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Abstract

We leverage Becker’s time allocation theory to examine consumer demand and market
competition for time-intensive goods. The Beckerian model predicts higher diversion ratios
for goods with substantial time shares and those with high time costs relative to monetary
prices. Applying this model to data from two field experiments, we analyze demand for
Facebook and Instagram, focusing on substitution patterns across online activities and
offline time use. Our findings indicate that users exhibit low elasticity to ad load, the
primary user cost, and that time shares and time costs significantly influence diversion
ratios. We explore the implications for user costs and benefits on these platforms and assess
the potential impact of a Federal Trade Commission-proposed de-merger of Facebook and
Instagram.
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1 Introduction

In his seminal 1965 work, "A Theory of the Allocation of Time", Gary Becker established a
foundational framework for analyzing household production, consumer demand, and time al-
location. Becker posited that consumers combine purchased market goods with time through
a household production function to create utility-generating commodities. Rather than de-
riving utility directly from goods or time, consumers value these commodities. Consequently,
consumer demand and substitution patterns are shaped by both market prices and time costs,
where the latter reflect the time required to consume a commodity multiplied by its oppor-
tunity cost.

Our paper applies Becker’s theory of time allocation to empirically investigate consumer
demand and market competition for time-intensive goods, focusing on online leisure activ-
ities such as social media, gaming, and streaming. The emergence of online platforms has
transformed how people engage in recreation, connection, and communication.1 Unlike tradi-
tional business models, these platforms typically generate revenue through advertising while
charging users little to no monetary cost.

In recent years, researchers and policymakers have become more deeply engaged in un-
derstanding consumer demand and market competition for online leisure activities. One
perspective holds that these activities form distinct, highly concentrated submarkets, each
providing differentiated goods with unique functions and features (see e.g. Wu, 2019; CMA,
2020; Morton and Dinielli, 2022). In contrast, another view posits that online leisure platforms
compete broadly for users’ limited time and attention, making their goods close substitutes
despite differing functionalities (Evans, 2013; Renner, 2020). Existing research has struggled
to reconcile these competing views. Resolving this debate is critical for understanding how
economic conditions and government policies shape demand and competition in online leisure
markets.

These competing perspectives are central to the high-profile antitrust lawsuit filed by the
Federal Trade Commission (FTC) against Meta, the parent company of Facebook and Insta-
gram. The FTC asserts that Facebook wields market power in the personal social networking
(PSN) market, defined as online services for maintaining personal relationships and sharing
experiences, encompassing Facebook, Instagram, and Snapchat. Conversely, Meta contends
that Facebook competes broadly for users’ time and attention, facing robust competition from
diverse online leisure platforms and offline activities (Facebook, Inc., 2021).

To lend insights into each perspective, we develop a Beckerian demand model where con-
sumers combine time and market goods to produce utility-generating commodities. We adapt
this model to online leisure activities, such as social media and streaming, and analyze the
factors driving substitution. Our findings demonstrate that, ceteris paribus, diversion ratios
are higher for commodities with greater time shares and those that are more time-intensive,
meaning their time costs significantly outweigh their monetary costs.

1According to the 16th annual Digital Future Report by the USC Annenberg School’s Center for the Digital
Future, the weekly time spent online by the average internet user in the US (age 12 and over) went from 9.4
hours in 2001 to 22.5 hours in 2018.
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The importance of time shares in determining diversion ratios parallels the established
finding that diversion to a good increases with its consumption share (e.g. Conlon and Mor-
timer, 2021). In our Beckerian framework, however, consumption is measured by the time
spent on a good, not just its monetary expenditure. Time intensity affects diversion ratios
because reducing demand for a time-intensive commodity lowers the opportunity cost of time.
This reduction encourages consumers to shift toward other time-intensive commodities rather
than less time-intensive ones.

A key implication of these findings is that time-intensive commodities can be close sub-
stitutes, even when their market goods differ in features and functions. For instance, while
consumers may not perceive Facebook and YouTube as functionally similar, their high di-
version ratio may stem from both being time-intensive or YouTube’s substantial time share.
This logic extends to other time-consuming commodities, such as offline activities like prepar-
ing dinner or providing childcare. The time required for these activities can render them
substitutes for online leisure, despite differing purposes or perceived comparability.

While Becker’s model provides deep insights on key individual trade-offs, quantitative
evidence is necessary to understand actual demand and diversion in a market, as consumer
responses to changes in prices or other factors must be measured ceteris paribus. Inspired
by the Beckerian model, we use two field experiments to empirically examine demand for
Facebook and Instagram, focusing on substitution patterns across online activities and offline
time use. The first field experiment was a large-scale pricing study designed by us to estimate
the responsiveness of users to financial incentives. More specifically, we randomly offered
pecuniary rewards to a representative sample of users to decrease their time on Facebook or
Instagram. We track usage of these platforms and diversion to other online activities and
offline time via a phone-based activity monitoring app.

Experimental results reveal significant own-price effects, with the pricing experiment sub-
stantially reducing time spent on both platforms. Cross-price estimates indicate that this
reduction led to increased time allocation to non-personal social networking (PSN) commodi-
ties, including other apps and offline activities, with nearly all app categories acting as substi-
tutes for Facebook and Instagram. By integrating own- and cross-price effects, we calculate
diversion ratios, which indicate the proportion of reduced time on Facebook or Instagram
reallocated to other commodities. A diversion ratio of one (zero) implies all (none) of the
reduced time shifts to a given commodity.

Our findings on diversion ratios show that offline activities account for a significant share
of diverted time (39% for Facebook, 29% for Instagram), with the remainder redistributed
to other apps. Our analysis of app-specific diversion ratios reveals that only 6% of re-
duced Facebook time shifts to other personal social networking (PSN) platforms (Instagram
and Snapchat), while 16% of reduced Instagram time diverts to other PSNs (Facebook and
Snapchat). These ratios are notably lower than those for certain non-PSN apps with markedly
different features and functions. For instance, gaming apps, which serve distinct purposes from
Facebook, exhibit the highest diversion ratio for Facebook. Similarly, YouTube, despite being
excluded from the FTC’s PSN market definition due to its differing functionality, has the
highest diversion ratio for Instagram.
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The Beckerian model provides a compelling explanation for these field experimental re-
sults: substantial diversion to offline activities or non-PSNs can occur, even if they differ in
purpose or perceived similarity from PSNs, when commodities have high time shares or time
intensity. By comparing diversion ratios (influenced by time shares) to cross-price elasticities
(independent of time shares), we find that high time shares drive significant diversion from
Facebook and Instagram to offline activities and certain online activities, like gaming. Con-
versely, high time intensity accounts for the notable diversion to TikTok and YouTube, which
show strong cross-price elasticities despite their distinct features.

While the pricing experiment effectively reveals diversion ratios, it does not estimate the
elasticity of user time on Facebook and Instagram with respect to ad load, the primary user
cost. To estimate this key parameter, we analyze a second field experiment, initiated by Meta
in 2013 to examine the long term effect of ad load. This ongoing study includes a holdout
group of randomly selected users who see no ads on either platform. By comparing this group
to a control group exposed to ads, we assess the impact of ad load on platform usage (see also
Brynjolfsson et al., 2024). Our findings show that typical ad impression levels reduce daily
usage by 2.0 minutes on Facebook and 0.62 minutes on Instagram compared to the ad-free
group. At these levels, we estimate an average elasticity of user time to ad load of 0.09 for
Facebook and 0.04 for Instagram.

With these estimates and results from our first field experiment in hand, we can evaluate
the costs and benefits of Facebook and Instagram for users. We adopt a linear demand
system, consistent with our findings, and assume additive separability between commodity
consumption and the disutility of ads in the utility function, enabling integration of pricing
and ad load variation data. Consumer surplus, measured as the area under the inverse demand
curve, represents the net consumption value in this case. On average, we estimate a daily
consumer surplus per user of around $3.4 for Facebook and $2.1 for Instagram.2

These estimates of the daily consumer surplus on Facebook and Instagram can be com-
plemented by estimates of the cost paid by the user. Given a monetary price of zero, the cost
to users corresponds to the dis-utility stemming from watching ads. The cost of ads to users
can be recovered by comparing the reduction in user time on the platform due to the change
in prices compared to ads. We estimate that the cost to the user of the ads is equivalent to
a daily tax per user of $0.70 on Facebook $0.20 on Instagram. This suggests that Facebook
captures only 17 percent of the consumption value of the platform, while Instagram captures
about 8 percent.

The key reason for the large consumer surplus is that both platforms choose an ad load
in the inelastic range of the demand curve. The core empirical question becomes: why is this
case? In a traditional model with one-sided markets, no profit-maximizing firm will choose to
operate in the inelastic range of its demand curve. To delve deeper into the economics of this
question, we develop and estimate a model of two-sided media platforms that rationalizes the

2This implies a yearly consumer surplus of $1, 241, which is fairly comparable to the estimates reported
in previous studies. For example, Allcott et al. (2020) reports a yearly consumer surplus for the median
Facebook user of approximately $1, 300. Other studies reporting similar estimates include Mosquera et al.
(2020); Brynjolfsson et al. (2019a,b); Corrigan et al. (2018); Benzell and Collis (2020).
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choice of ad load, where the platforms (imperfectly) compete with each other for both users
and advertisers.

Our model is based on standard models of media platforms such as Anderson and Peitz
(2020), but allows for non-zero diversion ratios between platforms on the advertising side,
consistent with user multi-homing as in Anderson et al. (2017). It contains three distinct
mechanisms that could rationalize why both Facebook and Instagram choose the ad load in
the inelastic range of the demand curve. The first mechanism is network externalities, which
may lead aggregate demand to be more elastic than suggested by the estimates from the ad
holdout experiment.3 Therefore, the profit-maximizing level of the ad load may be lower. The
second mechanism is the two-sided nature of the market. Facebook and Instagram are best
characterized as two-sided platforms where users and advertisers interact. The technological
and demand conditions in the advertising market can reduce the profit-maximizing level of
the ad load. The third mechanism is substitution in the advertising market. Internalizing the
possible diversion of advertisers between Facebook and Instagram, both owned by Meta, may
lower the profit-maximizing level of ad load.

We employ our model to examine demand and competition in online leisure services, an-
alyzing the effects of a proposed FTC de-merger of Facebook and Instagram. Our analysis
centers on changes in ad load—the primary user price—and consumer surplus. A de-merger
produces two counteracting effects on ad load. First, non-zero user diversion between the
platforms incentivizes higher ad loads under a merger, as user and revenue losses from in-
creased ad load on one platform are partially offset by gains on the other. Second, non-zero
advertiser diversion encourages lower ad loads when merged, since reducing ad load on one
platform boosts advertiser demand and ad prices on the other. Consequently, the net impact
of a de-merger on ad load is theoretically indeterminate, hinging on the magnitude of user
and advertiser diversion ratios and the demand elasticities of both groups.

To empirically evaluate the de-merger, we integrate our field experimental data with addi-
tional sources to estimate the model’s structural parameters. We leverage internal Facebook
and Instagram data to derive measures of: (i) the social multiplier, capturing network effects
on user demand; (ii) ad blindness, reflecting how ad load affects user interaction with ads;
(iii) marginal costs; and (iv) current equilibrium ad loads, user time, and ad prices. These
measures are combined with results from the pricing and holdout experiments to identify
parameters governing user demand. Next, we explain how the own-price effects on adver-
tiser demand can then be recovered if one knew or assumed the magnitude of the cross-price
effects in the ad market. The argument is that the observed equilibrium choices of the ad
load of Facebook and Instagram contain information about the demand they must face in
the advertising market. The only unknown parameters are then the cross-price effects in the
ad market. Our data do not allow us to quantify these parameters. We therefore present
results for different values of the cross-price effects corresponding to a wide range of diversion
ratios in the ad market, from no diversion to full diversion from Instagram to Facebook. We

3Bursztyn et al. (2024) find evidence of positive consumption externalities between Facebook users. See
also Bursztyn et al. (2025), who show that valuations of alternative social apps increase more in response to a
collective TikTok ban than to an individual TikTok deactivation.
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show that this approach produces economically informative lower and upper bounds on the
quantities of interest.

The bounds deliver two key conclusions. The first is that we can rule out that the de-
merger would materially benefit the users of Facebook and Instagram. The largest possible
gains to users from the de-merger are very close to zero, obtained if one believes that there
is no diversion of advertisers between Facebook and Instagram. The second conclusion is
that the de-merger would be harmful to users of Facebook and Instagram if one believes that
advertisers view these platforms as substitutes. The harm is significant if there is a sizable
diversion of advertisers between Facebook and Instagram. For example, if one assumes that
the advertiser diversion ratio of a platform is equal its market share, then the de-merger would
increase the ad load on Facebook and Instagram by 3.7 and 9.8 %, while the consumer surplus
of Facebook and Instagram users would fall by about 1.0 %.

We compare these findings with results obtained using the FTC’s market definition, which
limits the relevant user market to Facebook, Instagram, and Snapchat. This definition as-
sumes that time-intensive commodities are not substitutes unless they share similar func-
tionality, restricting substitutability to these three platforms. Adopting the FTC’s approach
erroneously suggests that a de-merger would consistently increase consumer surplus. This dis-
crepancy underscores the critical need to account for time’s role in shaping demand, diversion,
and competition within online leisure markets.

We view our study as contributing to several literatures. First, we extend Becker’s time
allocation theory to digital platforms, showing that time, not just monetary price, drives
demand and substitution in time-intensive markets. In doing so, the study introduces time
shares and time intensity as key determinants of diversion ratios, offering a new lens for
studying consumer behavior in digital economies. In this manner, it is related to the literature
that uses a Beckerian model to study the allocation of time across different activities.4 The
existing literature often examines how time allocation to non-market activities affects labor
supply. For instance, Aguiar et al. (2021) estimate a demand system for various activities,
suggesting that technological advancements increasing the marginal utility of online leisure
contribute significantly to the declining labor supply among young men. In contrast, our paper
pursues a distinct objective: it develops a theoretical framework to guide future research on
digital markets, leisure activities, and other time-intensive goods, enhancing economic models
of household production and consumption.

Our paper also contributes to a growing body of experimental research examining the
use and impact of social media. These studies typically offer financial incentives to reduce
or deactivate usage of apps like Facebook or Instagram, then assess the effects on outcomes
such as well-being (Mosquera et al., 2020; Allcott et al., 2020; Collis and Eggers, 2022),
political attitudes (Mosquera et al., 2020; Allcott et al., 2020; Guess et al., 2023; Allcott
et al., 2024), and time allocation to other (online or offline) activities (Allcott et al., 2024;
Aridor, 2025). In terms of experimental design, the closest study to ours is arguably Allcott
et al. (2024). Similar to our work, they randomize financial incentives to reduce time on

4See Heckman (2015); Chiappori and Lewbel (2015); Aguiar and Hurst (2016) for reviews of Becker’s model
of time allocation and its many applications in economics.
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Facebook or Instagram and have large sample sizes. However, the goal of their study is much
different, and, they do not analyze consumer demand and market competition for online leisure
activities. By comparison, Aridor (2025) considers a sample of 366 students, analyzing the
impact of randomly deactivating YouTube or Instagram for a week. Due to the small sample
size, the estimated impacts on time allocation to other activities are relatively noisy. However,
the point estimates indicate considerable diversion of time from Instagram and YouTube to
both offline activities and to Facebook, consistent with our findings.

Finally, we view our study as contributing to the area of law and economics. By advancing
the application of the Beckerian model to analyze demand and competition in online leisure
services, focusing on the proposed FTC de-merger of Facebook and Instagram, our study
provides actionable evidence to navigate complex antitrust issues in digital markets. This
is achieved by emphasizing the need to incorporate time-based competition and consumer
surplus into regulatory decisions via a theoretically-inspired field experiment (to our knowl-
edge, our work is the first field experiment conducted for a major federal anti-trust trial).
By showing that non-PSN platforms (e.g., YouTube, gaming) and offline activities are sub-
stitutes for Facebook and Instagram due to time constraints, the paper challenges traditional
market definitions based on functional similarity. This finding critiques the FTC’s approach
and encourages academics to rethink market boundaries with time-intensive goods.

