) (0.007) (0.006)

Special Education 0.000 0.027 -0.003 0.021 -0.001 0.020 -0.002 0.018 0.000 0.016
(0.005) (0.004) (0.004) (0.003) (0.003)

Poverty 0.018* 0.758 -0.019* 0.686 0.009 0.614 -0.018 0.573 -0.003 0.631
(0.010) (0.011) (0.012) (0.012) (0.013)

Parent reports going to college -0.001 0.238 -0.010 0.254 -0.004 0.269 0.002 0.274 -0.006 0.262
(0.012) (0.012) (0.013) (0.013) (0.012)

Speaks english at home 0.016 0.322 -0.001 0.356 -0.007 0.435 -0.001 0.508 0.017 0.519
(0.012) (0.012) (0.012) (0.013) (0.012)

Speaks Spanish at home -0.021* 0.609 0.010 0.524 0.009 0.415 -0.001 0.353 -0.011 0.377
(0.012) (0.011) (0.010) (0.011) (0.011)

Baseline Suspensions -0.002 0.007 0.004 0.007 0.001 0.011 0.003 0.015 -0.001 0.024
(0.003) (0.002) (0.004) (0.004) (0.005)

Baseline Math Score -0.013 0.365 -0.033 0.480 -0.008 0.606 -0.019 0.569 -0.061*** 0.414
(0.021) (0.022) (0.022) (0.025) (0.022)

Baseline ELA Score -0.031 0.353 -0.015 0.482 -0.001 0.619 -0.007 0.605 -0.030 0.470
(0.021) (0.022) (0.023) (0.023) (0.020)

Missing Baseline Score -0.003 0.089 -0.005 0.099 -0.002 0.083 -0.010* 0.094 0.000 0.088
(0.007) (0.006) (0.005) (0.005) (0.005)

Joint test 0.582 0.275 0.850 0.390 0.520

Observations 7,794 8,255 8,701 9,121 9,729

Notes: This table tests for lottery balance across baseline and other exogenous covariates. Columns in this table are grouped according to samples defined
by quintiles of distance to choice school at baseline (Q1-Q5). Each row in this table denotes a predetermined covariate. Each cell under the columns labeled
"Effect" gives the results of a separate regression of the relevant sub-sample. Standard errors, clustered at the level of the lottery, are included in
parentheses. Columns labeled “Control Mean” give the mean of the variable in that row for that specific sample. The second to last row of this table gives
p-values from a joint test that all of the coefficients in that column are identically zero. The final row gives the number of observations.



Table A.3: Oversubscribed School Lottery First Stage Esti-
mates by Quintile

Quintile of Distance to Choice School

Q1 Q2 Q3 Q4 Q5

0.381 0409 0459 0.434  0.455
Lottery Offer  (0.022) (0.018) (0.015) (0.018) (0.019)

Notes: This table reports the first stage effects of receiving an offer. We
report estimates for different quintiles of distance to choice school at
baseline. The estimates come from a regression of enrolling in a choice
school on lottery strata fixed effects, main effects for distance quintiles,
and interactions of offers and distance quintiles. We report estimates of
the interactions. Standard errors are clustered at the lottery level.
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Table A.4: Lottery Estimates by Subgroup

Math ELA
Focal Complement Focal Complement
Group Group Group Group
Covariate Covariate = 1 Covariate = 0 Covariate = 1 Covariate = 0
High Achiever -0.041%** 0.025%* -0.049%** 0.016
(0.013) (0.014) (0.013) (0.016)
Female -0.014 -0.038%** -0.031** -0.039%**
(0.015) (0.015) (0.015) (0.015)
Poverty -0.016 -0.064%** -0.030** -0.059%**
(0.013) (0.019) (0.013) (0.019)
Special Education 0.091 -0.030%** 0.093 -0.039%**
(0.079) (0.011) (0.074) (0.011)
Gifted -0.026 -0.030%* -0.033 -0.038%**
(0.025) (0.012) (0.027) (0.012)
English Learner 0.085%** -0.033*** 0.035 -0.040***
(0.031) (0.011) (0.032) (0.011)
English at home -0.065%** -0.000 -0.074%** -0.009
(0.017) (0.014) (0.018) (0.013)
Spanish at home 0.013 -0.061*** 0.005 -0.070%**
(0.014) (0.015) (0.014) (0.016)
Born in USA -0.027%* -0.040 -0.038%** -0.028
(0.011) (0.040) (0.011) (0.038)

Notes: This table presents heterogeneous effects by student subgroups. Each row in this table denotes
one of the pre-determined characteristics on display in Figure 7. With the exception of baseline achieve-
ment, all subgroups are based on binary pre-determined characteristics. In the case of achievement, we
define high and low-ability sub-groups as those above and below the median of baseline achievement.
We omit creating a subgroup based on suspensions, as it is a relatively rare outcome. All estimates
are from separate subgroup specific models where we regress an achievement outcome on the lottery
offer Z; and lottery fixed effect. The first two columns correspond to treatment effects on Math; the
second two columns correspond to treatment effects on ELA. Columns labeled “Focal Group” denote
estimates from the sub-group of students where the covariate equals 1. “Complement Group” denotes
estimates from the sub-group of students where the covariate equals zero. Standard errors, clustered at
the level of the lottery, are included in parentheses. Stars denote conventional levels of significance. A
visualization of these estimates, and their relationship to application rates by sub-group, is displayed
in Appendix Figure A.4.
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Table A.5: Comparison of Alternative Models of Idiosyncratic Choice School Preferences

One Type (K =1) Two Types (K =2) Three Types (K = 3)

Number of parameters 94 97 100
Log likelihood -64,260.9 -62,872.4 -62,625.2
BIC 129,587.9 126,844.9 126,384.6

Likelihood ratio tests:

x? statistic (df) 2,777.1 (3) 494.3 (3)
p-value 0 0

Notes: This table reports estimation statistics for different models we estimate. For each, we report the number
of parameters associated with the model, the negative log-likelihood, a Bayesian Information Criterion (BIC)
measure, and the statistic and p-value of a likelihood ratio test comparing a given model against the previous.
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Table A.6: Demand Estimates: Mixture Model (K = 2)

Panel (a): Estimates for Observable Parameters

Utility Distance Cost  Log Cost
(1) (2) (3)
Main Effects -0.485 0.321 0.298
[1.132] (0.005) (0.013)
Female 0.020 0.001 0.003
(0.019) (0.003) (0.003)
Black -0.072 -0.021 -0.032
(0.047) (0.007) (0.008)
Hispanic 0.006 0.008 0.068
(0.032) (0.005) (0.006)
White -1.106 0.104 -0.080
(0.036) (0.007) (0.007)
Poverty 0.056 0.014 0.013
(0.022) (0.003) (0.003)
LEP -0.308 -0.023 0.006
(0.035) (0.005) (0.004)
Speaks English at Home -0.151 -0.022 -0.010
(0.025) (0.004) (0.004)
Baseline ELA 0.130 0.001 -0.033
(0.014) (0.002) (0.002)
Baseline Math 0.158 0.007 -0.019
(0.014) (0.002) (0.002)
Neighborhood Median Income  -0.050 0.001 0.006
(0.004) (0.001) (0.001)
Baseline Choice Enrollment 1.055 -0.082 -0.093
(0.031) (0.004) (0.006)
Baseline Peer Quality 0.125 -0.025 -0.023
(0.022) (0.004) (0.004)