Our de-merger analysis is focused entirely on potential anti-competitive effects on users
from both Facebook and Instagram being owned by Meta, and we assume that a de-merger
would not increase costs or reduce efficiency. We make this assumption because existing
merger guidelines have a highly skeptical stance towards efficiency arguments (Kaplow, 2025),
and because our data do not allow us to credibly quantify impacts on costs or efficiency. By
comparison, Katz and Allcott (2025) perform a de-merger analysis in which Meta can achieve
efficiency gains by using knowledge of which ads were seen by a given user on both platforms
to improve ad targeting.5 Their analysis also suggests that a de-merger does not increase user
surplus.

The remainder of our study proceeds as follows. The next section presents a Beckerian
model of demand, tailored to online leisure activities, to characterize substitution patterns
driven by time shares and time intensity. Section 3 introduces our two field experiments,
detailing their designs to assess demand and diversion for Facebook and Instagram. Section 4
evaluates the costs and benefits for users, estimating consumer surplus and ad-related costs.
We then discuss our two-sided model in Section 5. Section 6 analyzes the proposed FTC
de-merger of Facebook and Instagram, using our model to estimate effects on ad load and
consumer surplus. Finally, Section 7 concludes by summarizing our findings, compares them
with the FTC’s market definition, and discusses implications for digital market competition.

5In practice, both legal and technical constraints may limit Meta’s ability to exploit cross-platform ad
exposure data in this manner, motivating our focus on potential anti-competitive effects while abstracting
from efficiency gains.
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2 Time use and the demand for social networking services

2.1 A model of the allocation of time

Preferences. Consider a consumer with utility function U (z, n, C). The utility function has
three distinct arguments. The first is z = (z0, ..., zN )′, which represent a set of commodities
Z. Following Becker (1965), consumers need to combine time and market goods to produce
these commodities. As a normalization, we assume that time spent on each commodity is
equal to zi. This allows us to measure the quantity of each commodity in terms of minutes
spent on it. The second argument of the utility function is the composite market good C. It
differs from Z in that it requires no time to produce. The last argument of the utility function
is n = (n0, ..., nN )′, which captures that the consumer may have to provide some service ni

as she produces each unit of commodity i. The quantity of services provided enters directly
(and negatively) into the utility function. In our setting, ni captures that users may have to
see ads while consuming i.

Production of commodities. We assume that each unit of zi requires one unit of time, pi

units of market goods (measured in dollars), and αi units of ni, implying that ni = αizi. For
example, αi could denote the ad load for a good such as Facebook. These assumption can be
micro-founded by zi being produced with a Leontief production function:

fi (Hi, xi, ni) = min
{
Hi,

xi

pi
,
ni

αi

}
where Hi and xi are, respectively, time and market goods spent on commodity i.

Budget constraint and income function. The financial budget constraint is given by

C +
N∑

i=0
pizi = Y. (1)

where the price of the composite (time-free) consumption C is normalized to 1. As in Becker
(1965), the consumer can allocate her time to market work and leisure H ≡

∑N
i=0Hi. Market

work produces income (after tax) Y according to the following earnings function:

Y = Y − wHη (2)

where Y is the maximum income the consumer can earn if she has no leisure, and the param-
eters (w, η) map total leisure time to income.

We assume that η ≥ 1, implying that income is a concave function of total leisure time.
If η = 1, the consumer can trade-off leisure with market consumption at a fixed wage rate
w. As noted in the review article by Chiappori and Lewbel (2015), Becker thought this case
was ‘special and unlikely’. Instead, Becker argued the marginal wage rate is likely to be lower
than the average wage rate (i.e. η > 1). This could, for example, reflect decreasing marginal
productivity or a progressive tax system.
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2.2 Personal social networking services and other commodities

We now specialize the Beckerian framework presented above to analyze the demand for and
substitution between different types of commodities. In particular, we are interested in the
distinction between Personal Social Networking (PSN) and non-PSN commodities.

We borrow the term PSN from the FTC’s definition of the market that Facebook and
Instagram operate in. They characterize PSN services as “online services that enable and
are used by people to maintain personal relationships and share experiences with friends,
family and other personal connections in a shared social space" (FTC, 2021, §165). The FTC
considers the set of PSNs to include Facebook, Instagram, and Snapchat, but one could argue
that also other goods should be classified as PSNs.

For the purpose of our analysis, we think of PSNs as including commodities that have a
similar functionality to Facebook. For this reason, the elasticity of substitution in consumers’
preferences may be larger across PSNs commodities than between a PSN and a non-PSN
commodity. To allow for this in a parsimonious way, we index commodities in the set of PSN
activities P ⊂ Z by 0 ≤ i ≤ P , and then assume the following structure on the preferences

U (z, n, C) = u (z) − v (n) + C (3)

where the (dis)utility of provided services n is given by

v (n) =
N∑

i=0
κini

and the utility over commodities z has the nested-CES structure

u(z) =

ωP

(
P∑

i=0
δiz

θ
i

) ρ
θ

︸ ︷︷ ︸
≡zρ

P

+
N∑

i=P +1
ωiz

ρ
i



γ
ρ

The parameter 1
1−θ is the elasticity of substitution between PSN commodities in the con-

sumers’ preferences, and 1
1−ρ is the elasticity of substitution between the non-PSN commodi-

ties and the composite PSN commodity zP . The similarity in functionality between PSNs is
captured by the assumption that 1

1−ρ is weakly lower than 1
1−θ . We normalize δ0, ..., δP so

that
[∑P

i=0 δ
1

1−θ

i

] θ−1
θ

= 1.6

6Under this normalization, whenever the full price of each PSN commodity is equal, i.e. whenever Pj = Pk

∀j, k ∈ P, the composite PSN commodity zP is measured in number of minutes spent on all PSN commodities.
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2.3 The consumer problem and solution

The consumer maximizes utility function (3) under the constraints defined by (1) and (2).
Assuming an interior solution in C, the first-order conditions ∀k ∈ P are given by:

γ

ωPz
ρ
P +

N∑
i=P +1

ωiz
ρ
i


γ
ρ

−1

ωPz
ρ−1
P

(
P∑

i=0
δiz

θ
i

) 1
θ

−1

δkz
θ−1
k = ν + κkαk + pk︸ ︷︷ ︸

≡Pk

, (4)

and the first-order conditions ∀g ∈ Z \ P are given by:

γ

ωPz
ρ
P +

N∑
i=P +1

ωiz
ρ
i


γ
ρ

−1

ωgz
ρ−1
g = ν + κgαg + pg︸ ︷︷ ︸

≡Pg

(5)

where ν ≡ ηwHη−1 is the opportunity cost of leisure time at the margin.
Equations (4) and (5) define the full prices Pk and Pg of a unit of k and g, respectively.

Each full price generally has three components: the opportunity cost of time ν, the monetary
cost pi, and the dis-utility cost associated with providing αi units of ni for each minute spent
on i. The relative importance of each of the three components will generally differ between
commodities. The time-intensity of commodity i ∈ Z is defined as the opportunity cost of
leisure time relative to the full price:

τi ≡ ν

ν + κiαi + pi
.

For notational simplicity, we assume that time-intensity is uniform across PSN activities, such
that τk = τP for all k ∈ P.

The solution to the consumer problem determines the allocation of time, and the re-
sulting optimal choice of z and C. The solution also determines the share of total leisure
time spent on each commodity as a function of prices and utility parameters, which will
be important to understand consumer demand and substitution. To provide an expression
for these time shares, it is useful to define a price index for the composite PSN commod-

ity PP ≡
[∑

i∈P δ
1

1−θ

i P
θ

θ−1
i

] θ−1
θ

. In Appendix A.2.1, we derive the share of time spent on
non-PSN commodity g,

ψH
g ≡ zg

H
= ω

1
1−ρ
g P

1
ρ−1

g

ω
1

1−ρ

P P
1

ρ−1
P +∑

i∈Z\P ω
1

1−ρ

i P
1

ρ−1
i

, ∀g ∈ Z \ P (6)

and the share of time spent on PSN commodity k,

ψH
k ≡ zk

H
= δ

1
1−θ

k P
1

θ−1
k∑

i∈P δ
1

1−θ

i P
1

θ−1
i

× ω
1

1−ρ

P P
1

ρ−1
P

ω
1

1−ρ

P P
1

ρ−1
P +∑

i∈Z\P ω
1

1−ρ

i P
1

ρ−1
i

, ∀k ∈ P (7)

where ρ ≤ θ ≤ 1,
Equations (6) and (7) show that the time share of a commodity increases in its marginal
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utility (that is, in δk and ωP for PSNs, and in ωg for non-PSNs) and decreases in its own full
price (that is, in Pk for PSNs and Pg for non-PSNs). The degree to which the time share of a
commodity decreases in its own full price depends on its elasticity of substitution with other
goods (that is, the magnitudes of 1

1−θ and 1
1−ρ).

2.4 Consumer responses to changes in price vs ad load

We are interested in understanding the demand and substitution for different types of com-
modities. To this end, it is useful to differentiate the first-order conditions (4) and (5) to
characterize the substitution of time across commodities j and i in response to a change in
pj or αj . The following proposition shows that the model forges a tight link between (both
own and cross commodity) responses to a change in pj versus αj :

Proposition 1. For any two commodities j and i:

∂zj

∂αj
= κj

∂zj

∂pj
and ∂zi

∂αj
= κj

∂zi

∂pj
(8)

Proof. See appendix A.1.

As discussed in greater detail in the empirical analysis, this proposition has two key implica-
tions. The first is that the diversion ratio Dij , defined as the share of the reduction in time on
the origin commodity j that is diverted to destination commodity i, is invariant as to whether
the price or the ad load is changed:

Dij ≡ −
∂zi
∂pj

∂zj

∂pj

= −
∂zi
∂αj

∂zj

∂αj

(9)

This invariance property becomes useful for combining estimates from the pricing experiment
with evidence based on exogenous variation in ad load. The second implication is that we
can recover the (non-monetary) cost κj of providing services nj , by comparing the reduction
in time spent on zj due to a change in pj versus a change in αj .

2.5 Determinants of substitution between commodities

To understand the substitution of time across commodities, we next express the diversion
ratio in terms of the model parameters, then perform comparative statics with respect to
key parameters. We refer to Appendix A.3 for the analytical expressions of the diversion
ratios, and summarize the key insights from the comparative statics in Proposition 2 and a
few corollaries presented below.

Proposition 2. Assume η > 1. The diversion ratio between a PSN origin commodity j ∈ P
and some destination commodity i ∈ Z is strictly:

• increasing in the time share of destination commodity (i.e. ψH
i ),

• increasing in the relative time-intensity of the destination commodity (i.e. τi−
∑N

l=0 ψ
H
l τl),
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• increasing in the relative time-intensity of the origin commodity (i.e. τP −
∑N

l=0 ψ
H
l τl),

• increasing in 1
1−θ when i is a PSN commodity, and decreasing in 1

1−θ when i is non-PSN
commodity.

Proof. The comparative statics follow directly from the analytical expressions for diversion
ratios presented in Propositions 4 and 5 in Appendix A.3.

Proposition 2 shows that, everything else equal, the diversion ratios are higher to destination
commodities with a high time share, between commodities that have a higher elasticity of
substitution in the consumer’s preferences, and between commodities that are relatively more
time-intensive. A key implication is that commodities that have a large time share (ψH

i ) or a
high time-intensity (τi) may be close substitutes even if they differ in functionality so that the
elasticity of substitution in preferences ( 1

1−ρ or 1
1−θ ) is low. For example, it is possible that

the consumer has preferences such that the elasticity of substitution between Facebook and
YouTube is low, yet that the diversion ratio from Facebook to YouTube is high due to the
time-intensive nature of both commodities or due to YouTube having a high time share. The
same logic could, of course, apply to a range of commodities that require time to consume,
including offline activities such as eating dinner (which requires preparing a meal) or child
care (which requires time with the child). The fact that production of such commodities
requires time could make them close substitutes to PSNs even if they are not used for the
same purpose or seen as comparable by consumers.

The importance of time shares in determining diversion ratios is analogous to a well-
established result that diversion to a product tends to increase in the consumption share (e.g.
Conlon and Mortimer, 2021). The only difference in our Beckerian framework is that the
measure of consumption share should include the time spent on the commodity.

The reason why time-intensity plays a role in determining diversion ratios is due to the
endogenous response of the opportunity cost of time and the associated substitution effect.
The intuition is the following: An increase in pj (or αj) reduces time allocation to zj , which
lowers the opportunity cost of time. The lower opportunity cost leads the consumer to allocate
more time to destination commodities that are relatively time-intensive as compared to those
that are less time-intensive. The size of this substitution effect is increasing in the relative
time-intensity of zj , since a given price increase causes a larger reduction in the opportunity
cost of time if the production of the origin commodity is time-intensive.

It is useful to observe how this substitution effect depends on the role of the concavity of
the income function. If η = 1, the consumer can trade-off leisure and market consumption
at a fixed wage rate. As a result, the opportunity cost of time is constant under η = 1, and
relative time-intensity becomes irrelevant for the substitution between commodities, as stated
in Corollary 1 below.7 However, even when η = 1, the diversion ratios will be increasing in
the time share of the destination commodity, everything else equal.

7It is straightforward to prove that the diversion ratio is the same under η = 1 as it would be if we change
the production function so that commodities can be produced without time as an input.
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Corollary 1. The diversion ratio between PSN origin commodity j ∈ P and some destination
commodity i ∈ Z is independent from the relative time-intensity of j (i.e. τP −

∑N
l=0 ψ

H
l τl)

and from the relative time-intensive of i (i.e. τi −
∑N

l=0 ψ
H
l τl) whenever η = 1.

Proof. See appendix A.3.

It is straightforward to also prove that, everything else equal, a higher η leads to a smaller
decrease in leisure time in response to a change in pj (or αj), and, thus, more diversion to other
commodities in Z relative to the composite good C. As η tends to infinity, individuals do not
adjust their labor supply to a change in in pj (or αj), and all the diversion is to commodities
in Z. To see this, let ψS

j ≡ (ν+αjκj+pj)zj∑N

l=0(ν+αlκl+pl)zl

be the share of j in full spending, and ψS
P be the

total share of PSN commodities in full spending. In Appendix A.2.2, we show that for any
j ∈ P, the response of leisure time to a change in pj is ∂ ln H

∂ ln pj
= −

(
ψS

j /ψ
S
P

)
× pj

ν+αjκj+pj
× ΣP

where

ΣP ≡
γ−ρ
1−ρψ

S
P + 1−γ

1−ρψ
H
P

1 − γ + (η − 1)∑N
l=0

(
γ−ρ
1−ρψ

S
l + 1−γ

1−ρψ
H
l

)
τl

It follows directly that the response of total leisure time to a change in pj is decreasing in η.

Relative importance of time shares, time-intensity, and functionality. It is inter-
esting to empirically distinguish the importance of time shares (ψH

i ), time-intensity (τi), and
functionality (ρ or θ) in shaping diversion ratios. In Corollary 2, we show that comparing the
relative cross-price elasticities across commodities with the relative diversion ratios isolates
the role of time shares. The reason is that the relative cross-price elasticities do not depend on
the relative time shares of the commodities. As a result, if some commodity k has a relatively
high diversion ratio but low cross-price elasticity as compared to some other commodity g, it
implies that the time share on k is large.

Corollary 2. Consider an increase in the price of PSN commodity j ∈ P. The ratio of
cross-price elasticities for PSN commodity k ∈ P and non-PSN commodity g ∈ Z \ P is given
by:

d ln zk/d ln pj

d ln zg/d ln pj
=

1
1−θ − 1

1−ρ

((
1 − ψH

P

)
−
(
τk −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

1
1−ρ

(
ψH

P +
(
τg −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

The ratio of diversion ratios (or, equivalently, of cross-price responses) for PSN commodity
k ∈ P and non-PSN commodity g ∈ Z \ P is given by:

Dkj

Dgj
= ψH

k

ψH
g

×
1

1−θ − 1
1−ρ

((
1 − ψH

P

)
−
(
τk −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

1
1−ρ

(
ψH

P +
(
τg −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

Proof. See Appendix A.4.2

In addition, the importance of time-intensity can be assessed by comparing cross-price elas-
ticities between goods with the same functionality versus those with different functionalities.
As we show in Appendix A.5, finding a large cross-price elasticity between two commodities
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that are functionally different (e.g. a PSN and a non-PSN commodity) would imply that they
are relatively time-intensive.

3 Demand for PSNs: Experimental Evidence

Our study draws on evidence from two field experiments. The first field experiment sought to
exogenously reduce users’ time on Facebook or Instagram and measure how they reallocated
that time to other activities. In this pricing experiment, we randomly offered financial incen-
tives to Facebook users to decrease their time on Facebook and to Instagram users to decrease
their time on Instagram. We tracked participants’ phone activity using an app installed on
their devices.

The second field experiment, initiated by Meta in 2013 and previously analyzed by Bryn-
jolfsson et al. (2024), is an ongoing study that exogenously varies users’ ad exposure on
Facebook and Instagram to assess its impact on time spent on these platforms. A randomly
assigned holdout group, which sees no ads, is compared to a control group identical in all
respects except ad exposure. In the parlance of Harrison and List (2004), our first field ex-
periment is classified as a framed field experiment; the second is a natural field experiment.
We now discuss the design and findings of these experiments in sequence.

3.1 Design of the pricing experiment

Recruitment and timeline of the experiment. We conducted the pricing experiment
from May 1 to July 1, 2023. Participants were recruited via ads on Facebook and Instagram,
third-party publishers, and online panels maintained by firms for internet-based market re-
search, a method used in similar studies (Allcott et al., 2022; Haaland et al., 2023). Recruit-
ment materials, detailed in Appendix C.1, avoided mentioning Facebook, Instagram, or usage
reduction.

Interested individuals were directed to a screening survey to confirm eligibility. Criteria
included being 18 or older, residing in the U.S., primarily using Facebook or Instagram on
an Android device (with sole access to that device), and having an average daily usage of at
least 15 minutes on Facebook or 10 minutes on Instagram over the prior 28 days, based on
Meta’s internal data. These thresholds ensured sufficient baseline usage for observing time
diversion, covering 97.8% of Facebook and 94.2% of Instagram engagement time.

Eligible participants were instructed to download a RealityMine app from the Google Play
Store, developed for passive device monitoring, and received $5 upon installation. They were
guided to enable activity tracking, which recorded time spent on all apps on their Android de-
vice. Participants who successfully installed the app, enabled tracking, and could be matched
to Meta’s data via email and Facebook or Instagram IDs were compensated an additional
$10, provided their actual usage met the daily criteria.

Recruitment occurred on a rolling basis from May 1 to May 23. Participants meeting
all requirements received $5 weekly during the pre-experiment period for providing at least
one day of device monitoring data, incentivizing retention while recruitment continued. Ran-
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domization was conducted on June 1 to ensure at least one week of baseline data for all
participants. The treatment period ran from June 4 to July 1, concluding the experiment
(see Appendix Figure D.1 for the timeline).

Experimental design. We conducted two concurrent experiments: one for Facebook and
one for Instagram. As detailed in Appendix D.2, participants were first assigned to either
the Facebook or Instagram experiment. Within each experiment, we then randomly allocated
participants to either the treatment or control group. On June 3, the day before the treatment
period began, participants were notified via the RealityMine app whether they were assigned
to the control group (“study group”) or the treatment group (“bonus group”). Those in the
treatment group were informed they would receive payments for reducing their average daily
use of either Facebook or Instagram below their baseline levels.

To establish each participant’s baseline, we identified the week with the highest average
daily use from the four weeks before the treatment period. For instance, a participant with
average daily use of 25 minutes in weeks 1, 2, and 3, and 35 minutes in week 4 would have a
baseline of 35 minutes per day. This baseline was rounded up to the nearest quarter hour. For
example, a participant with a high-week average of 35 minutes would have a compensation
baseline of 45 minutes, and payments would be based on reducing usage below this 45-minute
daily average.8

Participants in the treatment groups of both the Facebook and Instagram experiments
received $4 per hour (prorated for partial hours) for reducing engagement below their com-
pensation baseline. The $4-per-hour incentive was designed to be easily divisible, and par-
ticipants were informed they would earn $1 for each quarter-hour reduction in average daily
engagement per week (equivalent to $7 for each 15-minute reduction in average daily use of
Facebook or Instagram over a week), with a maximum of $125 per week in incentive payments.
Compensation for treatment group participants was calculated weekly and reset each week
during the study period. At the end of the four-week study, total incentive and participation
payments were tallied for each participant and disbursed via the RealityMine app.

Participants in the control groups received compensation for continued data provision via
their device monitor but faced no financial incentives to reduce engagement. Their weekly
compensation was set at one of three levels based on baseline engagement: $15 for low-
engagement users, $20 for medium-engagement users, and $25 for high-engagement users.9

This weekly compensation aimed to reduce attrition by offering financial incentives compara-
ble to those in the treatment groups.

During the treatment period, participants accessed a daily-updated “dashboard” via the
8The use of a compensation baseline set above the average daily use over the last 28 days does not affect

participants’ marginal incentives to reduce engagement because the incentive to reduce time spent is a constant
price per hour regardless of whether compensation is calculated relative to high-week average daily use or an
average based on the last 28 days. This method also minimizes the risk participants have had counterfactual
engagement above the compensation threshold such that they would have had to reduce engagement to the
threshold level before receiving compensation.

9For Facebook participants, engagement levels were less than 40 minutes, 40–89 minutes, and 90 or more
minutes. For Instagram participants, the engagement levels were less than 30 minutes, 30–59 minutes, and 60
or more minutes.
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RealityMine app, available through a link on the app’s home screen (see Appendix C.3).
For treatment group participants in the Facebook (Instagram) experiment, the dashboard
displayed: the experiment’s timeline, including the current week (of four total) and the day for
which data were current; the participant’s compensation baseline; their week-to-date average
daily use of Facebook (Instagram) based on Meta’s internal data; the projected incentive
compensation for the week if the week-to-date engagement level persisted; the maximum
possible incentive compensation (capped at $125 per week or based on zero engagement);
and the total compensation accrued to date. For control group participants, the dashboard
showed: the experiment’s timeline, including the current week and day; their week-to-date
average daily use of Facebook (Instagram); the fixed weekly compensation; and the total
compensation accrued to date.

As noted, we collected data on daily minutes spent on phone applications using the Re-
alityMine Android app. RealityMine records foreground usage, excluding inactive periods
exceeding 30 seconds, except for video-watching time. Data collection paused if the device
monitor was deactivated or during connectivity disruptions. To enhance data reliability, we
sent reminders to participants if their device monitor failed to transmit data for 24 hours.

The RealityMine data recorded participants using over 35,000 distinct apps during the
experiment. For manageability, we grouped these into fifteen categories, including the focal
apps (Facebook for the Facebook experiment and Instagram for the Instagram experiment),
other major apps like Snapchat, TikTok, and YouTube, and app categories defined by Re-
alityMine based on Google Play Store classifications. Additional details on the aggregation
categories are provided in Appendix D.1.10

The Facebook experiment included 3,500 participants, and the Instagram experiment in-
cluded 2,768 participants. As previously noted, we set minimum baseline usage thresholds of
15 minutes for Facebook in the Facebook experiment and 10 minutes for Instagram in the
Instagram experiment. Based on their baseline usage, participants could be eligible for the
Facebook experiment only, the Instagram experiment only, or both. Of the 3,500 Facebook
experiment participants, 83% were eligible for Facebook only, and 17% were eligible for both
experiments, aligned with Meta’s population data. Of the 2,768 Instagram experiment par-
ticipants, 41% were eligible for Instagram only, and 59% were eligible for both experiments,
compared to a target of 56% Instagram-only and 44% for both, also to reflect Meta’s popula-
tion data. The lower-than-targeted proportion of Instagram-only participants resulted from
recruitment challenges (see Appendix D.2 for a detailed discussion of how we arrived at these
sample sizes).

Randomization and Baseline Characteristics. Participants were assigned to either the
Facebook or Instagram experiment. Within each experiment, we randomly allocated half to
the treatment group and half to the control group, stratifying randomization by baseline usage

10The analysis excludes apps that primarily capture time from background activities rather than active
user engagement. These include screensaver apps displaying images or text, launcher apps organizing apps or
widgets on the home screen, and utilities such as background services, file management tools, and operating
system settings.
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of Facebook, Instagram, and Snapchat. We followed the re-randomization approach described
in List (2025) to ensure balance across demographics, baseline usage of other apps and app
categories, baseline Facebook friend count, and baseline Instagram follower and following
counts (see Appendix D.3 for more detail).

Tables 1 and 2 present the app categories considered in the Facebook and Instagram
experiments, respectively, along with their baseline usage by treatment group. As shown,
approximately 80% of the daily "Total Phone Minutes" for participants in our sample is spent
on the categories included in either experiment.11 Additional baseline characteristics are
balanced, as reported in Appendix Table D.2. Column (4) of the balance tables confirms no
statistically significant differences between treatment and control groups at baseline.

Table 1 presents the average daily usage of Facebook and Instagram in the Facebook
experiment, based on RealityMine data, alongside comparable data from Meta. RealityMine
estimates are lower than Meta’s due to off-phone usage and differences in handling periods
of inactivity. Table 2 provides similar data for the Instagram experiment, showing consistent
patterns with the Facebook experiment. To prevent substitution to other platforms, we used
Meta’s usage metrics for feedback and payments.

In the Facebook experiment, participants averaged 70.2 minutes daily on Facebook and 8.1
minutes on Instagram. In the Instagram experiment, participants averaged 42 minutes daily
on Facebook and 43 minutes on Instagram. These differences stem primarily from recruitment
criteria, which required minimum pre-period usage of Facebook for the Facebook experiment
and Instagram for the Instagram experiment. Participants in both experiments also spent
considerable time on Games, YouTube, TikTok, and Snapchat, despite no selection based on
usage of these apps.

Appendix Table D.3 compares the demographics and app usage of the Meta-based popu-
lation with the experimental samples. Males are under-represented in both the Facebook and
Instagram experimental samples. In the Facebook sample, younger users are over-represented,
while in the Instagram sample, they are under-represented. The middle age group is over-
represented in both samples, and older users are under-represented compared to their re-
spective target populations. "Single-homers" (users exclusively using Facebook or Instagram)
are under-represented in both samples relative to "multi-homers." Additionally, the Facebook
sample under-represents high-usage Instagram users, and both samples include fewer high-
usage users of their respective focal apps (Facebook for the Facebook sample, Instagram for
the Instagram sample) compared to the target populations.

To address non-representativeness, we reweighted the experimental samples to align with
the target population’s characteristics, as detailed in Appendix D.4. We constructed sample
weights for the analysis in Section 3.3 to account for differences between the recruited samples
and target populations. Specifically, we developed app usage weights to match the combined

11Browser apps are those used to access websites, such as Chrome or Safari. Communication apps are those
used for texting, such as SMS and Gmail. Entertainment apps pertain to leisure or having fun, such as Netflix
and Spotify. Game apps are video games. Lifestyle apps are those that define an individual’s lifestyle, for
example, Twitter, Reddit, or Pinterest. Productivity apps are meant to improve an individual’s efficiency such
as CashApp or DoorDash. Shopping apps are those that allow customers to browse or buy products from a
retailer, for example, Amazon, eBay, or Instacart.
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Table 1: Balance Usage in the Facebook Experiment

Treatment Arm

All
(1)

Control
(2)

Treatment
(3)

p-value test
(4)

Facebook Minutes 70.164 70.055 70.273 0.914
(1.001) (1.395) (1.437)

Facebook Minutes (Meta) 75.078 74.945 75.210 0.896
(1.015) (1.405) (1.465)

Instagram Minutes 8.113 8.280 7.946 0.631
(0.348) (0.497) (0.487)

Instagram Minutes (Meta) 8.528 8.617 8.439 0.810
(0.370) (0.507) (0.540)

Snapchat Minutes 3.536 3.508 3.565 0.887
(0.201) (0.304) (0.263)

YouTube Minutes 21.069 21.103 21.036 0.967
(0.801) (1.108) (1.158)

TikTok Minutes 15.139 15.259 15.018 0.856
(0.662) (0.894) (0.978)

Browser Minutes 62.041 61.882 62.200 0.866
(0.940) (1.354) (1.304)

Games Minutes 74.645 74.687 74.603 0.979
(1.633) (2.311) (2.308)

Communication Minutes 46.422 46.502 46.342 0.905
(0.668) (0.932) (0.957)

Entertainment Minutes 30.427 29.834 31.019 0.481
(0.840) (1.156) (1.220)

Lifestyle Minutes 16.622 16.792 16.451 0.712
(0.461) (0.658) (0.646)

Messenger Minutes 21.561 21.455 21.666 0.846
(0.543) (0.774) (0.760)

Productivity Minutes 18.968 18.975 18.962 0.987
(0.403) (0.567) (0.573)

Shopping Minutes 16.781 16.317 17.245 0.254
(0.407) (0.546) (0.603)

Other App Minutes 18.803 19.366 18.240 0.258
(0.498) (0.721) (0.688)

Total Phone Minutes 424.291 424.016 424.567 0.927
(3.009) (4.271) (4.241)

Observations 3,500 1,750 1,750

Notes: Table presents means and then standard errors in parentheses for the Facebook experiment sample.
Column (1) uses the full sample. Column (2) uses those who did not receive incentives to reduce Facebook
Usage. Column (3) uses those who do receive incentives to reduce Facebook usage. Column (4) reports
the p-value of a test of equal means across the two treatment groups. Data collected from RealityMine
unless otherwise stated.
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Table 2: Balance Usage in the Instagram Experiment

Treatment Arm

All
(1)

Control
(2)

Treatment
(3)

p-value test
(4)

Facebook Minutes 42.453 41.873 43.034 0.578
(1.043) (1.453) (1.497)

Facebook Minutes (Meta) 44.682 44.703 44.662 0.984
(1.048) (1.499) (1.465)

Instagram Minutes 42.862 43.370 42.353 0.543
(0.835) (1.236) (1.124)

Instagram Minutes (Meta) 47.046 47.520 46.572 0.603
(0.912) (1.376) (1.197)

Snapchat Minutes 4.967 5.004 4.931 0.917
(0.350) (0.513) (0.476)

YouTube Minutes 32.071 31.616 32.526 0.704
(1.195) (1.627) (1.751)

TikTok Minutes 20.672 20.528 20.816 0.879
(0.944) (1.376) (1.292)

Browser Minutes 59.306 59.576 59.035 0.789
(1.012) (1.406) (1.456)

Games Minutes 56.437 57.200 55.674 0.626
(1.565) (2.190) (2.235)

Communication Minutes 45.367 45.621 45.113 0.743
(0.774) (1.038) (1.148)

Entertainment Minutes 31.926 32.753 31.099 0.382
(0.946) (1.361) (1.315)

Lifestyle Minutes 21.842 21.275 22.408 0.393
(0.663) (0.914) (0.960)

Messenger Minutes 11.276 11.636 10.915 0.423
(0.450) (0.606) (0.666)

Productivity Minutes 17.392 17.529 17.256 0.760
(0.447) (0.546) (0.709)

Shopping Minutes 15.273 15.336 15.211 0.895
(0.477) (0.696) (0.653)

Other App Minutes 22.548 22.084 23.011 0.518
(0.717) (0.946) (1.078)

Total Phone Minutes 424.393 425.402 423.383 0.768
(3.420) (4.852) (4.822)

Observations 2,768 1,384 1,384

Notes: Table presents means and then standard errors in parentheses for the Instagram experiment sample.
Column (1) uses the full sample. Column (2) uses those who did not receive incentives to reduce Instagram
Usage. Column (3) uses those who do receive incentives to reduce Instagram usage. Column (4) reports
the p-value of a test of equal means across the two treatment groups. Data collected from RealityMine
unless otherwise stated.
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Facebook and Instagram usage in each experiment’s target population. As shown in Appendix
Table D.3, the reweighted samples more closely align with the target population’s baseline
usage and demographic characteristics.12

3.2 Treatment effects on time (re)allocation.

We first analyze the impact of incentives on focal app usage. Figure 1 presents a weekly time
series of average daily usage for the control and treatment groups. Panel (a) shows results for
the Facebook experiment, and Panel (b) shows results for the Instagram experiment. Without
incentives, control group usage may increase due to time effects, corrected beliefs about usage,
or heightened awareness from dashboard information. In the Facebook experiment, control
group usage rises by approximately 10 minutes (14%) to 80 minutes daily after the experiment
begins. In the Instagram experiment, control group usage increases by 8 minutes (19%) to
51 minutes. Conversely, treatment groups, facing a pecuniary cost for using the focal app,
reduced usage. In the Facebook experiment, treatment group usage drops by about 30 minutes
(58%), resulting in a 50.2-minute weekly difference between treatment and control groups. In
the Instagram experiment, treatment group usage falls by 25 minutes (60%) to 17.1 minutes,
yielding a 34.3-minute difference between groups. These differences are both substantial and
statistically significant.13

Figure 1: Changes in Focal App Usage Across Weeks
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Notes: Figure presents average daily usage for the focal app by week of the experiment and 95% confidence
intervals. Panel (a) displays Facebook usage for 3,500 users 16,719 user-week observations. Panel (b) displays
the Instagram usage for 2,768 users and 13,272 user-week observations

We next examine the effects on app categories. As noted earlier, the PSN category follows
the definition proposed by the FTC and the Competition and Markets Authority (CMA, 2020;
FTC, 2021). For studying diversion, the PSN category in Panel(b) includes diversion to the
non-focal app (e.g., Instagram in the Facebook experiment) and Snapchat. The Non-PSN
category encompasses all other phone apps not covered by the FTC and CMA definitions.
Off-phone time is a residual category capturing offline time and usage on other devices.