Panel (b): Estimates for Unobservable Parameters

1 o Pr(K;=k)
(1) (2) (3)
Type 1 -0.220 0.059 0.906
(0.008) (0.025)
Type 2 2.120 0.546 0.094
(0.045) (0.033)
Cost Heterogeneity 0.400
(0.006)

Notes: This table reports estimates of an alternative two-type (K = 2) version of the demand model in Section 6.2,
estimated via simulated maximum likelihood with 300 draws for taste heterogeneity (0;) and cost heterogeneity
(n:). Panel (a) reports observable heterogeneity: the first row gives main effects for distance and log cost; school
mean utilities are shown as averages with noise-adjusted SDs in brackets; remaining rows are heterogeneity terms.
Panel (b) reports unobservables: a two-type mixture-of-normals for tastes (means in col. 1, SDs in col. 2, type
probabilities in col. 3) and mean-zero normal costs with the SD in col. 2. Standard errors are in parentheses.
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Table A.7: Outcome Model Estimates (K = 2)

Math ELA

Neighborhood School Choice School Neighborhood School Choice School

(1) 2 3) (4)
Main Effects 0.257 0.235
[0.164] [0.115]
Female -0.019 -0.014 0.117 -0.004
(0.002) (0.007) (0.002) (0.006)
Black -0.215 0.046 -0.182 0.043
(0.011) (0.022) (0.010) (0.021)
White -0.007 -0.031 -0.001 -0.031
(0.012) (0.022) (0.009) (0.022)
Hispanic -0.154 -0.003 -0.123 0.015
(0.010) (0.020) (0.008) (0.019)
Asian 0.212 -0.066 0.076 -0.050
(0.014) (0.026) (0.010) (0.023)
Poverty 0.008 -0.008 0.000 -0.002
(0.003) (0.010) (0.002) (0.007)
LEP -0.115 0.056 -0.207 0.030
(0.004) (0.013) (0.004) (0.014)
English Home -0.085 0.024 -0.076 0.061
(0.004) (0.012) (0.004) (0.011)
Baseline Math 0.524 -0.034 0.183 -0.023
(0.004) (0.009) (0.002) (0.006)
Baseline ELA 0.201 0.026 0.576 0.001
(0.003) (0.007) (0.003) (0.008)
Baseline Peer Quality -0.143 0.035 -0.091 0.024
(0.012) (0.019) (0.009) (0.014)
Choice School Preference 6; 0.046 -0.107 0.050 -0.098
(0.004) (0.011) (0.003) (0.008)
Neighborhood Effects v v
Year Effects v v
Sub-district Effects v v
Hy: No selection on unobservables (p-values) 0.000 0.000
Hy: No treatment effect heterogeneity (p-values) 0.000 0.000
Observations 334,166 334,166

Notes: This table reports estimates of the achievement model in Section 6.3 for Math and ELA assuming that
a two-type mixture distribution (K = 2). Cols. 1 and 2 correspond to Math estimates and Cols. 3 and 4
correspond to ELA estimates. The first row labeled main effects reports the enrollment-weighted-average of the
choice school effects with noise-adjusted standard deviation reported in brackets below. Cols. 1 and 3 report
main effects for corresponding covariates labeled in each row, while Cols. 2 and 4 report choice school treatment
effect heterogeneity with respect to the labeled row variable. Both models include neighborhood fixed effects—
defined as Census blocks—year fixed effects, and sub-district fixed effects. Bottom rows report p-values for (i) no
selection on unobservable tastes (the main effect of § and the effect heterogeneity are jointly zero) and (ii) no
treatment-effect heterogeneity (e.g., choice-enrollee interactions in Col. 2 are jointly zero in each model). Robust
standard errors clustered at the enrolled school level are reported in parentheses.
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Table A.8: Outcome Model Bootstrapped Estimates

Model 1: Type Probabilities Model 2: Linear Control Function (6;)
Math ELA Math ELA
Neighborhood = Choice  Neighborhood  Choice  Neighborhood  Choice Neighborhood  Choice
School School School School School School School School
(70) Diff (v) (70) Diff (1c) () Diff () (0) Diff (vc)
(1) (2) (3) (4) (5) (6) (7) (8)
Main Effects 0.252 0.212 0.223 0.198
(0.003) (0.001) (0.002) (0.001)
[0.173] [0.117] [0.171] [0.115]
Female -0.024 -0.012 0.109 0.001 -0.024 -0.012 0.109 0.001
(0.002) (0.007) (0.002) (0.006) (0.002) (0.007) (0.002) (0.006)
Black -0.276 0.080 -0.222 0.058 -0.276 0.080 -0.222 0.058
(0.016) (0.026) (0.013) (0.020) (0.016) (0.026) (0.013) (0.020)
White 0.092 -0.072 0.064 -0.052 0.092 -0.076 0.064 -0.054
(0.018) (0.027) (0.013) (0.022) (0.018) (0.027) (0.013) (0.022)
Hispanic -0.174 0.030 -0.142 0.033 -0.175 0.026 -0.142 0.031
(0.013) (0.022) (0.010) (0.016) (0.013) (0.022) (0.010) (0.016)
Asian 0.270 -0.065 0.107 -0.052 0.270 -0.063 0.106 -0.050
(0.017) (0.025) (0.011) (0.020) (0.017) (0.026) (0.011) (0.020)
Poverty -0.016 0.000 -0.021 0.001 -0.016 -0.001 -0.021 0.000
(0.004) (0.009) (0.003) (0.007) (0.004) (0.009) (0.003) (0.007)
LEP -0.084 0.033 -0.170 0.001 -0.083 0.037 -0.170 0.003
(0.004) (0.013) (0.004) (0.014) (0.004) (0.013) (0.004) (0.014)
Median Income 0.015 0.013 0.015 0.012
(0.002) (0.002) (0.002) (0.002)
English Home -0.037 -0.020 -0.028 0.020 -0.037 -0.020 -0.027 0.020
(0.005) (0.012) (0.005) (0.011) (0.005) (0.012) (0.005) (0.011)
Baseline Math 0.518 -0.032 0.173 -0.016 0.518 -0.031 0.173 -0.016
(0.004) (0.009) (0.003) (0.006) (0.004) (0.010) (0.003) (0.006)
Baseline ELA 0.227 0.004 0.607 -0.024 0.227 0.006 0.607 -0.024
(0.003) (0.006) (0.003) (0.008) (0.003) (0.006) (0.003) (0.008)
Baseline Peer Quality -0.063 -0.035 -0.029 -0.025 -0.062 -0.032 -0.028 -0.024
(0.013) (0.021) (0.010) (0.017) (0.013) (0.022) (0.010) (0.017)
Pr(Type 2) -0.026 -0.152 0.001 -0.108
(0.042) (0.055) (0.030) (0.042)
Pr(Type 3) 0.088 -0.341 0.105 -0.269
(0.022) (0.045) (0.015) (0.032)
Choice School Preference 6; 0.025 -0.068 0.029 -0.060
(0.005) (0.010) (0.004) (0.007)
Neighborhood Effects v v v v
Year Effects v v v v
Sub-district Effects v v v v
Bootstrap Iterations 100 100 v v

Notes: This table reports bootstrapped estimates of the achievement model in Section 6.3 for Model 1 (Cols.
1-4) and Model 2 (Cols. 5-8). This analysis addresses concern over estimation error in either type probability
estimates (in Model 1) or the posterior §; (in Model 2) estimates. We assume a three-type (K = 3) mixture
model for the distribution of 6;. For each bootstrap iteration, we draw from the asymptotic distribution of the
underlying demand estimates, recompute either the posterior type probabilities (Model 1) or posterior means
of 0; (Model 2), and then re-estimate the outcome model. The entries in the table are bootstrap averages of
the corresponding point estimates; bootstrapped standard errors clustered by enrolled school are reported in
parentheses. Cols. 1, 3, 5, and 7 report baseline coefficients (o) for the covariates listed in each row; Cols. 2, 4,
6, and 8 report the corresponding choice-enrollee interactions (). The “Main effects” row gives the enrollment-
weighted average effect of attending a choice school; noise-adjusted SDs across schools are shown in brackets. All
specifications include Census-block, year, and sub-district fixed effects.
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Table A.9: Outcome Model Estimates with Distance Heterogeneity

Model 1: Type Probabilities

Model 2: Linear Control Function (6;)

Math ELA Math ELA
Neighborhood = Choice  Neighborhood  Choice  Neighborhood  Choice  Neighborhood  Choice
School School School School School School School School
(0) Diff () (70) Diff (ve) (70) Diff () (70) Diff (ve)
1) 2) (3) (4) (5) (6) (7) (8)
Main Effects 0.288 0.243 0.251 0.227
[0.160] [0.113] [0.158] [0.111]
Female -0.022 -0.009 0.111 0.002 -0.022 -0.010 0.111 0.001
(0.002) (0.007) (0.002) (0.006) (0.002) (0.007) (0.002) (0.006)
Black -0.196 0.029 -0.161 0.027 -0.197 0.029 -0.161 0.027
(0.011) (0.022) (0.010) (0.020) (0.011) (0.022) (0.010) (0.020)
White -0.004 -0.027 0.001 -0.027 -0.004 -0.033 0.001 -0.030
(0.012) (0.021) (0.009) (0.021) (0.012) (0.021) (0.009) (0.021)
Hispanic -0.149 -0.003 -0.119 0.012 -0.150 -0.008 -0.119 0.010
(0.010) (0.020) (0.008) (0.019) (0.010) (0.020) (0.008) (0.019)
Asian 0.211 -0.062 0.075 -0.042 0.210 -0.059 0.075 -0.041
(0.014) (0.025) (0.010) (0.022) (0.014) (0.025) (0.009) (0.022)
Poverty 0.010 -0.011 0.003 -0.006 0.010 -0.012 0.003 -0.007
(0.003) (0.010) (0.002) (0.007) (0.003) (0.010) (0.002) (0.007)
LEP -0.087 0.037 -0.171 0.010 -0.087 0.042 -0.171 0.012
(0.004) (0.013) (0.003) (0.014) (0.004) (0.013) (0.003) (0.014)
Median Income -0.005 -0.006 -0.006 -0.006
(0.002) (0.002) (0.002) (0.002)
English Home -0.070 0.009 -0.059 0.044 -0.070 0.009 -0.059 0.044
(0.004) (0.012) (0.004) (0.010) (0.004) (0.012) (0.004) (0.010)
Baseline Math 0.526 -0.038 0.182 -0.023 0.526 -0.037 0.182 -0.023
(0.004) (0.009) (0.002) (0.006) (0.004) (0.009) (0.002) (0.006)
Baseline ELA 0.210 0.012 0.591 -0.016 0.210 0.014 0.591 -0.016
(0.003) (0.007) (0.003) (0.008) (0.003) (0.007) (0.003) (0.008)
Baseline Peer Quality -0.149 0.032 -0.095 0.024 -0.147 0.036 -0.094 0.025
(0.012) (0.018) (0.009) (0.014) (0.012) (0.019) (0.009) (0.014)
Relative Distance 0.004 -0.002 0.004 -0.002
(0.006) (0.005) (0.006) (0.005)
Pr(Type 2) -0.053 -0.168 -0.006 -0.118
(0.032) (0.047) (0.023) (0.040)
Pr(Type 3) 0.076 -0.387 0.101 -0.308
(0.015) (0.039) (0.012) (0.031)
Choice School Preference 6; 0.023 -.076 0.029 (-.070)
(0.003) (.009) (0.003) (.007)
Neighborhood Effects v v v v
Year Effects v v v v
Sub-district Effects v v v v

Notes: This table reports estimates of the achievement model in Section 6.3 for Math (Columns 1-4) and ELA
(Cols. 5-8), augmented to allow treatment-effect heterogeneity in relative distance to the nearest choice school.
Neighborhood fixed effects absorb all cross-sectional variation in relative distance, so identification comes from
within-block changes in distance. Cols. 1, 3, 5, and 7 report baseline coefficients (7o) for the covariates listed in
each row; Cols. 2, 4, 6, and 8 report the corresponding choice-enrollee interactions (v.). The “Main effects” row
gives the enrollment-weighted average effect of attending a choice school; noise-adjusted SDs are in brackets. All
specifications include Census-block, year, and sub-district fixed effects. Robust SEs clustered by enrolled school

are in parentheses.
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B Data Appendix

B.1 Details of the Original Data Collection

We collected data for the 150 highest enrollment school districts in the United States that
cover roughly 27% of public school enrollment nationwide. The data we collected was obtained
through both online research and calls to district administrators made by research assistants.
For each school district, we were interested in obtaining measures of the availability of intra-
district choice, the assignment process, the timing, participation details, the type of choice
offerings a district provided, and an assessment of the difficulty in obtaining this information
via the web and phone. A full list of the variables that we coded is provided in Appendix
Table B.1. The process began with a research assistant examining the district’s webpage and
collecting all relevant information that was online. Next, research assistants made calls to school
districts to obtain information via conversations with administrators. Most school districts were
researched by three research assistants. In the case of discrepancies, the principal investigators
verified the accuracy of the information.

B.2 List of Districts

Appendix Table B.2 reports the districts that are flagged as districts that use a centralized
algorithm for assignments and have de facto mandatory participation. Two popular districts in
this sample are New York City and Boston, both the subject of extensive literature (Abdulka-
diroglu et al. 2017). Appendix Table B.3 reports the districts that use a centralized algorithm
for participation but have an opt-in design. Last, Table B.4 reports the districts that do not
use a centralized algorithm for assignments and run independent lotteries for each one of their
choice schools. For each table, we report the state the district belongs to along with its enroll-
ment based on 2021-2022 Common Core data maintained by the NCES, and its rank in terms
of enrollment. These are the districts we use to define groups in Figure 2 in the main body of
the paper.
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Table B.1: 150 Largest School Districts, Choice Program Survey Variables

Variable Name Description Type

District District name (state) String

Zoned School Indicates if families are assigned a zoned school Boolean
School Choice Indicates if district has open or specialized program enrollment Boolean
Open Enrollment Indicates if the district has any open enrollment process Boolean
Open Offerings If the district has open enrollment, what schools can families apply  String

Timing If the district has open enrollment, how often families can apply Numeric
Mandatory Indicates if open enrollment is mandatory in the district Boolean
Mandatory Notes If the district has mandatory open enrollment, how is it mandatory  String

Mandatory Grades If mandatory, what grades are mandatory String

Centralized / Algorithm Are school choice offers determined via an algorithm Boolean
Max Apply If there is open enrollment, max number of programs you can apply Numeric
Ranked Choice If there is open enrollment, do you rank the programs you apply Boolean
Num Offers If there is open enrollment, how many offers can you receive Numeric
Timeline If there is open enrollment, what months are applications open String