12Reweighted versions of the baseline tables appear in Appendix Table D.4 - D.6.
13Appendix Figure B.1 displays the treatment effects on the distribution of focal app usage.
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Figure 2 illustrates modest increases in the usage of other PSNs compared to the control
group. By the final week, other PSN usage rises by approximately 4 minutes in the Facebook
experiment and 9 minutes in the Instagram experiment. In contrast, non-PSN app usage
increases by about 31 minutes in the Facebook experiment and 14 minutes in the Instagram
experiment. Additionally, non-phone time grows by roughly 17 minutes in the Facebook
experiment and 13 minutes in the Instagram experiment.

3.3 Estimates of diversion ratios and cross-price elasticities

We utilize the pricing field experiment to estimate diversion ratios, as defined in equation (9) of
Section 2, and cross-price elasticities, which describe substitution patterns across commodities.
The diversion ratio from commodity j to i represents the proportion of reduced time on j,
due to an increase in pj , that is reallocated to i. Suppressing individual and time subscripts,
we denote treatment status by Tp ∈ {0, 1} and the average daily minutes per week on i by
zi. To estimate the diversion ratios, where j is either Facebook or Instagram and i ̸= j, we
employ the following Wald estimand:

E [zi | Tp = 1] − E [zi | Tp = 0]
E [zj | Tp = 1] − E [zj | Tp = 0] (10)

where the denominator represents the first-stage effect, capturing the own-price impact of
treatment on average daily user time. The numerator reflects the reduced-form effect, indicat-
ing the cross-price impact. To calculate the cross-price elasticity, we divide the reduced-form
effect by baseline usage.

We employ 2SLS to estimate Equation (10), incorporating week fixed effects and a vector
of pre-treatment characteristics, including demographics and baseline app usage, to enhance
precision.14 Standard errors are clustered at the individual level. Our primary analysis focuses
on weeks 2-4, after treatment group usage stabilizes. We compute separate diversion ratios
and cross-price elasticities for each app category. As these categories are mutually exclusive
and exhaustive, a one-minute reduction in time spent on the origin commodity is offset by a
one-minute increase across other categories, ensuring the diversion ratios sum to 1.

Own- and cross-price effects. Table 3 presents estimates of own-price effects, cross-
price effects, cross-price elasticities, and diversion ratios.15 The own-price effects demonstrate
that the pricing experiment significantly reduced time spent on Facebook and Instagram.
The cross-price effects indicate that this price-induced reduction led to substantial increases
in time spent on non-PSN commodities, including other apps and offline activities. Point
estimates suggest that nearly all individual app categories are substitutes for Facebook and
Instagram.

14Controls include gender, age group, region (northeast, midwest, south, west), recruitment source, Facebook
average friend count, Instagram average followers and followings counts, and baseline engagement on each of
the individual apps and app categories reported in Tables 1 and 2.

15Appendix D.5 shows that our results are robust to attrition.
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Figure 2: Changes in Substitute App Usage Across Weeks
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Notes: Figure presents the average daily usage for the different commodity characteristics by week of the
experiment along with 95% confidence intervals. Panel (A) presents average usage of combined Instagram and
Snapchat in the Facebook Experiment. Panel (B) presents average usage of combined Facebook and Snapchat
in the Instagram experiment. Panel (C) presents average usage of all apps other than Facebook, Instagram,
and Snapchat in the Facebook Experiment. Panel (C) presents average usage of all apps other than Facebook,
Instagram, and Snapchat in the Instagram Experiment. Panels (E) and (F) present average amount of time
spent off the phone for the Facebook and Instagram experiments, respectively. Facebook experiment panels
present time allocation data for 16,719 user-week observations for 3,500 unique users. Instagram experiment
panels present time allocation data for for 13,272 user-week observations for 2,768 unique users.

Diversion ratios. The diversion ratio estimates reveal the proportion of reduced time on
the origin commodity j reallocated to destination commodity i. A diversion ratio of one
(zero) indicates that all (none) of the reduced time on Facebook or Instagram shifts to that
commodity. Panel (a) of Table 3 shows that 55 percent of the reduced time is diverted to
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non-PSN commodities, with substantial shares redirected to offline activities (39 percent for
Facebook and 29 percent for Instagram). Diversion to other PSNs is limited, at 6 percent for
Facebook and 16 percent for Instagram.

These findings suggest that commodities requiring time can be close substitutes, even
if their functionalities differ. Panel (b) of Table 3 supports this view. For instance, while
Facebook and gaming apps serve distinct purposes, gaming exhibits the highest diversion ratio
for Facebook. Similarly, YouTube has the highest diversion ratio for Instagram, despite not
being included in the FTC’s market definition for these platforms due to differing functionality.
As shown in Proposition 2 of Section 2, the time-intensive nature of these commodities can
make them close substitutes to PSNs, even if consumers do not perceive them as directly
comparable or use them for the same purpose.

Relative importance of time shares, time-intensity, and functionality. As outlined
in Corollary 2, we can assess the role of time shares in diversion ratios by comparing di-
version ratio estimates (which depend on time shares) to cross-price elasticities (which do
not). Table 3 indicates that high time shares significantly drive the substantial diversion from
Facebook and Instagram to offline activities and certain online activities, such as gaming and
browsing. Conversely, the limited diversion to Snapchat results from its low time share, not
a small cross-price elasticity.

Table 3 further reveals that some commodities with high diversion ratios, such as YouTube
and notably TikTok, also exhibit large cross-price elasticities, despite their distinct features
and functionality. This suggests that high time intensity is a primary factor explaining the
significant diversion from Facebook and Instagram to these non-PSN commodities.

Specification checks. We assess the robustness of our diversion ratio estimates to alter-
native specifications. Appendix Table D.10 presents specification checks for the Facebook
experiment, and Appendix Table D.11 does the same for the Instagram experiment. Column
(1) in each table restates the results from our main specification. Columns (2)–(6) report
results for alternative specifications. Specifically, Column (2) adjusts the significance level for
multiple hypothesis testing, following List et al. (2019), with most estimates remaining signif-
icant at conventional levels. Columns(3) and (4) demonstrate robustness to different control
variable specifications. Column (5) shows that including the first post-treatment week does
not substantially alter the diversion ratio estimates. Column (6) indicates that missing usage
data for a small number of observations has minimal impact on our estimates. Further details
on each specification check are provided in Appendix D.6.
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Table 3: Main Results

Facebook Experiment Instagram Experiment
(1) (2) (3) (4) (5) (6)

Own/Cross Own/Cross
Price Diversion Cross-Price Price Diversion Cross-Price

Effects Ratios Elasticity Effects Ratios Elasticity

Panel (a): Aggregated

PSN Time 3.204∗∗∗ -0.057∗∗∗ 0.350∗∗∗ 5.512∗∗∗ -0.156∗∗∗ 0.156∗∗∗

(0.644) (0.012) (0.070) (1.314) (0.037) (0.037)
Non-PSN Time 30.795∗∗∗ -0.550∗∗∗ 0.094∗∗∗ 19.521∗∗∗ -0.552∗∗∗ 0.057∗∗∗

(5.261) (0.093) (0.016) (5.100) (0.145) (0.015)
Offline Time 22.014∗∗∗ -0.393∗∗∗ 0.021∗∗∗ 10.344∗ -0.292∗ 0.010∗

(5.448) (0.094) (0.005) (5.457) (0.150) (0.005)

Panel (b): Individual Apps

Facebook -56.013∗∗∗ 4.726∗∗∗ -0.134∗∗∗ 0.158∗∗∗

(2.414) (1.129) (0.032) (0.038)
Instagram 2.814∗∗∗ -0.050∗∗∗ 0.397∗∗∗ -35.377∗∗∗

(0.603) (0.011) (0.085) (2.101)
Snapchat 0.390∗ -0.007∗ 0.189∗ 0.785 -0.022 0.144

(0.207) (0.004) (0.100) (0.662) (0.019) (0.121)
Messenger 0.537 -0.010 0.027 -0.766∗∗ 0.022∗∗ -0.100∗∗

(1.112) (0.020) (0.056) (0.385) (0.011) (0.050)
TikTok 2.619∗∗ -0.047∗∗ 0.271∗∗ 3.711∗∗∗ -0.105∗∗∗ 0.182∗∗∗

(1.079) (0.019) (0.112) (1.405) (0.040) (0.069)
YouTube 4.724∗∗∗ -0.084∗∗∗ 0.207∗∗∗ 6.674∗∗∗ -0.189∗∗∗ 0.163∗∗∗

(1.783) (0.032) (0.078) (2.118) (0.061) (0.052)
Browser 5.332∗∗∗ -0.095∗∗∗ 0.085∗∗∗ 6.469∗∗∗ -0.183∗∗∗ 0.104∗∗∗

(1.899) (0.034) (0.030) (1.766) (0.051) (0.028)
Communication 3.195∗∗ -0.057∗∗ 0.074∗∗ -0.250 0.007 -0.006

(1.325) (0.024) (0.031) (1.374) (0.039) (0.032)
Entertainment 1.890 -0.034 0.069 0.201 -0.006 0.006

(1.596) (0.028) (0.058) (1.739) (0.049) (0.055)
Games 8.108∗∗ -0.145∗∗ 0.110∗∗ 1.022 -0.029 0.020

(3.429) (0.061) (0.046) (2.849) (0.080) (0.055)
Lifestyle 0.586 -0.010 0.036 1.306 -0.037 0.051

(1.418) (0.025) (0.086) (1.562) (0.044) (0.061)
Productivity 1.966∗∗ -0.035∗∗ 0.109∗∗ -1.276 0.036 -0.074

(0.889) (0.016) (0.049) (0.857) (0.024) (0.049)
Shopping 0.210 -0.004 0.014 0.443 -0.013 0.032

(0.866) (0.015) (0.057) (0.602) (0.017) (0.043)
Other 1.627 -0.029 0.087 1.989 -0.056 0.077

(1.043) (0.018) (0.056) (1.477) (0.042) (0.057)

F Stat. on instrument 39.22 33.97
Subjects 3,361 3,361 3,361 2,677 2,677 2,677
Observations 9,844 9,844 9,844 7,832 7,832 7,832

Notes: Significant at *10%, **5%, ***1%. Standard errors in parentheses are clustered at the individual
level. This table reports OLS and 2SLS estimates of regressions discussed in Section 3.3. Columns (1),
(2), and (3) report the results from the Facebook Experiment, and Columns (4), (5), and (6) report the
results from the Instagram experiment. Panel (b) reports the estimates from separate regressions for each
commodity where the dependent variable is weekly usage in the commodity. Panel (a) reports analogous
results but for aggregated commodity categories. The PSN category contains the non-focal Meta app and
Snapchat. The Non-PSN category contains all other apps and excludes off-phone time.
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Unweighted versus weighted results. Column (7) of Appendix Tables D.10 and D.11
highlight the value of Meta’s representative internal data on user characteristics. As de-
scribed in Section 3.1, these data enable us to reweight the experimental sample to match
the observable characteristics of the target population of all users. The unweighted sam-
ples underrepresent men, older Facebook users, younger Instagram users, and single-platform
users (those using only Facebook or only Instagram). Using Meta’s data, we reweight the
sample by age, gender, and baseline Facebook and Instagram usage, leveraging the observed
distributions in both the experimental sample and the representative internal data.

Column (7) of Table D.10 shows that unweighted results are generally similar to weighted
results, with a notable exception: without reweighting, the substitution between Instagram
and Facebook is overstated. The diversion ratio from Instagram to Facebook is 0.21 in the
unweighted data, compared to 0.13 after reweighting. This discrepancy arises because the
unweighted sample overrepresents dual users, who more readily substitute between the two
platforms.

External validity. A potential external validity concern is that iOS technical limitations
prevented us from measuring non-Meta app usage on iPhones, whereas our ideal study popu-
lation would include both Android and iOS users of Facebook and Instagram. This raises the
possibility that our Android-only sample may respond differently to exogenous price changes
compared to iOS users. While we cannot estimate cross-price effects for iOS users, we assessed
own-price effects for both Android and iOS users in a pilot experiment.

Detailed in Appendix E, the pilot experiment examined the impact of exogenous price
changes on Facebook and Instagram usage among 756 Android users and 641 iPhone users
over four weeks. As shown in Table E.2, the own-price effects for Android and iPhone users
were similar and statistically indistinguishable. These comparable treatment effects in the
pilot suggest no significant differences in diversion patterns between iOS and Android users.

Intertemporal substitution. As treated users know the experiment is temporary, they
might reallocate time not only across apps within a week but also across weeks for a given
app. Such intertemporal substitution could influence diversion ratio estimates if substitution
opportunities vary across apps. To explore this, Appendix Figure B.2 plots the average
daily usage of Facebook and Instagram for treatment and control groups before, during, and
after the experiment. No evidence suggests that the treatment group increases usage post-
experiment compared to the control group, indicating that treated users do not defer focal
app usage to the period after incentives end.

3.4 Holdout Experiment: Design and Results

We now turn to the second field experiment, initiated by Meta in 2013 and previously studied
by Brynjolfsson et al. (2024). This natural field experiment exogenously varies users’ ad load
on Facebook or Instagram and measures the resulting impact on their time spent on these
platforms.
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Description of the holdout experiment. Both Facebook and Instagram include a holdout
group. Users are randomly assigned to this group upon creating a new account, and Meta
tracks their engagement compared to a control group exposed to standard “production” ad
levels. Launched in April 2013 and still ongoing, this holdout experiment enables Meta to
assess the impact of ads on user engagement. Randomization ensures that holdout users are
identical to the control group, differing only in ad exposure. As of January 2023, approxi-
mately 0.5% of Facebook users were in the holdout group. The control group is about 7 times
larger than the holdout group. As of January 2023, there were 2,194,433 individuals in the
Facebook holdout group. The control group includes 15,348,759 users. On Instagram, the
sample includes a holdout group of 3,786,138 users and a control group of 7,562,901 users.

We obtain Meta data on ad exposure and engagement for both the control and holdout
groups in the Facebook and Instagram experiments. Ad load is defined as the percentage of ad
impressions relative to total impressions.16 Ad load values are normalized to reflect relative
magnitudes compared to Facebook’s ad load in June 2022. We observe average daily minutes
spent by users in the treatment and control groups during January 2023. Our primary focus is
the own-commodity response to ad load, as defined in (8), which captures users’ demand for a
commodity with respect to its price, the ad load. We suppress individual and time subscripts
and let Tα ∈ {0, 1} indicate treatment status, and αi denote the ad load on commodity i.
Letting j be either Facebook or Instagram, we use the following Wald estimand to measure
the own-commodity response on j:

E [zj | Tα = 1] − E [zj | Tα = 0]
E [αj | Tα = 1] − E [αj | Tα = 0] (11)

where the denominator represents the first-stage effect, capturing the impact of treatment on
ad exposure, while the numerator reflects the reduced-form effect, indicating the impact on
average daily user time. Due to the large sample sizes, standard errors are effectively zero
and thus omitted from Table 4.

Estimates of own-commodity responses. Table 4 presents estimates of equation (11) for
Facebook and Instagram, along with the corresponding first-stage and reduced-form results.
The ad load change in Column (1) is normalized relative to Facebook’s ad load in June 2022.
By design, the control group experiences greater ad exposure than the treatment group.

Reduced-form estimates in Column (2) show that users reduce time spent on the platform
in response to increased ad load. Despite the control group facing a 100 percent higher ad
load than the treatment group, the percentage decrease in usage is relatively small for both
Facebook and Instagram. Our Facebook estimates align closely with those of Brynjolfsson
et al. (2024), who analyzed the same experiment over an earlier period.

Column (3) reports the own-commodity responses from equation (11). On average, users
exposed to typical production-level ad impressions reduce daily Facebook usage by 2.0 minutes
and Instagram usage by 0.62 minutes. These estimates yield an elasticity of user time to ad
load of approximately 0.04 for Instagram and 0.09 for Facebook.

16Impressions are measured as ViewPort View (“VPV”) impressions, counted when content is visible for at
least 250 milliseconds, either fully visible or covering at least 50% of the screen height.
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Table 4: Ad Holdout Experiments

First-Stage Reduced-Form Wald Estimate
Outcome variable: Ad load User Time

(1) (2) (3)

% Min. % Own-
Resp.

Implied
Elast.

Panel (a): Facebook

Estimates -1.0 -100 2.0 9.0 -2.0 0.09

Panel (b): Instagram

Estimates -0.74 -100 0.46 4.1 -0.62 0.04

Notes: Columns (1)-(2) report treatment effects calculated by taking the difference in means between
treatment and control group. The treatment group is composed of a randomly selected set of users who
are not exposed to ads on Facebook. The own-commodity response in Column (3) is a Wald estimate
obtained by taking the ratio of the treatment effect on user time to the treatment effect on ad load. The
implied elasticity in the last column multiplies the Wald estimate by the ratio of average user time to
average ad load in the control group. Ad load in (1) is defined as ad impressions as a percent of total
impressions in June 2022. The reported values for ad load are normalized to reflect relative magnitudes
compared to Facebook’s ad load in June 2022. For Facebook, the measure of user time in (2) is based on
U.S. data as of January 2023 and restricted to users with an identified gender and age group and a primary
OS of Android or iOS. Time use excludes FB messenger and includes inactive users. For Instagram, the
measure of user time in (3) and (2) includes U.S. and other countries as of June 2022. It also includes
inactive users.

Choice of estimation sample. The holdout field experiment includes both Android and
iOS users, whereas the pricing field experiment is limited to Android users, raising potential
concerns about the comparability of the estimation samples. For the Facebook holdout ex-
periment, we observe users’ primary operating system, enabling us to replicate the analysis
in Table 4 separately for Android and iOS users. Results, presented in Appendix Table B.1,
show that the elasticity of user time to ad load on Facebook is approximately 0.09 for both
Android and iOS users.

Non-linearity of demand. Table 4 provides estimates of the average elasticity of demand
with respect to ad load. Unless demand is log-linear in ad load, this elasticity varies with ad
load levels. In Sections 4 and 6, we adopt a linear demand system, which allows elasticity
to vary with ad load but assumes a constant slope, imposing a restrictive form. To test for
demand linearity in ad load, we analyze a third experiment. In June 2023, Facebook reduced
its ad holdout group size. Approximately half of the users removed from the holdout group
were exposed to the same ad load as non-holdout users (fully treated), while the remaining
users formed a "partially treated" group, seeing 39% of the fully treated group’s ad load. We
compare ad exposure and time use of both treated groups to users remaining in the holdout
group, now labeled the "control group" in this holdout deprecation experiment.

Panel (a) of Figure 3 illustrates the increase in ad impressions per minute for the two
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treated groups, normalized relative to ad impressions in week 3 for the fully treated group.
After full implementation, the partially treated group is exposed to 39% of the ad load of the
fully treated group. Panel (b) shows the average daily time spent on Facebook (among active
users) for the treated and control groups. Randomization ensures nearly identical time use
before the experiment. Post-experiment, both treated groups reduce their Facebook usage
compared to the control group, with the fully treated group showing a larger decrease than
the partially treated group. Due to the gradual rollout, the full response emerges over a few
weeks.

Table 5 uses data from Figure 3 to estimate the own-commodity response to ad load for
the fully treated and partially treated groups separately, relative to the control group. We
apply the Wald estimand defined in equation (11) to each treated group, yielding estimates
of the average own-commodity response across different segments of the demand curve. The
results show an own-commodity response of approximately 3.5 for both groups, supporting a
linear demand model. A demand slope of 3.5 implies varying elasticities: 0.023 at the ad load
level of the partially treated group and 0.063 at the level of the fully treated group.

Figure 3: Responses to Release from Ad Holdout Group.
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(b) Average daily time use among active users.

Notes: Average time spent and relative ad impressions per minutes on Facebook across three randomly
selected groups of users. Reported ad impressions are normalized to reflect relative magnitudes compared to
ad impressions in week 3 for the fully treated group. The control group is the holdout group: a random
sample of users who see no ads on Facebook. The fully treated group is a random sample of users, originally
placed in the holdout group, who started facing standard production levels of ad load. The partially treated
group is a random sample of users, originally placed in the holdout group, that started seeing a bit less than
40 percent as many ads as the fully treated group. The official release was on June 15 2023, but we see a
(very) slight increase in ad load already on June 8 for the partially treated group, and on June 13 for the
fully treated group. Therefore, week 0 corresponds to the week of June 5 - 11. Average daily time use is
measured as total time spent in the group divided by the number of active users that day. A user is active if
they log into Facebook that day.

4 Implications for consumer benefits and costs of PSNs

We now consider implications of the empirical results in Section 3 for the costs and benefits
of PSNs to users. In both the pricing and holdout experiments, a small share of users is
treated. Therefore, we would expect both the behavior of users outside of the experiment and
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Table 5: Release from Ad Holdout Experiment (Facebook)

First-Stage Reduced-Form Wald Estimate

Outcome variable: Ad Impressions
per Minute User Time

(1) (2) (3)

% Min. % Own-
Resp.

Implied
Elast.

Panel (a): Partially treated group (relative to control)

Estimates 0.39 100 -1.34 -2.3 -3.49 0.02

Panel (b): Fully treated group (relative to control)

Estimates 1.0 100 -3.79 -6.9 -3.79 0.07

Notes: Columns (1)-(2) report treatment effects calculated by taking the difference in means between
treatment and control groups. Reported ad impressions per minutes are normalized to reflect relative
magnitudes compared to ad impressions in the post-experiment period for the fully treated group. The
control group is a randomly selected set of users who remain in the holdout group. The fully treated
group is a random sample of users, originally placed in the holdout group, who started facing standard
production levels of ad load. The partially treated group is a random sample of users, originally placed
in the holdout group, that started seeing a bit less than 40 percent as many ads as the fully treated
group. The own-commodity response in Column (3) is a Wald estimate obtained by taking the ratio of
the treatment effect on user time to the treatment effect on ads per minute. The implied elasticity in the
last Column multiplies the Wald estimate by the ratio of average user time to average ad impressions in
the treated group. The official release was on June 15 2023, but we see a (very) slight increase in ad load
already on June 8 for the partial release group, and on June 13 for the full release group. Therefore, week 0
corresponds to the week of June 5 - 11. The pre-release period includes three weeks of data (between May
15 and June 4). The post-release period includes 13 weeks covering June 25 to September 17. Average
daily minutes are per active user. An active user is a user that logged into Facebook that day.

the (pricing) behavior of competing platforms to remain approximately unaffected. Thus, the
two experiments are informative about the demand and individual willingness-to-pay (WTP)
for Facebook and Instagram holding the behavior of other users and price of other platforms
fixed.17

Market demand. Suppose that individual demand for commodities zi (p, α) aggregate into
a linear demand system. Formally, let Zi (p, α) denote total time spent by all users on com-
modity i as a function of vectors of prices p and ad loads α:

Zi (p, α) ≡ ãi − dii × (pi + κiαi) +
∑
j ̸=i

dij × (pj + κjαj) ∀i ∈ Z (12)

Given observed prices pc and ad loads αc, we can define demand at current equilibrium
Zc

i ≡ Zi (pc, αc).

The demand system in (12) imposes two key restrictions. First, responses to ad load on
i are proportional to the corresponding price responses by κi. This formulation is consistent

17See Bursztyn et al. (2024) for an analysis of how consumer surplus estimates may be affected by consump-
tion externalities between Facebook users.
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with the additive separability between zi and ni in Section 2, which gives us the invariance of
diversion ratios to either a change in price or ad load (see Proposition 1).

The second key restriction is that the demand system is linear in prices. A linear specification
is frequently used in merger analysis, both in economic research (e.g. Froeb and Werden
(1992); Shapiro (1996); O’Brien and Wickelgren (2003); Hausman et al. (2011)) and by prac-
titioners such as the FTC (e.g. Nelson (2015)) or the European Commission.18 Reassuringly,
the empirical evidence from the holdout experiment presented in Section 3.4 suggests linearity
is broadly consistent with observed responses to changes in ad load of varying magnitude.

Identification. Under the assumption that the demand system is linear in prices, the own-
and cross-price effects reported in Table 3 divided by pj = 0.067 directly identify the own-
and cross-price effects dii and dij . Similarly, the own-commodity responses from the holdout
experiments reported in table 4 identify diiκi. Thus the disutility of each ad κi is identified
from the ratio of responses to ad holdout and pricing experiment. Consistent with both
experiments, we treat ad load and price on other commodities constant. As a result, we
can combine these estimates of diiκi with the observed current consumption Zc

i and observed
levels of ad load αc

0 and αc
1 to identify the intercept ãi +∑

j≥2 dij × (pj + κjαj).

Consumer surplus and costs. The gross consumption value of platform i can be decom-
posed into the consumer surplus and the cost paid by the user. Given a monetary price of zero,
the cost to users corresponds to the dis-utility stemming from watching ads. The consumer
surplus measures the net value derived by the average user. It can be measured as the area
under the inverse demand curve, between zero and the current quantity consumed. Using
(12) and the fact that the current monetary price pc

i = 0, gross benefits can be expressed as:

Gross benefit of i = 1
2

(Zc
i )2

dii︸ ︷︷ ︸
CS of i

+ κiα
c
i × Zc

i︸ ︷︷ ︸
Cost of ads on i

(13)

Results. Letting 0 index Facebook and 1 index Instagram, the estimates in Table 3, suggest
d00 = 836 and d11 = 528. Using (13), we find an average daily consumer surplus of $3.37
per user for Facebook. The latter corresponds to an average consumer surplus of $94 over a
four week period. Using a similar reasoning, we obtain an estimated average daily consumer
surplus of $2.10 per user for Instagram. The latter corresponds to an average consumer
surplus of about $59 over a four week period.

Using (13) and the ratio of responses to ad holdout and pricing experiment, we find that ad
load is equivalent to a daily tax per user of α0κ0 ×Zc

0 = $0.68 on Facebook and α1κ1 ×Zc
1 =

$0.19 on Instagram. The latter numbers correspond to a cost of $19.0 over a four week period
for Facebook and $5.5 for Instagram. Thus, comparing the cost of ads to the gross benefit,
we find that Facebook captures only about 17% of its consumption value, while Instagram
captures about 8%. Since both platforms choose an ad load in the inelastic range of the
demand curve, the consumer surplus becomes large.

18Valletti and Zenger (2021) p. 188 “In merger control practice, the European Commission has often assumed
linear demand for the calibration of price effects.”
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Discussion. The large consumer surplus raises the question of why the platforms choose an
ad load in the inelastic range of the demand curve. In the standard model (with one-sided
markets), no profit maximizing firm would ever fix the output for its product at any level
where demand for its product is inelastic.19 In the remainder of the paper, we will develop
and apply a model with three distinct mechanisms that each could rationalize why platforms
choose an ad load in the inelastic range of the demand curve. The first is network externalities,
which may lead aggregate demand to be more elastic than suggested by the estimates from
the ad holdout experiment. Therefore, the profit maximizing level of ad load may be lower.
The second is a two-sided market. Facebook and Instagram are best characterized as two-
sided platforms where users and advertisers interact. Technology and demand conditions
on the advertising market may lower the profit maximizing level of ad load. The third is
substitution in the advertisement market. Internalizing the possible diversion of advertisers
between Facebook and Instagram may lower the profit maximizing level of ad load.

5 A Model of Two-Sided Media Platforms

5.1 Model

We model Facebook and Instagram as two-sided media platforms where users and advertisers
interact. Our model follows closely standard models of media platforms such as Anderson and
Peitz (2020), but allows for non-zero diversion ratios between platforms on the advertising
side, consistent with user multi-homing as in Anderson et al. (2017).

Consistent with data (and similar to Anderson and Peitz (2020)), we assume that the
platforms earn revenue exclusively from advertising and charge no monetary fee to users.
Facebook and Instagram set ad load so as to maximize profit. Formally each platform’s profit
is given by:

πi (α) ≡ [Ri (α) − ci] × αiZi (α) (14)

where Ri (α) is the average revenue per ad impression on platform i, ci ≥ 0 is the marginal
cost per ad, and Zi (α) is total aggregate user time. Total number of ad impressions is
QA

i (α) ≡ αiZi (α). We will now specify the user demand Zi (α) and advertising revenue
Ri (α), before turning to the firm’s problem and the optimal ad load.

5.1.1 User Demand

We assume that demand is downward-sloping ∂Zi
∂αi

≤ 0 and allow for platforms to be substitutes
from the point of view of users ∂Zi

∂αj
≥ 0. While the empirical analysis will assume linear

demand, our theoretical results do not depend on this assumption. In this section, we therefore
allow the demand function to be potentially non-linear in ad load.