Easy to Learn Indicates if info. is easy to gather from the district website or a call Boolean
Website Easy Indicates if it is easy to gather choice info. from the district website = Boolean
Call Easy Indicates if it is easy to gather choice info. by calling the district Boolean
Magnet Indicates if the school district has any magnet programs Boolean
Dual Language Indicates if the district offers any dual language programs Boolean
CTE Indicates if the district has specialized career-technical education Boolean
General Theme Based Indicates if the district has any general or other themed programs  Boolean
Virtual Schools Indicates if the district offers full-time only virtual school options Boolean
Max Apply Special If there are any specialized programs, max number you can apply Numeric
Ranked Choice Special If there are specialized programs, do you rank choices Boolean
Offer Algorithm Special If there are specialized programs, what is the algorithm for offers String

Num Offers Special If there are specialized programs, max number of specialized offers ~Numeric
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Table B.2: List of Mandatory Districts

State District Rank Enrollment
New York New York City Public Schools 1 845,509
Texas Houston ISD 10 184,109
Florida Lee 27 100,064
Kentucky Jefferson County 29 94,793
Colorado Denver 34 88,258
Maryland Baltimore City Public Schools 45 75,811
Colorado Jefferson County School District No. R-1 47 74,251
Texas Austin ISD 49 72,830
Wisconsin Milwaukee School District 55 66,864
California Long Beach Unified 60 63,966
Texas Garland ISD 80 51,659
California San Francisco Unified 94 48,736
Massachusetts Boston 109 45,742

22



Table B.3: List of Opt-In Districts

State District Rank Enrollment
California Los Angeles Unified 2 419,929
Florida Miami-Dade 3 335,500
Tllinois Chicago Public Schools Dist 299 4 322,809
Nevada Clark County 5 304,565
Florida Broward 6 251,408
Florida Hillsborough 7 224,152
Florida Orange 8 206,815
Florida Palm Beach 9 189,777
North Carolina Wake County Schools 14 161,481
North Carolina Charlotte-Mecklenburg Schools 16 144,116
Florida Duval 19 127,971
Texas Cypress-Fairbanks ISD 20 118,470
Pennsylvania Philadelphia City SD 21 117,907
Florida Polk 22 111,041
Tennessee Memphis-Shelby County Schools 24 110,057
Georgia Cobb County 25 105,368
Texas Northside ISD 26 101,095
California San Diego Unified 28 95,492
Georgia Dekalb County 31 91,938
Florida Pinellas 32 91,021
Georgia Fulton County 35 88,043
Florida Pasco 37 85,855
Tennessee Davidson County 40 80,468
South Carolina Greenville 01 42 78,371
Florida Osceola 46 74,289
Florida Brevard 48 73,810
Utah Davis District 50 72,499
California Fresno Unified 53 68,568
Florida Seminole 57 65,443
Nevada ‘Washoe County 61 63,777
Florida Volusia 62 62,742
California Elk Grove Unified 63 62,603
Colorado Douglas County School District No. RE 1 65 61,409
Tennessee Knox County 66 60,604
Utah Granite District 67 60,270
Utah Jordan District 68 59,145
Texas North East ISD 71 57,343
Texas Arlington ISD 74 54,750
Texas Klein ISD 75 53,093
Florida Manatee 76 52,895
North Carolina Winston-Salem / Forsyth County Schools 7 52,157
Colorado Cherry Creek School District No. 5 (Arapahoe) 78 51,808
Nebraska Omaha Public Schools 79 51,693
Tennessee Rutherford County 81 51,595
District of Columbia District of Columbia Public Schools 84 50,831
Georgia Clayton County 85 50,832
‘Washington Seattle School District No. 1 86 50,770
Louisiana Jefferson Parish 87 50,467
California Corona-Norco Unified 90 50,256
Georgia Atlanta Public Schools 91 49,660
Florida Lake 97 48,285
Florida Collier 98 48,262
Michigan Detroit Public Schools Community District 99 48,271
South Carolina Horry 01 100 48,205
Texas Pasadena ISD 103 47,486
Florida St. Lucie 105 46,987
Kansas Wichita 106 46,516
Texas Round Rock ISD 107 46,197
Tennessee Hamilton County 108 45,790
Florida Marion 110 45,547
Florida Sarasota 111 45,314
Ohio Columbus City Schools District 112 45,181
California San Bernardino City Unified 113 44,712
Texas San Antonio ISD 114 44,670
Utah Nebo District 116 44,446
Oregon Portland SD 1J 117 44,039
Alaska Anchorage School District 119 43,563
California Clovis Unified 120 43,291
Georgia Henry County 121 43,258
California Kern High 122 43,116
Arizona Chandler Unified District #80 (4242) 123 42,832
New Jersey Newark Public School District 124 42,791
Georgia Cherokee County 127 42,016
Arizona Tucson Unified District (4403) 133 40,929
California Capistrano Unified 134 40,836
Texas Alief ISD 137 39,474
Florida Clay 138 39,362
California San Juan Unified 146 38,488
California Sacramento City Unified 147 38,268
Texas Mesquite ISD 148 38,265
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Table B.4: List of Decentralized Districts

State District Rank Enrollment
Georgia Gwinnett County 11 182,214
Virginia Fairfax County Public Schools 12 180,714
Maryland Montgomery County Public Schools 15 160,223
Texas Dallas ISD 17 143,196
Maryland Prince George’s County Public Schools 18 131,310
Maryland Baltimore County Public Schools 23 110,215
Texas Katy ISD 30 94,785
Virginia Prince William County Public Schools 33 90,550
Utah Alpine District 36 87,051
Maryland Anne Arundel County Public Schools 38 84,436
Virginia Loudoun County Public Schools 39 81,636
Texas Fort Bend ISD 40 80,694
New Mexico Albuquerque 44 76,756
Texas Conroe ISD 51 72,352
Texas Fort Worth ISD 52 71,060
North Carolina  Guilford County Schools 54 67,832
Virginia Virginia Beach City Public Schools 58 64,896
Virginia Chesterfield County Public Schools 59 64,132
Texas Aldine ISD 69 57,844
Maryland Howard County Public Schools 70 57,643
Arizona Mesa Unified District (4235) 72 57,263
Georgia Forsyth County 73 54,984
Florida St. Johns 82 54,134
Alabama Mobile County 83 50,929
Virginia Henrico County Public Schools 88 50,463
South Carolina Charleston 01 89 49,864
North Carolina Cumberland County Schools 92 49,314
Texas El Paso ISD 93 49,139
Texas Humble ISD 95 48,552
Texas Lewisville ISD 96 48,440
Texas Plano ISD 101 47,899
Maryland Frederick County Public Schools 102 47,681
Texas Socorro ISD 104 47,304
Texas Killeen ISD 118 43,864
Texas Leander ISD 125 42,593
Louisiana East Baton Rouge Parish 126 42,509
Tennessee Williamson County 128 41,909
North Carolina Union County Public Schools 130 41,487
Nebraska Lincoln Public Schools 131 41,654
Texas United ISD 132 41,203
Virginia Chesapeake City Public Schools 135 40,576
Texas Clear Creek ISD 136 40,200
Tennessee Montgomery County 139 39,345
South Carolina Berkeley 01 140 39,265
Idaho Joint School District No. 2 141 38,991
California Riverside Unified 142 38,855
Louisiana St. Tammany Parish 144 38,734
Minnesota Anoka-Hennepin School District 145 38,631
Colorado Aurora Joint District No. 28 of the Counties of Adams and A 149 38,178
Maryland Harford County Public Schools 150 38,158
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B.3 Additional Choice Options in LAUSD

In the main text, we study the effects of choice schools between 2004 and 2017. The choice
landscape has continued to evolve since the end of our sample period, and we discuss some
additional options that do not play a major role in our analysis. Dual Language Programs are
an increasingly popular elementary school option. Schools for Advanced Studies are a type of
neighborhood school tracking program that academically advantaged students are automati-
cally enrolled in, but out-of-zone students may also petition for enrollment. Due to our focus
on middle schools, our analysis does not include Dual Language programs in any of the em-
pirical analyses, including participation patterns, lottery-based estimates, or structural model
estimates reported in Sections 4-8. Although Schools for Advanced Studies are part of the
choice landscape, they differ from magnet programs and affiliated charter schools in that most
eligible students are automatically enrolled rather than apply through an opt-in process.