19In Appendix F, we compute what the optimal ad load of Facebook and Instagram would have been if one
assumes a one-sided market, no social multiplier, and a constant marginal cost. These ad loads are 7-10 times
larger than those we observe in the data.
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We also allow for the possibility that, due to network effects, aggregate demand faced by
the platform Zi (α) is more elastic than the sum of individual demands holding other users’
behavior constant Zi (α). The social multiplier, µi ≥ 1, captures the importance of network
effects:

Zi (α) ≡ hi + µiZi (α) (15)

where hi ≡ (1 − µi)Zc
i is a constant that ensures Zi (αc

i ) = Zc
i . Meta documents recognize

the possibility that their internal estimates of individual responses to ad load understate the
elasticity of aggregate user time because of the possibility that µi > 1.20

5.1.2 Advertising Revenue

The platforms raise revenue from each ad impression. We assume that average revenue per
ad is given by:

Ri (α) ≡ λi (αi) × Pi

(
QA
)

where QA =
(
QA

0 , ..., Q
A
N

)′
≡ αZ (α), ∂λi

∂αi
≤ 0, ∂Pi

∂QA
i

≤ 0, and ∂Pi

∂QA
j

≤ 0 ∀j ̸= i. This
specification of the revenue function assumes that average revenue per ad of platform i is
weakly decreasing in i’s quantity of ad impressions QA

i , in i’s ad load, αi (holding QA
i fixed),

and in the quantity of ad impressions on platforms other than i.
There are two reasons we allow for a downward sloping demand for ads on a given platform

by letting Ri be decreasing in QA
i . The first is to capture that as the platform increases the

number of ads, the new ads they show are lower ranked ads and less relevant. This “composi-
tion effect" leads to a negative relationship between the number of ad impressions and average
revenue per ad. Such a composition effect is recognized in Meta’s own analyses of advertising
prices and revenues.21 The second reason is that advertisers may have heterogeneous will-
ingness to pay for ads on a given platform, even in the absence of composition effects. As
a consequence, the platform may face a downward sloping demand for ads, resulting in a
negative relationship between the number of ad impressions and average revenue per ad.

The motivation for assuming that Ri is weakly decreasing in αi is to capture that users
may respond to increased ad load by reducing their propensity to click on or interact with ads,
a phenomenon known as ‘ad blindness’ (CMA, 2020). Meta recognizes that user engagement
with ads (e.g., as measured by the click-through rate) decreases when a user has higher ad
load.22

The reason for assuming that Ri is weakly decreasing in the quantity of ad impressions
on platforms other than i is to let the platforms be substitutes from the point of view of
advertisers. If platforms are substitutes, then an increase in the number of ads sold by one

20“It is possible that randomized experiments underestimate the cost of ad load because they do not account
for network effects." (Meta, Internal Doc., 0143, at 945)

21“As we increase ad load, new ads we show are lower ranked ads and less relevant. They have lower
conversion rate and thus CPM.” (Meta, Internal Doc., 0123a); “Increasing ad load increases revenue but each
extra ad is always the next best ad.” (Meta, Internal Doc., 0123b)

22“We know that when you increase ad load you get a less-than-proportionate increase in conversions even
if the quality of ads is the same.” (Meta, Internal Doc., 0119, at 680)
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platform may divert some advertiser to another platform and, therefore, increase its revenue.
Such diversion between platforms in the advertising market is ruled out by the assumption
that users single-home in Anderson and Peitz (2020). Our model allows users to be be single-
or multi-homers.

5.2 Optimal ad load in the absence of the merger

Each platform i is assumed to choose ad load to maximize the profit function (14), taken
as given the ad loads of the other platforms. To succinctly express the resulting first order
conditions, it is useful to introduce some notation: Let εZ

i ≡ −∂ ln Zi
∂ ln αi

≥ 0 denote the elasticity
of user time to own ad load, εZ

ji ≡ ∂ ln Zj

∂ ln αi
≥ 0 denote the cross-price elasticity of user time,

εA
i ≡ −1/( ∂ ln Pi

∂ ln QA
i

) ≥ 0 denote the elasticity of residual advertiser demand, εA,Inv
ji ≡ − ∂ ln Pj

∂ ln QA
i

≥
0 denote the inverse cross-price elasticity of advertiser demand, and ξi ≡ − ∂ ln λi

∂ ln αi
denote the

degree of ad-blindness.
As before, let us index Facebook by 0 and Instagram by 1. Given this notation, the first

order conditions can be expressed as:

f
(
αd
)

≡

f0
(
αd
)

f1
(
αd
) =

(
0
0

)
(16)

where

fi (α) ≡
(

1 − ci

λiPi
− 1
εA

i

)
×
(

1 − εZ
i

)
− ξi −

∑
k ̸=i

εZ
ki × εA,Inv

ik for i = 0, 1. (17)

Note that Pi

(
QA

i

)
, and the elasticities εA

i , εZ
i , εA,Inv

ik , and εZ
ki may generally vary with ad

load so that f (.) is a non-trivial function of α. The term ∑
k ̸=i ε

Z
ki × εA,Inv

ik in (17) reflects
that i takes into account that the number of ads sold on other platforms will depend on its
own choice of ad load because it affects the allocation of user time across platforms.

To understand the determinants of the optimal ad load, it is useful to define the semi-
elasticity of user time to own ad load as σZ

i ≡ −∂ ln Zi
∂αi

≥ 0, and the semi-elasticity of user
time holding networks constant as σZ

i ≡ −∂ ln Zi
∂αi

≥ 0. Evaluated at the observed equilibrium
Zc

i , it follows from (15) that we can write the semi-elasticity as σZ
i = µi × σZ

i . This allows us
to re-express (16) as:

αd
i =

1 −
ξi +∑

k ̸=i ε
Z
ki × εA,Inv

ik

1 − ci
λiPi

− 1
εA

i

× 1
µiσZ

i

for i = 0, 1 (18)

Equation (18) suggests the optimal ad load is decreasing in the social multiplier (µi), the
degree of ad-blindness (ξi), the inverse elasticity of residual demand in the advertising market
(1/εA

i ), the marginal cost per ad (ci), and the semi-elasticity of individual user time to ad
load holding networks constant (σZ

i ).
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5.3 How a merger affects incentives to set ad load

In reality, Facebook and Instagram are jointly owned. We assume that Facebook and Insta-
gram then set ad load to maximize their joint profit:

max
α0,α1

[λ0P0 − c0]α0Z0 + [λ1P1 − c1]α1Z1

Let αm ≡ (αm
0 , α

m
1 ) denote the optimal ad load under a merger. The first order conditions

can then be expressed as:

h (αm) ≡
[
h0 (αm)
h1 (αm)

]
=
(

0
0

)
. (19)

where for i = 0, 1

hi (α) ≡
(

1 − ci

λiPi
− 1
εA

i

)(
1 − εZ

i

)
− ξi −

∑
k ̸=i

εZ
ki × εA,Inv

ik︸ ︷︷ ︸
≡fi(α)

+ λjPjαjZj

λiPiαiZi

(
εZ

ji

(
1 − cj

λjPj
− 1
εA

j

)
− εA,Inv

ji

(
1 − εZ

i

))
︸ ︷︷ ︸

≡gi(α)

(20)

Equation (20) consists of two distinct components: the first-order conditions when the plat-
forms are not merged, fi(α), and the change in first-order conditions due to the merger,
gi(α). Letting g(α) ≡ [g0 (α) , g1 (α)]′, Proposition 3 provides a first-order approximation to
the change in ad load induced by a merger between Facebook and Instagram. The effect of a
de-merger is symmetric.

Proposition 3. If h = f + g is invertible, then a first-order approximation of the change in
ad load induced by a merger is given by:

∆α = −
(
∂f

∂α

(
αd
)

+ ∂g

∂α

(
αd
))−1

· g
(
αd
)

Proof. The proof follows Jaffe and Weyl (2013). Since f
(
αd
)

= 0, h
(
αd
)

= g
(
αd
)

≡ r.
We want to find αm (the equilibrium ad load under a merger) such that h (αm) = 0. If h is
invertible, then

αm − αd = h−1 (0) − h−1 (r) =
(
∂h−1

∂h
(r)
)

(0 − r) + O
(
∥r∥2

)
≈ −

(
∂f

∂α

(
αd
)

+ ∂g

∂α

(
αd
))−1

· g
(
αd
)

As shown in Proposition 3, the effect of a merger on each αi depends crucially on g
(
αd
)
. It
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contains two opposing effects on the change in ad load induced by a merger between platform
i and j.23 The first effect arises because non-zero user diversion between i and j creates an
incentive to increase ad load. This is because some of the reduction in users and ad revenue
following an increase in ad load by i will be re-captured by j. The second effect arises because
non-zero user advertiser diversion between i and j gives an incentive to lower ad load. The
reason is that the reduction in ads and ad revenue following a decrease in ad load by i will
increase the demand of advertisers and the ad price on j.

The overall effect of a merger on the ad load is theoretically ambiguous. It depends not
only on the size of the diversion ratios of users and advertisers, but also on the elasticity
of demand of both users and advertisers. The incentive from the user-side to raise ad load
on platform i is proportional to

(
1 − cj/λjPj − 1/εA

j

)
. Importantly, it is increasing in the

elasticity of advertiser demand to ad price on platform j. With (im)perfectly elastic advertiser
demand, an additional user minute to platform j would generate as much (less) ad revenue as
the average user minute at j, and, therefore, create strong (weak) incentives for i to increase
ad load in response to the merger. The incentive from the advertiser-side to decrease ad load
on platform i is proportional to

(
1 − εZ

i

)
. Importantly, it is declining in the elasticity of user

demand to ad load on platform i. With inelastic user demand, a decrease in the ad load of
platform i will cause a large decline in the number of ads it sells, and, therefore divert many
advertisers from i to j. (In)elastic user demand therefore creates weak (strong) incentives for
i to decrease ad load in response to a merger.

5.4 Taking the model to the data

We now describe how to take our model to the data, providing identification arguments in
the text while summarizing the moments used to quantify the parameters of interest in Table
6.

The identification argument consists of three steps. We begin by showing how internal data
from Facebook and Instagram allows us to construct measures of the social multipliers (µi), the
ad blindness (ξi), and the marginal cost (ci), as well as the ad loads, user time, and ad prices
in the current equilibrium (αc

i , Z
c
i , and Rc

i ). Next, we show how to combine these measures
with the pricing and holdout experiments to identify the parameters determining user demand
(ai, bii, and bij). Lastly, we explain how the own-price effects on advertiser demand (β00 and
β11) then can be recovered if one knew or assumed the magnitude of the cross-price effects
in the ad market (β01 and β10). The argument is that the observed equilibrium choices of ad
load by Facebook and Instagram contain information about the demand they must face in
the advertising market.

The only unknown parameters are then the cross-price effects in the ad market.24 Our
23The result that “factors that depress price on one side of the market tend to raise price on the other side”

(Jullien et al., 2021) is well known in theoretical work on mergers between two-sided platforms. It is often
referred to as the “seesaw principle” (Rochet and Tirole, 2006). In our context, the price is the ad load.

24Strictly speaking, the analysis also depends on the term
∑

k ̸=i
εZ

ki × εA,Inv
ik . In practice, however, this

term plays little if any role in the results of the merger analysis. The reason is that it enters in the same way
in the first order conditions both with and without the merger. Therefore, it only matters for the effects of the
merger through non-linearities. In the baseline analysis, we assume ad-side diversion DA

ik is zero if user-side
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data do not allow us to quantify these parameters. We therefore present results for different
values of the cross-price effects (β01, β10) corresponding to a wide range of diversion ratios in
the ad market, from no diversion to full diversion from Instagram to Facebook. As a result,
we obtain lower and upper bounds on the quantities of interest.

Table 6: Mapping from Data Moments to Model Parameters

Model Parameter Mapping Data Moments
Panel A: User Demand

Social multiplier:
µi = µ̂i

Meta internal estimate:
µi = 1.5 µ̂i = 1.5

b00 = (ρ̂00 × Zc
0) 1

αc
0

b11 = (ρ̂11 × Zc
1) 1

αc
1

Elasticity of user time to
ad load (see Table 4):

ρ̂00 = 0.09
Own-commodity: ρ̂11 = 0.04

b00 = 0.40
b11 = 0.12

Current engagement
(billion hours):

Zc
0 = 4.47

Zc
1 = 2.25

Current ad load:
αc

0 = 1.00
αc

1 = 0.74

Cross-commodity: Diversion ratios
(see Table 3):

b01 = 0.02 b01 = D̂U
01 × b11 D̂U

01 = 0.13
b10 = 0.02 b10 = D̂U

10 × b00 D̂U
10 = 0.05

Intercepts:
a0 = 3.37 a0 = Zc

0
µ0

+ b00 × αc
0 − b01 × αc

1

a1 = 1.57 a1 = Zc
1

µ1
+ b11 × αc

1 − b10 × αc
0

Panel B: Other Parameters

Ad-blindness:
ξi = ξ̂i

Meta internal estimate:
ξi = 0.2 ξ̂i = 0.2

Ad prices: Gross adv. revenue:
P c

0 = 0.673 P c
0 = Rc

0/Zc
0

αc
0

1−ξ0 Rc
0 = $3, 009 (million)

P c
1 = 0.651 P c

1 = Rc
1/Zc

1
αc

1
1−ξ1 Rc

1 = $1, 158 (million)

Marginal cost: Meta’s cost share of
revenue:

c0 = 0.15 c0 = si × (αc
0)−ξ0P c

0 si = 0.22
c1 = 0.15 c1 = si × (αc

1)−ξ1P c
1

Social Multipliers. Meta estimates that the multiplier on Facebook µ0 is 1.5, meaning that
the aggregate effect of ad load on time spent is 50% larger than the average impact observed
at an individual level.25 We are not aware of any similar estimates for Instagram and thus
assume µ0 = µ1. We evaluate the sensitivity of the results to a wide range of other values of

diversion DU
ki is nonzero for platforms other than Facebook and Instagram. Empirically, the results barely

change if we relax this simplifying assumption.
25See Meta, Internal Doc. (0051) at 594.
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µi. Note that µi = 1 corresponds to no network effects.

Ad blindness. Meta estimates that a 1% increase in ad impressions decreases the average
click-through rate (“CTR”) by about 0.2%.26 Assuming a constant elasticity, this estimate
suggests λi (α) = α−ξi with ξi of 0.2. We evaluate the sensitivity of the results to other values
of ξi.

Current ad load and user engagement. Estimates of current ad load are from Table 4.
In June 2022, total user time was Zc

0 = 4.47 billion hours on Facebook and Zc
1 = 2.25 billion

hours on Instagram.27

Current price per ad. In June 2022, Meta reports a gross advertising revenue Rc
0 = $3, 009

million on Facebook and Rc
1 = $1, 158 million on Instagram. This gives a price of P c

0 = 0.673
and P c

1 = 0.651 since P c
i = Rc

i /Zc
i

αc
i

1−ξi
.

Marginal cost per ad. According to public financial filings, Meta’s variable cost share of
revenue in 2022 was 22%.28 We therefore assume a marginal cost of 22% implying c0 = 0.15
and c1 = 0.15. We evaluate the sensitivity of the results to other values of marginal cost.

User Demand. Inserting the linear demand function from (12) in (15), we obtain the
following user demand in terms of total user minutes per month:

Z0 = µ0 × (a0 − b00α0 + b01α1)
Z1 = µ1 × (a1 − b11α1 + b10α0)

where, letting Ni be the number of users on platform i, ai ≡ hi
µi

+ ãiNi, bii ≡ diiκiNi, and
bij ≡ dijκjNi. We refer to Section 4 for how ãi, bii, bij , κi, and κj are identified. The number
of users Ni is known from internal Meta data on observed total user engagement in June 2022.

Advertisers’ Demand. We assume that advertiser demand is linear in the price of adver-
tising.

α0Z0 ≡ QA
0 = x0 − β00P0 + β01P1

α1Z1 ≡ QA
1 = x1 − β11P1 + β10P0

If one knew or assumed the values of the cross-price effects in the advertising market,
{β01, β10}, one could identify the parameters of advertisers’ demand, {β00, β11} from the
constraint that the model rationalizes the current equilibrium. The intuition is that the
observed equilibrium level of ad load contains information about the demand that plat-
forms must be facing on the advertising market. The identification argument is the
following: consider the vector of first-order conditions h (.) from (19) as a function of

26“CTR decreases by about 0.2% for each 1% increase in Impressions[.] There maybe [sic] several reasons
for this from increased ad blindness to placing the same ‘good’ ad at lower positions due to more slots.” (Meta,
Internal Doc., 0122)

27Source: Meta, Internal Doc. (0170a,b)
28Meta’s 10-K (p. 69) reports that the global cost of revenue in 2022 was $25.2 billion compared to revenue

of $116.6 billion. That equates to a cost margin of 22%. The global cost of revenue includes all cost incurred
in producing, marketing, and distributing a product.
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both the level of ad load α and model parameters h ≡ h (α, β00, β11; Γ), where Γ ≡
(ξ0, ξ1, µ0, µ1, b00, b11, b01, b10, a0, a1, c0, c1, β01, β10)′ is a vector of known parameters. Next
we find the values of {β00, β11} s.t.

h (αc, β00, β11; Γ) = 0 (21)

We confirm empirically that, given the values of Γ that we consider, there exists a unique set
of values (β00, β11) that satisfies (21).

The only remaining parameters that we need to know are (β01, β10). Unfortunately, our data
does not allow us to recover the cross-price effects in the ad market. We therefore present
results for different values of (β01, β10), corresponding to a wide range of diversion ratios in
the advertising market from no diversion to full diversion from Instagram to Facebook. As
a result, we obtain lower and upper bounds on the quantities of interest. In our baseline
specification we compute these bounds under the assumption that the cross-price responses
are symmetric β01 = β10. This assumption could for example be motivated by the advertiser
demand system being derived from a representative agent with quasilinear utility. In our
robustness analysis, we show sensitivity to deviations from symmetry.

6 Model based insights

We now use the model in Section 5 to analyze a de-merger between Facebook and Instagram.
Our de-merger analysis is focused entirely on the effects on ad load, and we assume that a de-
merger would not increase costs or reduce efficiency.29 We also do not examine the de-merger
effects on producer surplus (of platforms and advertisers), since it would require additional
data or very strong assumptions about the technology or demand conditions in the advertising
market.

6.1 De-merger analysis

Figure 4 presents the results from a de-merger of Facebook and Instagram for values of βij

(and, by symmetry, βji). The values range from 0 (implying DA
01 = DA

10 = 0) to 67 (implying
DA

01 = 1.0 and DA
10 = 0.8). Each value of βij results in different estimates of the residual

demand curve of advertisers (reported in Panel A) as well as the de-merger induced change
in ad load (reported in Panel B) and consumer surplus (reported in panel C).

The results in Figure 4 give upper and lower bounds on the quantities of interest for
any possible value of diversion and point estimates for a given value of diversion. A natural
point estimate is given by the vertical grey line where the diversion ratio from Instagram to
Facebook is equal to Facebook’s market share in the online advertisement market (excluding

29We make this assumption because existing merger guidelines have a highly skeptical stance towards
efficiency arguments (Kaplow, 2025), and because our data do not allow us to credibly quantify impacts on
costs or efficiency. Similarly, while a de-merger could also affect other margins — such as the platform quality
on the user-side — our analysis does not model such responses.

37



Instagram).30 This would be the case if there is no substitution between offline and online
markets and all online advertisement platforms are perfect substitutes. Using 2024 data from
Insider Intelligence, we estimate Facebook’s market share of the online advertisement market
to be 17.4 percent while Instagram’s market share is 6.8 percent.31

The results in Figure 4 may be summarized with two broad conclusions. The first is
that we can rule out that the de-merger would materially benefit the users of Facebook and
Instagram. The largest possible gains to users from the de-merger are very close to zero,
obtained if one believes βij = 0 so there is no diversion of advertisers between Facebook and
Instagram. Ad load would then decrease by 0.13% on Facebook and 0.25% on Instagram,
while consumer surplus for the users of Facebook and Instagram would increase by 0.03%.

To understand why the de-merger would not materially benefit the users, recall the com-
parative statics in Proposition 3: if there is no diversion of advertisers between Facebook and
Instagram, users will necessarily gain from the de-merger. However, in order for the gains to
be large, there needs to be both high user diversion ratios between Facebook and Instagram
and highly elastic advertiser demand to ad price. Our data suggest neither is the case. We
experimentally estimate user diversion ratios of 0.13 for Facebook and 0.05 for Instagram.
Furthermore, the advertiser demand cannot be too elastic to rationalize the observed equilib-
rium level of ad load, especially when there is no diversion of advertisers between Facebook
and Instagram.

The second conclusion is that the de-merger would be harmful to users of Facebook and
Instagram if one believes that advertisers view these platforms as substitutes. Larger adver-
tising diversion ratios between Facebook and Instagram have a direct effect and an offsetting
indirect effect. On the one hand, larger diversion ratios directly increase the incentives to
lower ad load under joint ownership. On the other hand, larger diversion ratios mean adver-
tiser demand needs to be more elastic to rationalize the observed equilibrium level of ad load.
This indirect effect amplifies the incentive to increase ad load due to non-zero user diversion
ratio between Facebook and Instagram.

Our estimates suggest the direct effect tends to dominate. The estimated fall in consumer
surplus due to the de-merger is largest at βij = 67, implying advertising diversion ratios of
DA

01 = 1.0 and DA
10 = 0.8. Ad load would then increase by 6.4% on Facebook and 104.1% on

Instagram, while consumer surplus for the users of Facebook and Instagram would decline by
4.4%. By comparison, the point estimates where the advertiser diversion ratio of a platform is
equal to its market share suggest that the de-merger would increase the ad load on Facebook
and Instagram by 3.7 and 9.8%, while the consumer surplus of Facebook and Instagram users
would fall by 1.0%.

30Due to the assumption of symmetry of βji, the diversion rate from Facebook to Instagram also becomes
approximately equal to Instagram’s market share in the online advertisement market (excluding Facebook).

31We define the online advertisement market to include Facebook, Instagram, Google, Microsoft, TikTok,
YouTube, Amazon, Apple, eBay, Etsy, Hulu, IAC, iHeartMedia, Instacart, LinkedIn, Pinterest, Reddit, Roku,
Snapchat, Spotify, Twitter, Walmart, and Yelp.
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Figure 4: Results of De-Merger Analysis (Main Specification)

(A) Implied Elasticity of Adv. Residual Demand
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(C) Percentage Change in Joint Consumer Surplus (De-Merger)
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Notes: Figure (A) shows the implied own-price elasticity of advertiser demand evaluated at the current equilibrium:
−1/ ∂ ln Pi

∂ ln QA
i

. Figure (B) shows the estimated percentage change in ad load caused by a de-merger between Facebook

and Instagram:
(

αd
i − αc

i

)
/αc

i . Figure (C) shows the estimated percentage change in joint consumer surplus from

Facebook and Instagram. The joint consumer surplus after the de-merger is given by 1
2 κ0

(
Z

d
0

)2
/b00 +

1
2 κ1

(
Z

d
1

)2
/b11 where Z

d
i is estimated total user minutes after the de-merger. The joint consumer surplus before the

de-merger is given by 1
2 κ0
(

Z
c
0
)2

/b00 + 1
2 κ1
(

Z
c
1
)2

/b11. The specification assumes µ0 = µ1 = 1.5, ξ0 = ξ1 = 0.2,
c0 = 0.15, and c1 = 0.15. Both marginal costs estimates ci correspond to 22% of current average revenue per unit. The
specification also assumes that the diversion ratios between Facebook and Instagram correspond to our experimental
estimates from Section 3: DU

01 = 0.13 and DU
10 = 0.05.
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6.2 Robustness of results

We now run a battery of sensitivity checks, showing that our two main conclusions are robust
to changes in the parameter values of (µi, ξi, ci), to deviations from symmetry in cross-price
effects βij on the advertisement market, and to allowing the platforms’ ad load decisions to be
strategic complements. We can still rule out that the de-merger would materially benefit users,
and the de-merger remains harmful to users if one believes that advertisers view Facebook
and Instagram as substitutes.
Sensitivity with respect to (µi, ξi, ci). In Table 7, we report the results from our sensitivity
analysis with respect to (µi, ξi, ci). In panel B-D, we vary one parameter at a time, while Panel
E varies all three parameters at once. In each case, we re-estimate the model to make sure
we rationalize the current equilibrium.

The first column of Table 7 shows the upper-bound on potential gains to users of the de-
merger between Facebook and Instagram. The second column presents the point estimates
when the diversion ratio from Instagram to Facebook is equal to Facebook’s market share in
the online advertisement market (excluding Instagram). The third column shows the upper-
bound on harms to users. Across all rows, we can rule out that a de-merger materially
benefits users. The upper bound on the increase in consumer surplus is usually close to zero
and never exceeds 1%. However, the harm to users can be substantial, around 3-5% for most
specifications and up to 11% when the social multiplier is large.

Deviations from Symmetry. Throughout the analysis, we have maintained the assumption
that cross-price effects on the advertising market are symmetric β01 = β10. In appendix
Figure G.1, we explore the effect of relaxing this assumption on the estimated effects of a
de-merger. Specifically, we quantify the sensitivity of the results to assuming β10 = k ∗ β01

for k ∈ {0.9, 1.1}. It is reassuring to find that these deviations from symmetry barely move
the estimated effects on consumer surplus.

Strategic interactions. Our model assumes that each platform chooses ad load to maximize
the profit, taking as given the ad loads of the other platforms. Although the interactions
between platforms will not be strategic, the actions of one platform, such as an ad load
change, affect demand for other platforms because users and advertisers may switch across
platforms. Incorporating strategic interactions in our model is empirically challenging since
it would require knowledge of user and advertiser demand for platforms other than Facebook
and Instagram. However, it is common to assume that prices, such as ad load, are strategic
complements. Incorporating strategic interactions would reinforce the two key conclusions
above.

The reason is that competing platforms would then have an incentive to lower ad load in
response to Facebook or Instagram lowering their ad load. An important way such strategic
interactions would affect our estimates is through the user demand becoming more inelastic
to changes in ad load than what we find in the holdout experiment (which changes the ad
load for a small set of users, so competitors do not respond). Less elastic user demand would
contribute to larger decreases in the ad loads in response to the merger.
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Table 7: Robustness - Estimated Impact on Ad Load and Consumer Surplus of a De-Merger
between Facebook and Instagram

Largest gain
to users

Diversion equal to
market share

Largest harm
to users

Mode Parameters
∆ ad load ∆ ad load ∆ ad load

µi ξi ci FB IG ∆ CS FB IG ∆ CS FB IG ∆ CS

Panel A: Baseline Model
1.5 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.04 -0.04

Panel B: Sensitivity on µi

1.0 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.09 1.07 -0.03
1.5 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.04 -0.04
2.0 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.00 -0.06
3.0 0.2 0.22 0.00 -0.01 0.00 0.04 0.09 -0.02 0.11 0.89 -0.09
4.0 0.2 0.22 -0.01 -0.01 0.00 0.03 0.08 -0.02 0.10 0.75 -0.11
5.0 0.2 0.22 -0.01 -0.02 0.01 0.02 0.07 -0.02 0.08 0.59 -0.11

Panel C: Sensitivity on ξi

1.5 0.1 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.08 1.24 -0.04
1.5 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.04 -0.04
1.5 0.3 0.22 0.00 0.00 0.00 0.04 0.09 -0.01 0.12 0.84 -0.05
1.5 0.4 0.22 0.00 -0.01 0.00 0.03 0.08 -0.01 0.14 0.64 -0.04
1.5 0.5 0.22 -0.01 -0.01 0.00 0.03 0.06 -0.01 0.13 0.42 -0.04

Panel D: Sensitivity on ci

1.5 0.2 0.00 0.00 0.00 0.00 0.04 0.11 -0.01 0.10 1.24 -0.05
1.5 0.2 0.11 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.15 -0.05
1.5 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.04 -0.04
1.5 0.2 0.33 0.00 0.00 0.00 0.03 0.09 -0.01 0.10 0.91 -0.04
1.5 0.2 0.44 0.00 0.00 0.00 0.03 0.08 -0.01 0.10 0.75 -0.04
1.5 0.2 0.55 0.00 0.00 0.00 0.03 0.07 -0.01 0.09 0.56 -0.03

Panel E: Varying all parameters at once
1.5 0.2 0.22 0.00 0.00 0.00 0.04 0.10 -0.01 0.10 1.04 -0.04
1.88 0.25 0.28 0.00 -0.01 0.00 0.03 0.09 -0.01 0.11 0.82 -0.06
2.25 0.3 0.33 -0.01 -0.01 0.00 0.03 0.07 -0.01 0.11 0.55 -0.06
2.63 0.35 0.38 -0.01 -0.02 0.00 0.01 0.04 -0.01 0.08 0.29 -0.04
3.0 0.40 0.44 -0.01 -0.03 0.01 -0.01 -0.02 0.01 0.00 0.00 0.00

Notes: Table reports the lower- and upper-bound on estimated percentage change in ad load and consumer sur-
plus caused by a de-merger between Facebook and Instagram. The percentage change in ad load is given by(

αd
i − αc

i

)
/αc

i . The joint consumer surplus after the de-merger is given by 1
2 κ0

(
Z

d
0

)2
/b00 + 1

2 κ1

(
Z

d
1

)2
/b11

where Z
d
i is estimated total user minutes after the de-merger. The joint consumer surplus before the de-merger is

given by 1
2 κ0
(

Z
c
0
)2

/b00 + 1
2 κ1
(

Z
c
1
)2

/b11. Marginal cost ci correspond to a percentage of current average revenue
(e.g. 22%). The specification assumes that the diversion ratios between Facebook and Instagram correspond to
our experimental estimates from section 3: DU

01 = 0.13 and DU
10 = 0.05.
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6.3 De-Merger Analysis under FTC’s market definition

We conclude our analysis with a comparison between the results in Section 6.1 and those
we obtain if we follow the FTC in assuming that the relevant user market consists only of
Facebook, Instagram, and Snapchat (FTC, 2021). In our model, such a market definition
can be thought of as imposing the restrictions that i) time-intensive commodities cannot be
substitutes if they differ in functionality, and ii) Facebook, Instagram, and Snapchat are the
only commodities with similar functionality.

Formally, restrictions i) and ii) can be embedded in our analysis by assuming an infinite
elasticity of substitution 1/(1 − θ) between the PSN commodities (Facebook, Instagram, and
Snapchat). Under this assumption, the diversion ratio between any pair of these platforms k
and j is given by k’s share of total PSN consumption excluding j:

Corollary 3. Assuming θ = 1 (i.e. infinite elasticity of substitution between PSN com-
modities), the diversion ratio between PSN origin commodity j ∈ P and PSN destination
commodity k ∈ P is given by k’s share of total PSN consumption excluding j:

Dkj = zk∑
i∈P\j zi

(22)

where zi is time spent on commodity i. Summing across all PSN commodities other than j,
we obtain that total diversion to other PSN commodities is one:

∑
k∈P\j

Dkj = 1

The Corollary follows easily from Proposition 4 (see Appendix A.4.3 for the proof).
To perform the de-merger analysis under the FTC’s assumptions about market definition,

we first compute zk/
∑

i∈P\j zi in equation (22) from our data on the use of each app. This
gives us estimates of user diversion ratios between Facebook and Instagram of DU

01 = 0.95 and
DU

10 = 0.92. Next, we re-estimate the model in Section 5 using these diversion ratios instead
of the experimentally estimated ones. The results are presented in Figure 5.

There are two key findings. The first finding is that employing the market definition of
FTC leads to the conclusion that the de-merger would necessarily raise the consumer surplus
of the users of Facebook and Instagram. This finding is true no matter the advertiser diversion
ratios. The reason is that FTC’s market definition gives very high user diversion ratios, and,
as a result, creates strong incentives to lower ad load in response to the de-merger.

The second key finding is that employing the market definition of FTC matters substan-
tially if one believes that advertisers view these platforms as substitutes. The reason is that
larger advertiser diversion ratios means advertiser demand needs to be more elastic to ra-
tionalize the observed equilibrium level of ad load. Higher elasticity of advertiser demand
reinforces the contribution of very high user diversion ratios to reduce ad load and increase
consumer surplus in response to the de-merger.32

32For Facebook, the ad load after the merger is always lower under FTCs market definition than in our
analysis, no matter the advertiser diversion ratio. For Instagram, this is not the case at very high values of the
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Taken together, these two findings highlight the importance of (experimentally) estimating
the user diversion ratios as opposed to defining the market without data on actual user
substitution.