Dual Language Programs Dual Language Education (DLE) schools offer grade-level in-
struction, biliteracy development, and sociocultural learning to students in two languages: En-
glish and a target language. LAUSD launched its first Spanish-English dual immersion program
in 1991, followed by a Korean-English program in 1992. The programs gained steady momentum
through the 1990s and 2000s, weathering significant challenges including California’s English-
only movement under Proposition 227 in 1998, which severely restricted bilingual education
statewide. Despite these constraints, LAUSD has maintained a commitment to dual language
instruction, growing from 13 Two-Way Dual Language programs in 2005 to 146 by 2022. This
persistence positioned the district to rapidly expand when California voters passed Proposition
58—a repeal of Proposition 227—in 2016, restoring flexibility for multilingual programming.
Currently, LAUSD offers more than 230 DLE programs.

The district operates three distinct program models: Two-Way Immersion (TWI) programs
that integrate native English speakers with native speakers of the target language; One-Way
Immersion (OWI) programs designed specifically for English Learners whose home language
matches the target language; and World Language Immersion (WLI) programs that provide
English-speaking students access to second language instruction. DLE programming encom-
passes seven languages, Arabic, Armenian, French, Japanese, Korean, Mandarin, and Spanish,
with Spanish programs comprising the largest share due to both demographic demand and the
district’s substantial Latino enrollment. An overwhelming majority of these programs are el-
ementary school programs, even though in recent years there has been some minor expansion
into the secondary grade levels.

Schools for Advanced Studies LAUSD’s Schools for Advanced Studies (SAS) initiative
began as a district-level strategy to recognize and expand exemplary gifted and talented educa-
tion (GATE) at resident (i.e. non-magnet, non-charter) schools. The rationale was that many
high-ability or gifted students were being underserved by the standard GATE framework, and
that by designating certain schools as SAS “demonstration sites,” LAUSD could concentrate
resources around models that might then influence practices across the district. Importantly,
magnet schools, independent charters, and dual-language programs are explicitly ineligible for
SAS designation, so SAS remains rooted in the resident school infrastructure.

Within LAUSD’s broader choice ecosystem, SAS programs satisfy a distinctive niche. Unlike
magnet programs, SAS was not born of desegregation court orders or integration mandates; its
purpose is not explicitly to draw students from across zones (though cross-boundary permit-
ting is possible in some cases) but rather to strengthen the quality of gifted education within
neighborhood schools. In practice this means SAS cannot be lumped with magnets or charters
without obscuring key differences: SAS sites remain “resident schools first,” meaning that stu-
dents living in their boundaries who qualify for GATE/SAS are typically placed automatically
(unless opting out).
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C Oversubscribed School Lottery Details

C.1 Choice School Lottery Offers

When applications to non-neighborhood schools (e.g., magnets and other specialized programs)
exceed available seats, LAUSD allocates seats by lottery. Lotteries are run within strata defined
by the application year, student grade, school/program, race, and priority-points level, so ap-
plicants only compete against others in the same stratum. The data available for our analysis
report each applicant’s randomly assigned number, whether the applicant ultimately received
an offer from the program, and all fields needed to define the lottery strata. Programs set an
undisclosed cutoff on the ranking induced by the random numbers to fill seats; applicants on the
offer side of this cutoff receive initial offers. As seats open, programs may also extend offers to
waitlisted students and, in a small number of cases, make post-lottery offers to late applicants
if capacity remains.

For the analysis, we construct an indicator for having a random number on the offer side
of the cutoff. Because cutoffs are not recorded, we infer them from the joint distribution of
random numbers and final offers, following Porter and Yu (2015), who extend RD methods to
cases with unknown discontinuity points. Concretely, we estimate the threshold that maximizes
the discontinuity in the offer probability.

Identification of Potential Lotteries: Lotteries occur at the intersection of year, school,
grade, race, and priority points levels. We first identify which of these cells experienced lottery-
based assignment using the following procedure. We begin by calculating offers and applications.
For each combination of application year, student grade, school, race, and priority points level,
we compute the total number of offers made and the total number of applications received.
Next, we identify oversubscribed cells by flagging cells as oversubscribed when applications
exceed offers. We then define potential lottery cells. A cell represents a potential lottery if
it satisfies three conditions: it has multiple applicants, is oversubscribed, and has at least one
offer made. Each unique combination of year, school, grade, race, and priority points level that
meets the potential lottery criteria is considered a lottery.

Cutoff Estimation: For each potential lottery identified above, we estimate the lottery num-
ber cutoff using a regression-based approach that searches for the point of maximum disconti-
nuity in assignment probability. Within each lottery cell, we rank applicants by their lottery
number. We exclude the minimum and maximum values to avoid boundary issues. For each
potential cutoff rank ¢, we create an indicator variable:

above, = 1[rank_lottery__number > ¢|. (16)

This indicator equals one if an applicant’s lottery number rank is at or above the candidate
cutoff. Then, we estimate the discontinuity at each candidate cutoff. Formally, the specification
is:

offer magnet, = o + 3 - above, + ¢;. (17)

The coefficient S captures the change in probability of receiving an offer at the candidate cutoff
c. Standard errors are heteroskedasticity robust. We select the cutoff value ¢ that maximizes
the R? among all candidates satisfying:

o [ >0 (offers increase above the cutoff)

o p-value < 0.01 (statistically significant at the 1% level) or p-value is missing (which occurs
when 8 = 1 with perfect prediction)

o Model is identified (rank condition satisfied)
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D Demand Model

This appendix section provides technical details related to the estimation of the model, primarily
discussing the simulated likelihood function and its associated gradient.

D.1 Overview

The model outlined in Section 6 has a likelihood function given by Equation 10 that depends
on a vector of parameters Q = ({0;}, Bz, YD, ¥D2; ey fex> { ks Oks Dk}, 0p). Note that w € Q
denotes an arbitrary element of the parameter vector. This section provides details associated
with the likelihood maximization procedure. Likelihoods are calculated via simulation, where
we use r = 1,--- | R as the index for simulation draws.

In practice, we maximize the following function:

N
L£=> InPF(Q), (18)
i=1
where the term P;(Q) = (1/R) Y% | P,(Q) is the simulated likelihood contribution for individ-

ual 7.

The partial derivative of the likelihood function with respect to parameter w is given by:

oL L1 (1 EamP(Q)
5w = 2 B) (25" @) "

i=1 r=1

9:(2)

where g;(w) is the average partial derivative for individual i, and the average is calculated across
simulation draws. Therefore, for a given parameter w, the partial derivative of the likelihood

can be written as: N
oL _ Z 9i(8)
ow — P Q

D.1.1 Log-Likelihood and Gradient

For individual i and simulation draw r, the per-draw log-likelihood is defined as:%?
EZT(Q) =In BT(Q) =In PA,ir(Ai ‘ Q) + In PE,ir(Ei | Q), (20)

where A; is an application vector and E; is the school that a child enrolls in. For parsimony,
we suppress the conditioning on €2 in the expressions that follow.

Recall that Equation 8 in the main body of the paper defines the following term:

exp (Vir (4i) /)
2 exp(Vir(a')/X)

where the term Vj,.(A;) = eir(A4;) — cir(A;) is based on Equations 5 and 6. In addition, note

Py ir(A;) =

25Conditioning on data such as X;, D;, 0; is suppressed from the following notation.
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that Equation 9 in the main body defines the term:

exp (vijr)
> jreo; exp(vijrr)

Pg i (E; = j) =

where E; is the school in which a student enrolls, O; is the school offer set, and the systematic
utility term is defined as Vijr = (5]‘ + 0 + B Xi; — YD Dij —Ypo D% — Yps (Dij X Xl)

Here, P4 is the portion of the likelihood contribution that comes from the application
stage, and Pg ;. is the portion of the likelihood contribution that comes from the enrollment
stage. At the application stage, families are weighing their expected utilities from an applica-
tion, e;.(A;), against the costs from applying, ¢;-(4;), which we denote by Vj, in the notation
above. The kernel smoothing factor A allows us to convert the application choice into a multi-
nomial logit problem following (Walters 2018).

Returning to Equation 20, we know that the per-draw log-likelihood for individual ¢ is:

The partial derivative with respect to parameter w, conditional on a draw r, is:

iy 1 [EWZ-T(A,-) 8Vir(a)} N Oln Pg i (E;)
=5 _

O B _;PA’"(“) D O 1)

w

Note that A; denotes the application vector submitted by ¢ in data, and a denotes one of the
possible application vectors that could be submitted by 3.

The per-draw gradient vector g;,(€2) stacks these partial derivatives and has M—many entries

based on the dimension of : o0
o

gZT’(Q) = Dhir )

Owm,
Ol
Ownr

where the subscript m is the parameter index.

For each element of €2, Equation (21) implies a decomposition into application and enroll-
ment components. We therefore define g£(Q) and gZ () so that we have:

gir(Q) = g (Q) + g (Q),

where the m-th entries of g{}(Q) and gZ () correspond to the first and second terms on the
right-hand side of Equation (21), respectively. In this case, the simulated gradient contribution
of individual ¢ is:

_ 1 A

5 = 5 X (90 + g5 (@).

r=1
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D.1.2 Application-Stage Gradient

For any feasible application vector a, we have that V;,(a) = e;r(a)—cir(a). The partial derivative
with respect to wy, is:

OVir(a) _ Oeir(a) B Ocir(a)

Own, Ownm, 0w

Based on Equation (21), we denote the m-th component of the application-stage gradient vector
gA(Q) as gﬁnym. This can be written as:

8627‘ z 8617“ ( ) 8017" z 8Cir (a)
A § _ - § :
Girom = )\ [ O Py 27‘ W ‘| \ [ Ao Py zr Do ) (22)

where A; denotes the application vector submitted by ¢ in the data.

Note that if an individual chooses not to apply, then V;.(A;) = 0, so the terms involving
Oeir(A;)/Owp, and Oc;r(A;)/Owp, drop out. In that case,

1 86
A j : 27"
l] = — P4 y a
wmr,m )\ [ 717‘( ) 8&)

a

Owm,

ZPA ” 3""(“)]. (23)

D.1.3 Enrollment-Stage Gradient

Based on Equation (9) in the main text, we can write the probability of enrolling at school j
as:
exp (vijr)

> jreo; exp(vijrr)’

Pg iy (E;=3) =

where j' is an offered school, and O; denotes the offer set for student i. Our specification for
utility assumes

Vijr = 0j + Oip + B Xi —p Dij —p2 D% — pe (Dij X X;).
Note that the outside option is included in O; and normalized appropriately.?S

For individual ¢ and draw r, the enrollment-stage per-draw log-likelihood can be written as

(E(Q) =1n Pg i (E; | Q)

< exp (UiE'r) >
=In
> jre0, exp(vijr)

=vgr — In ( Z exp(vijfr)) .

Jj'€0;

The first term depends only on the utility index for the school that student ¢ actually enrolls in
(the observed E; = j), while the second term depends on the utilities of all schools in the offer
set O;.

26For students without any offer, we treat enrollment as degenerate on the outside option; in that case the
enrollment-stage log-likelihood contribution is constant and the gradient is zero.
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For a scalar parameter w,, € 2, the derivative of ¢Z is therefore:

E .
Ot;y = OVifg,r — 9 In ( Z eXp(Uij/r))

Owm, Owm, Owm, o
OViE;r 1 Oy
i Jr
= — Z exp(vl-j/,,) _—
O Zj’Goi eXp(vij/T) J'€0; Otm

We can simplify this expression by noting that the first term can be written as a sum over the
offer set:

OViEr _ Z 1{E; = 8UW
Owm o, Win

where the indicator term is only non-zero when the index of the summation takes the value of
the school that a child enrolls in (i.e., 7/ = j). It will also be helpful to define the following
expression:

exp (vijr)
>jreo, exp(vijr)

Returning to the partial derivative, we can use the immediately preceding results to simplify:

PE,ir(j)

8€E 81} 0v;
= Y YUE =7} = Y Prali) 5
“Wm j'E€O; dwm j'€0; O
. . avi i’
= 3 (UEB =i} = Prarli)) 520 (24)
J'€0; "

The gradient vector g (Q) stacks these partial derivatives, with the m-th component being:

oL

E Q)= .
gzr,m( ) awm

To more fully consider these expressions, consider school s and calculate 9¢% /96;. Since the
parameter J; enters only the utility index for school s, we know that:

Ovijry

5. = 1{j' = s} for each j’ € O;.

Substituting into Equation (24) yields:

e _ O

Jirds = ps, > (1B =5} = Pou(i) 1 = 5}

7'€0;
= 1{EZ = S} — PE,'L’T(S)-

where only the term with j/ = s survives in the sum.

More generally, when a parameter w,, enters v;;, linearly and only for school s, we have

e orE

Ihriom = gor- = (L{E: = s} — Prar(s)) Dvisy

where the derivative Ov;s,/Owy, is given by the corresponding covariate or transformation. For
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example, consider the cases:

81}1-57« 8Uisr 2

and the corresponding gradient components follow from Equation (25).

Finally, if a student receives no offer and enrolls in the outside option by construction, then
Pg ir(E; = 0) is identically one and does not depend on €. In this case, the enrollment-stage
gradient contribution is:

oeE

o, =0 for all wy,.

D.1.4 Estimating a Mixture of Normals for Idiosyncratic Choice School Prefer-
ences

The likelihood contribution of individual 7 is:
L (A, 7, E; | Xy, D;) = /PA (A; | Xi,D4,0,m) x Pg(E; | Zi, X, Dy, 0) dF (0,0 | X3, D;),

where it is implicit that we must integrate out the unobserved taste and cost shocks 6; and 7;
(we suppress the i subscript on (6,7) in the notation below).

In a model with a single normal component, we would assume 6 ~ N (0,03) and n ~
N(0,07), independent of (X, D;), so

where ¢(x; i, 02) denotes a normal density for  with mean p and variance o2.

To allow for more flexible heterogeneity in tastes for choice schools, we generalize this to a
finite mixture of normals. In the mixture model with K types, we have:

0~ iPkN (uk,oi) )
k=1

where py is the share of type k£ in the population and each type k has its own mean u; and
standard deviation o;. We maintain a mean-zero normalization for 6,

K
E[0] =) priw =0,
k=1

to pin down the overall location of the taste distribution and avoid confounding the mean of
¢; with the school fixed effects {0} in the utility index. This restriction imposes one linear
constraint across the K component means. For example, we can express:

> iy
K = =,
PK

so that there are K — 1 unrestricted mean parameters. We also estimate K standard deviations
o for each type. Keeping the assumptions on the distribution of 7 constant, the joint density
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becomes:

dF (6,7 | Xi, Di) (me (6 uk,ok)> ¢ (n;0,07) dfdn.

Under this mixture specification, the likelihood contribution of individual ¢ is:

£(A”L;ZZ7EZ’XZ7D Zpk</PA A |X17D279 77)
k=1

In the K > 1 case, we must also parameterize the type probabilities pi. These probabilities
must satisfy pp > 0 for all k£ and Z,If:l pr = 1. Rather than estimate the pj directly under
these constraints, we follow a standard approach and work with an unconstrained parameter
vector (g, -+ ,ax) € RE and map it into probabilities using the soft-max (multinomial logit)
transformation:
exp (o) i

K 9
D=1 xp ()
This guarantees that each py is strictly positive and that the probabilities sum to one for any
values of (a1, ,aKk).

Pr = =1,... K

The soft-max transformation is invariant to adding a constant to all components; that is,
pr(ar + ¢, ...,ax +¢) = pplag,...,ax) for any scalar ¢. To obtain an identified parame-
terization, we therefore normalize one component, which we take to be ax = 0. Under this
normalization, the probabilities can be written as:

€xXp (ak)
Pk = )
1+ Zk/ 1 €Xp (Oék/)
and
1
Pr =

1 —+ Zk’ 1 exp(ak/)

Thus, there are K — 1 free parameters governing the type probabilities.

Combining the K — 1 unrestricted means, the K standard deviations, and the K — 1 type-
probability parameters, the mixture distribution for € is characterized by 3K —2 free parameters.

D.1.5 Changes to the Gradient in the Mixture Case

With the mixture-of-normals specification for 6, the simulated choice probability for individual
1 is:

K
Q) = pePir(Q
k=1

In this expression, the term:
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is the simulated probability for individual ¢ under mixture component k, averaged over R
simulation draws. The sample log-likelihood is:

N
~Y i A(Q)
=1

Consider a scalar parameter w € §2 that does not parameterize the type probabilities px
(i.e., w is not one of the {ay}, so Opi/Ow = 0). The derivative of the log-likelihood with respect
to w is:

w o = F(Q) Ow
1 K
=3 o ()
1 K 9 m(Q))
= Z Zpk
= bi() <k1 Ow
::ﬁi 1 (ﬁipklR 8F%k“”>
S\ BRI O
Using the identity
OP;,1(Q Oln Py (Q
az( ) _ P () Bwk( )7
we can rewrite the inner sum as:
8Pz7“k: 8111 R,rk(Q) — =
R rzl O ZPzrk T 0w ik (€2),

where g;1(€2) is the simulated gradient contribution for individual ¢ under mixture component
k. Substituting back, we obtain:

oL 1
=3 (gpkgm )
N —
o gi(©)
=2 p)

where the term X
gi(Q) =Y pr gir(Q)
k=1
is the mixture-weighted average of the K simulated gradient contributions for individual 4.

Relative to the case of a single-normal model, the structure of the individual gradient con-
tribution is qualitatively similar, but we must now keep track of the K component-specific
simulated probabilities Py, () and their associated gradients g;,(2). The overall gradient is a
probability-weighted average of these K simulated gradients for each individual.
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D.1.6 Gradients with Respect to Type Probability Parameters in the Mixture
Case

We now consider the gradient of the log-likelihood with respect to the type-probability pa-

rameters {ak}kK:_ll. Recall that the simulated probability for individual ¢ under the mixture

specification is:
K
Q) = Z i Pir(S2)

where p, = pr(ai,...,ax_1) and Py(Q) = B LS Py,(Q) is the simulated probability for
individual ¢ under component k. The individual log- hkehhood contribution is:

For a given ay (with k =1,..., K — 1), the derivative of ¢; is:

1 Ko
= _ / R / Q
e (zp " >)
= Py (Q /
Bi(&) (kgl Do o )+k;1pk Do

Only the mixture weights p, and the component K contribution P, k(€2) depend on the type-
probability parameters. For k < K, we have 0P/ (Q2)/0ay, = 0, so we can simplify this expres-

sion to: -
ot; Oprr 5 0Pk (92)
= E / — . 2

8C¥k i <k’ 1 lk +pK 8ak ( 6)

Derivatives of the mixture weights: To obtain dpy/Jay, recall that the multinomial-logit
(soft-max) parameterization is:

P = eXp(O"“) for k=1,... K —1,
1+ 3521 explaw)
The normalization ax = 0 implies:
1

PK =
1+ Zk’ 1 eXp(Ozk/)

Differentiating with respect to oy, (for a fixed k € {1,..., K — 1}) yields:?7

Opy!
Oay,

2"These are the familiar soft-max derivatives that follow from applying the quotient rule to px = exp(aw)/ (1 +

Zf;ll exp(an)).

= —Dk'Pk for all k/ # k.
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Derivatives of the mixture weights. To obtain dpys /Jay, recall that under the multinomial-
logit (soft-max) parameterization with normalization ax = 0 we have

_ exp(ag)
1+ 5] exp(aw)

Dk for k=1,...,K—1,

and the normalization ax = 0 implies

1
L explay)

PK

Differentiating with respect to oy, (for a fixed k € {1,..., K — 1}) yields:?®

Opk.

k(1 —

Doy (1 = pi),
Opk = —pwpr forall k' #k
80%

(where the second expression applies in particular to ¥’ = K).

Derivatives of the K-th component contribution. The next term of interest in Equa-
tion (26) captures the dependence of the K-th component contribution Pjx(€2) on «y through
the mean-zero restriction on 6. Recall that

_ 1 E
Pix(Q2) = = > Pk (9),
r=1
and hence:

8ln PM«K(Q)
Oy, '

OPk(Q) 1 ZR: Py (Q)
Oay, R a

1 R
- ooy R Z Firre(€)
r=1

r=1
The derivative of the per-draw log-probability can be decomposed into application and enroll-
ment components:

OInPirK Q
T oo ) = gﬁ,K(ak) +95,K(O‘k)a
o,

where ggi x(og) and 957 i (aq) collect the terms arising from the application and enrollment
stages, respectively, when the type is K.2°

The only channel through which «;, affects these terms is the normalized mean of the K-th
type. Under the mean-zero restriction E[f] = 0 and the soft-max parameterization of the p,

28These are the familiar soft-max derivatives that follow from applying the quotient rule to px = exp(ak)/ (1 +

Zf:_ll exp(an)).
*As in Equation (22), gir x () is built from derivatives of the application index Vi, (a) = eir(a) — cir(a) with
respect to ay, and e;r(a) is the expected payoff from applying to portfolio a.
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we can write:30

K-1
fK =— Y exp(ow) fin,
k=1
so that: 5
a%f; = — exp(o) pk- (27)

In the application-stage expected utility for type K, this implies:

Oeir k(@)
Oay,

ouk
= TiaPEirk TP —TiaPEirk exp(ag) f.
Oay,

Since the application-cost function ¢;-(a) does not depend on the type-probability parameters
{ag}, the derivative of the application-stage index Vj.(a) = e;(a) — ¢;r(a) with respect to ay is
entirely driven by Oe;, i (a)/0ay.

Substituting these derivatives into the general application-stage gradient expression in Equa-
tion (22) yields gﬁ’ i (). A similar substitution into the enrollment-stage gradient expression
in Equation (24), using 0v;jr /0oy, = Our /Oay, for type K, yields giE;’K(ozk).

Putting these pieces together, we can summarize the gradient of the individual log-likelihood
with respect to «a;, as

ov; Oppr = _
(Z PR By +ngiK(Oék)>a

dar P P

where the last term in the parentheses is given by:

R

gix(ag) = = ZPM Q) 97} i () + ghe g ()],
r 1

which is the simulated gradient contribution for individual ¢ arising from the impact of ay on
the K-th mixture component.
D.1.7 Gradients with Respect to Mixture Means

For the component means {,um}m 1, the application-stage per-draw gradient for type £ with
respect to p,, follows the general form in Equation (22). For draw r, we can write:

A 6elr k P aezr k( )
1 - A, k
gZT,kJ (Mm) )\ 8/,Lm Z i 8/,Lm 9
39Under the soft-max parameterization with normalization ax = 0, we have that UK = —(Zf;ll Drlik)/PK -
In addition, we have:
exp(au) 1

Pr = D(Oc) (kZl,...,K—l), pK:W’

where D(a) =1+ Zg;i exp(ay/). Substituting these expressions into the px above yields:

2 [exp(an)/D(a —
: -3

He= 1/D(a)
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where e;,;(a) denotes the application-stage expected utility for type k£ and application vector
a, and Py ;yi(a) is the corresponding application probability for type k.

For types k < K, the expected utility e;.;(a) contains a term that is linear in jy; with
coefficient m;, PE irk, so the derivative with respect to fi,, is:

Oeir i (a) Tia Pgirk, i m =k,

Opim 0, if m # k.

For type K, the mean ug is not a free parameter but is pinned down by the mean-zero
restriction E[f] = 0. As noted above, this implies:

N pemw
MK = ——
Pk
so that for m < K,
Ok _ _ Pm
5Mm PK

In turn, the p1x-dependent part of the expected utility for type K is proportional to 7, PE ir i ik,
so by the chain rule we obtain:

Oe; a 15)
M = TiaPrirk UK
Otim Oim
Z—ﬂzaPE,ierﬂ, m=1,...,K —1.
PK

There is no free parameter ug, so we do not compute a gradient with respect to ug itself.

Substituting these derivatives into the general application-stage gradient expression above
yields g;‘}n’k(um) for each type k and mean parameter u,,. The corresponding enrollment-stage
gradients with respect to p, are analogous, obtained by replacing e;, ;(a) with the enrollment
utility index v;; and applying the same derivative rules. For brevity, we do not display them
here explicitly.

37



E Counterfactual Details

This appendix section provides details for our counterfactual analysis. Each counterfactual
policy exercise involves simulating environments using our estimated demand and potential
outcome models. The outcome model estimates are based on the linear control function ap-
proach (Equation 14). All simulations assume the supply of choice schools is held fixed to the
observed years included in our sample (2004-2013). The specific alterations to the environment
allow us to isolate the policy effect of interest relative to the existing opt-in (voluntary) system.
For each counterfactual, we simulate R = 100 economies and report averages of statistics across
simulations. We discuss the details for each counterfactual next.

E.1 Information Interventions

As mentioned in the main body of the paper, information interventions involve boosting a
student’s 6; by one standard deviation of their estimated type-specific distribution. Importantly,
we only allow the shift in 6; to affect application and enrollment decisions but use the original
0; when calculating counterfactual potential outcomes.

Because changes to 6; lead to changes in application rates relative to the baseline scenario,
we must calculate equilibrium admission probabilities that students consider when making ap-
plication decisions to choice schools. We follow the logic of Walters (2018) and Avery et al.
(2025) to solve for equilibrium admission probabilities under the new environment. For each
counterfactual simulation, r = 1,--- , R, we solve for the equilibrium admission probabilities
given the draw of idiosyncratic preference (6;) as well as their post-lottery (&; and cost shocks
(n;) that govern application and enrollment decisions. Once we solve for the equilibrium ﬂ'gR
for each school j, we then calculate the resulting statistics for the counterfactual simulation.
We repeat this R = 100 times and average statistics across simulation rounds.

E.2 Busing Program

The busing policies that we consider are approximated in our model as an elimination of travel
costs. As in the information interventions, this leads to a change in demand, so we must
estimate equilibrium admission probabilities in this new environment. We follow the same
procedure outlined above.

E.3 Decentralized

The decentralized market allows families to submit applications to multiple schools and poten-
tially receive multiple offers, in contrast to our baseline model, which restricts households to a
single application to mirror LAUSD policy during the sample period. To implement this coun-
terfactual, we modify how application vectors are constructed. A key change is to augment the
application cost structure by introducing marginal costs: whereas the baseline model includes
only a fixed application cost, the decentralized setting requires a per-application marginal cost
to prevent students from submitting excessively large portfolios. We follow the prior literature
and calibrate this marginal cost to match the fixed-to-marginal cost ratio in Avery et al. (2025).
In this environment, students form application portfolios by weighing the fixed cost of initiating
the application process together with a constant marginal cost for each additional school they
choose to include.

Because fixed application costs introduce non-convexities, we cannot directly apply the off-
the-shelf marginal improvement algorithm from Chade and Smith (2006). To address this, we
use a modified procedure: we first “seed” the algorithm by starting with the single school that
delivers the highest stand-alone expected utility, and then apply the standard Chade-Smith
marginal-improvement rule to consider adding additional schools to their portfolio. At the end
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of the process, we compare the expected utility from the resulting application portfolio to the
utility from not applying to any school.

To verify that this modified procedure produces the optimal application portfolio, we con-
duct Monte Carlo simulations comparing the algorithm’s output to brute-force enumeration of
all feasible portfolios for a representative sample of students. In all cases, the modified greedy
algorithm recovered the same optimal portfolio as the exhaustive search, confirming that the
procedure correctly identifies the utility-maximizing application vector. As in our other counter-
factuals, we then compute equilibrium admission probabilities implied by the demand induced
by the transition to a decentralized market.

E.4 Mandatory Application

The mandatory application policy involves an application mandate and the introduction of a
deferred acceptance mechanism to govern assignments. Importantly, we allow families to rank
multiple schools. In practice, this means we eliminate application costs and require families to
rank schools in order of preferences governed by the estimated demand parameters and their
observables. Our use of an uncapped choice school list avoids having to estimate equilibrium
admission probabilities. Therefore, we simulate R = 100 environments and average statistics
across simulation rounds. We assume students enroll in their assigned school.

E.5 Mandatory Application and Complementary Policies

For counterfactals that combine the mandatory application policy with other complementary
reforms, we follow the procedures discussed above. Because each involves the use of a deferred
acceptance mechanism with unrestricted list lengths, we do not estimate equilibrium admission
probabilities. We assume students enroll in their assigned school.
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