7 Conclusion

This paper extends Becker’s foundational time allocation theory to the digital economy, offer-
ing a novel lens on consumer demand and market competition for time-intensive goods. By
combining theoretical modeling with large-scale field experiments on Facebook and Instagram
usage, we show that time shares and time intensity—not just functional similarity—shape
substitution patterns across online and offline leisure markets. Our findings challenge con-
ventional market definitions: seemingly dissimilar activities can be close substitutes simply
because they vie for consumers’ finite attention.

These insights have direct antitrust implications. The Federal Trade Commission’s nar-
row market framing underweights competition from non-PSN platforms and offline activities,
potentially mischaracterizing the effects of a proposed de-merger. In contrast, our two-sided
platform model suggests that separating Facebook and Instagram may reduce consumer wel-
fare—particularly if advertisers treat them as substitutes.

For academics, this study opens new research avenues in economics and beyond. It ad-
vances Becker’s framework for analyzing digital economies, encourages empirical research on
time-based substitution, and provides methodological tools for studying two-sided platform
markets. By bridging theoretical innovation, experimental rigor, and policy relevance, our
work sets the stage for future studies in digital consumption, market design, and competi-
tion policy. In time-constrained markets, time is the critical currency—one that regulators,
economists, and platforms must center in both analysis and policy.

advertiser diversion ratio. This is because an additional user minute generates more ad revenue on Facebook
than Instagram prior to the merger. When user diversion ratios become sufficiently large, joint ownership will
make it optimal for Instagram to divert users to Facebook by having relatively high ad load.
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Figure 5: De-Merger Analysis under the FTC’s Assumptions about Market Definition

(A) Percentage Change in Ad Load on Facebook
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(B) Percentage Change in Ad Load on Instagram
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(C) Percentage Change in Joint Consumer Surplus
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Notes: Figure (A) shows the estimated percentage change in ad load on Facebook caused by a de-merger between
Facebook and Instagram:

(
αd

i − αc
i

)
/αc

i . It compares our main specification using the experimental estimates of the
user-side diversion ratios to an alternative specifications using diversion ratios consistent with the FTC’s market
definition (DU

01 = 0.94 and DU
10 = 0.92) Figure (B) shows the same estimates for Instagram. Figure (C) shows the

estimated percentage change in joint consumer surplus from Facebook and Instagram. The joint consumer surplus

after the de-merger is given by 1
2 κ0

(
Z

d
0

)2
/b00 + 1

2 κ1

(
Z

d
1

)2
/b11 where Z

d
i is estimated total user minutes after the

de-merger. The joint consumer surplus before the de-merger is given by 1
2 κ0
(

Z
c
0
)2

/b00 + 1
2 κ1
(

Z
c
1
)2

/b11. The
specifications assume µ0 = µ1 = 1.5, ξ0 = ξ1 = 0.2, c0 = 0.15, and c1 = 0.15. Both marginal costs estimates ci

correspond to 22% of current average revenue per unit.
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A Theoretical Derivations of Time Shares, and Diversion Ra-
tios in Model from Section 2

A.1 Proof of Proposition 1

Proof. Let us define the non-time component of the full price for every commodity i ∈ Z:
πi ≡ κiαi+pi. We can re-write the first-order conditions of the model (4) and (5) as a function
of {πi}i∈Z instead of their individual components:

γ

ωPz
ρ
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ρ
i
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ρ

−1

ωPz
ρ−1
P

(
P∑

i=0
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θ
i

) 1
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δkz
θ−1
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P +

N∑
i=P +1

ωiz
ρ
i


γ
ρ

−1

ωgz
ρ−1
g = ν + πg, ∀g ∈ Z \ P

The system of equations defined by these first-order conditions fully determine the equilib-
rium choices of each commodity. Note that, written as a function of {πi}i∈Z , the individual
components (κiαi and pi) of the non-time portion of the full price disappear from the system.
Applying the implicit function theorem, one can derive the own- and cross-price responses of
any commodity i to a change in πj .

Therefore, it is clear that, for any two commodities i and j:

∂zj

∂pj
= ∂zj

∂πj

∂πj

∂pj
= ∂zj

∂πj

∂zj

∂αj
= ∂zj

∂πj

∂πj

∂αj
= κj

∂zj

∂πj
,

and similarly:

∂zi

∂pj
= ∂zi

∂πj

∂πj

∂pj
= ∂zi

∂πj

∂zi

∂αj
= ∂zi

∂πj

∂πj

∂αj
= κj

∂zi

∂πj
,

The result in Proposition 1 follows directly.

A.2 Deriving the time shares and related elasticities

In this section, we derive three important objects: the time shares (ψH
i ), the spending shares

(ψS
i ), and the response of total leisure time to a change in a commodity’s non-time price

( d ln H
d ln πj

). In the first part of the section, we show how we recover each object needed for the
shares. Then, in the second section we show how we get the elasticity of total leisure time.
These three objects, as well as many of the other objects that we derive in this section, are
used to derive the diversion ratios in section A.3.
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A.2.1 Derivations of the consumption shares (ψH
i )

Step 1: Demand for individual PSN commodity zk (∀k ∈ P) conditional on com-
posite PSN demand zP

Recall the first-order conditions for PSN commodities (∀k ∈ P):

γ

ωPz
ρ
P +

N∑
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ωiz
ρ
i
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ρ

−1

ωPz
ρ−1
P
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i=0
δiz

θ
i

) 1
θ

−1

δkz
θ−1
k = ν + κkαk + pk︸ ︷︷ ︸

≡Pk

, (4)

Evaluate (4) for two PSN commodities j and k, take their ratio, and re-arrange:

zj =
(
Pj

Pk

δk

δj

) 1
θ−1

zk (A.1)

Let us raise both sides of (A.1) to exponent θ, and multiply by δj :

δjz
θ
j = δ

1
1−θ

j P
θ

θ−1
j

(
δk

Pk

) θ
θ−1

zθ
k (A.2)

Summing both sides of (A.2) across all j ∈ P, then raising to exponent 1/θ, we obtain:

zP ≡

∑
j∈P

δjz
θ
j

 1
θ

=

∑
j∈P

δ
1

1−θ

j P
θ

θ−1
j

 1
θ (

δk

Pk

) 1
θ−1

zk (A.3)

Like in the main text, let us define PP ≡
[∑

j∈P δ
1

1−θ

j P
θ

θ−1
j

] θ−1
θ

as the price index for the
composite PSN commodity zP . We can re-arrange (A.3):

zk =
(
δk
PP
Pk

) 1
1−θ

zP , ∀k ∈ P (A.4)

Step 2: Two useful intermediary results.

First, start from (A.4), multiply both sides by the full price Pk and sum across k ∈ P.
We obtain:

∑
k∈P

Pkzk =

∑
k∈P

δ
1

1−θ

k P
θ

θ−1
k


︸ ︷︷ ︸

≡P
θ

θ−1
P

P
1

1−θ

P zP

Thus, we can define total spending on PSN commodities:

SP ≡
∑
k∈P

Pkzk = PP × zP (A.5)

Further, we can define the total spending on all commodities:

3



S ≡ PPzP +
∑

g∈Z\P
Pgzg (A.6)

Second, let us start from (4), multiply both sides by zk, then sum across all k ∈ P, we
obtain:

γ

ωPz
ρ
P +

N∑
i=P +1

ωiz
ρ
i


γ
ρ

−1

ωPz
ρ
P =

∑
k∈P

Pkzk︸ ︷︷ ︸
≡SP

(A.7)

Dividing both sides of (A.7) by zP and using (A.5), we obtain:

γ

ωPz
ρ
P +

N∑
i=P +1

ωiz
ρ
i


γ
ρ

−1

ωPz
ρ−1
P = PP (A.8)

which is an analog to the first-order conditions for non-PSN commodities (5) but for the
composite PSN commodity zP .

Step 3: Derive total time spent on PSN commodities (HP)

Let us denote total leisure time by H = ∑
i∈Z zi, and total time spent on PSN commodities

by HP ≡
∑

k∈P zk. Using (A.4), we have:

HP =
∑

k∈P δ
1

1−θ

k P
1

θ−1
k

P
1

θ−1
P

zP ≡ ΛPzP (A.9)

where we defined ΛP ≡
∑

k∈P δ
1

1−θ
k

P
1

θ−1
k

P
1

θ−1
P

. Note that, under the assumption that τk = τP

∀k ∈ P (see page 9), we have that ΛP is a constant:

ΛP =

∑
k∈P

δ
1

1−θ

k


θ−1

θ

= 1 (A.10)

The second equality directly follows from the normalization imposed on δ0, ..., δP (see page 8).
Intuitively, this normalization allows to measure the composite PSN commodity zP in number
of minutes spent (on all PSN commodities) whenever their full price Pk is equalized across all
k ∈ P.

Step 4: Derive demand for non-PSN commodity zg (∀g ∈ Z \ P) conditional on
total Leisure time H

Recall the first-order conditions for non-PSN commodities (∀g ∈ Z \ P):

γ

ωPz
ρ
P +

N∑
i=P +1

ωiz
ρ
i


γ
ρ

−1

ωgz
ρ−1
g = ν + κgαg + pg︸ ︷︷ ︸

≡Pg

(5)
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Evaluate (5) for two non-PSN commodities j and g, take their ratio, and re-arrange:

zj =
(
Pj

Pg

ωg

ωj

) 1
ρ−1

zg (A.11)

Similarly, evaluate (5) for non-PSN commodity g and take the ratio with (A.8):

zP =
(
PP
Pg

ωg

ωP

) 1
ρ−1

zg (A.12)

Plugging (A.12) into (A.9), and using the normalization ΛP = 1, we have, ∀g ∈ Z \ P:

HP =
(
PP
Pg

ωg

ωP

) 1
ρ−1

zg (A.13)

Using (A.11) and summing across all non-PSN commodities, we have:

∑
j∈Z\P

zj =

 ∑
j∈Z\P

ω
1

1−ρ

j P
1

ρ−1
j

ω 1
ρ−1
g P

1
1−ρ

g zg (A.14)

Summing (A.13) and (A.14), we have:

H = HP +
∑

j∈Z\P
zj =

ω 1
1−ρ

P P
1

ρ−1
P +

∑
j∈Z\P

ω
1

1−ρ

j P
1

ρ−1
j

ω 1
ρ−1
g P

1
1−ρ

g zg

Re-arranging yields the demand for non-PSN commodity zg conditional on total leisure time:

zg = ω
1

1−ρ
g P

1
ρ−1

g

ω
1

1−ρ

P P
1

ρ−1
P +∑

j∈Z\P ω
1

1−ρ

j P
1

ρ−1
j

H, ∀g ∈ Z \ P (A.15)

The expression for the share ψH
g ≡ zg/H follows directly from (A.15).

Step 5: Derive demand for composite PSN zP conditional on total leisure time.

Re-arranging (A.12) to isolate zg then plugging into (A.15), we obtain the demand for the
composite PSN zP conditional on total leisure:

zP = ω
1

1−ρ

P P
1

ρ−1
P

ω
1

1−ρ

P P
1

ρ−1
P +∑

j∈Z\P ω
1

1−ρ

j P
1

ρ−1
j

H (A.16)

Step 6: Derive demand for individual PSN commodities zk (∀k ∈ P) conditional
on total leisure time H

Lastly, we can derive the demand for individual PSN commodities as a function of total
time spent on PSNs (HP). Indeed, starting from (A.1), summing across all j ∈ P, and
re-arranging:
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zk = δ
1

1−θ

k P
1

θ−1
k∑

j∈P δ
1

1−θ

j P
1

θ−1
j

HP , ∀k ∈ P (A.17)

Recall that, under the normalization ΛP = 1, we have zP = HP . The expression for the share
ψH

k , ∀k ∈ P, follows from plugging HP = zP into (A.16), plugging the resulting expression
into (A.17), and dividing by H.

A.2.2 Response of total leisure time H to a change in price pj

Step 1: define and derive expressions for the spending shares ψSj and ψSP .

Let us Denote “full spending" on all commodities by S ≡
∑

l∈Z Plzl. Let ψS
j ≡ Pjzj∑N

i=0 Pizi

be the share of j in full spending, and ψS
P ≡

∑
k∈P Pkzk∑N

i=0 Pizi

be the total share of PSN commodities
in full spending. We first derive an expression for the spending shares.

Multiply both sides of (A.11) by Pj and sum across all non-PSN commodities:

∑
j∈Z\P

Pjzj =

 ∑
j∈Z\P

ω
1

1−ρ

j P
ρ

ρ−1
j

(ωg

Pg

) 1
ρ−1

zg (A.18)

Multiply both sides of (A.12) by PP and sum with (A.18) to obtain:

PPzP +
∑

j∈Z\P
Pjzj︸ ︷︷ ︸

=
∑

j∈Z Pjzj≡S by (A.6)

=

ω 1
1−ρ

P P
ρ

ρ−1
P +

∑
j∈Z\P

ω
1

1−ρ

j P
ρ

ρ−1
j

(ωg

Pg

) 1
ρ−1

zg (A.19)

We can re-arrange (A.19) into the conditional demand for individual non-PSN commodities:

zg = ω
1

1−ρ
g P

1
ρ−1

g

ω
1

1−ρ

P P
ρ

ρ−1
P +∑

j∈Z\P ω
1

1−ρ

j P
ρ

ρ−1
j

S, ∀g ∈ Z \ P (A.20)

Similarly, we can write the conditional demand for the composite PSN commodity:

zP = ω
1

1−ρ

P P
1

ρ−1
P

ω
1

1−ρ

P P
ρ

ρ−1
P +∑

j∈Z\P ω
1

1−ρ

j P
ρ

ρ−1
j

S (A.21)

Lastly, plugging (A.21) into (A.4), we obtain the conditional demand for individual PSN
commodities:

zk =
(
δk

Pk
PP

) 1
1−θ

 ω
1

1−ρ

P P
1

ρ−1
P

ω
1

1−ρ

P P
ρ

ρ−1
P +∑

j∈Z\P ω
1

1−ρ

j P
ρ

ρ−1
j

S (A.22)

The expressions for the shares of full spending ψS
k (∀k ∈ P), ψS

g (∀g ∈ Z \ P), and ψS
P follow
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from multiplying the conditional demands in (A.20), (A.21), and (A.22) by the relevant full
price and dividing by S.

Step 2: Characterizing total leisure time H.

Multiply both sides of (5) by zg, multiply both sides of (4) by zk, then sum across all
g ∈ Z \ P, and all k ∈ P, we obtain:

PPzP +
∑

g∈Z\P
Pgzg = γ

ωPz
ρ
P +

∑
g∈Z\P

ωgz
ρ
g


γ
ρ

(A.23)

Plugging (A.15) and (A.16) into (A.23), then re-arranging, we have:

H = γ
1

1−γ

ω 1
1−ρ

P P
1

ρ−1
P +

∑
g∈Z\P

ω
1

1−ρ
g P

1
ρ−1

g

×

ω 1
1−ρ

P P
ρ

ρ−1
P +

∑
g∈Z\P

ω
1

1−ρ
g P

ρ
ρ−1

g


(γ−1)−(ρ−1)

ρ(1−γ)

(A.24)
Step 3: Derive the response of total leisure time.

Similar to Section A.1, let us define the non-time component of the full price for every
commodity j ∈ Z: πj ≡ κjαj + pj . We focus on deriving the response to a change in πj for
PSN commodity j ∈ P.

Some helpful intermediary results. First, let us note that, since ν ≡ ηwHη−1, we have:

d ln ν
d ln πj

= (η − 1) d lnH
d ln πj

(A.25)

Second, starting from the definition of PP and totally differentiating, we have:

d lnPP
d ln πj

= θ − 1
θ

 θ

θ − 1
∑
k∈P

ψP,S
k

ν

ν + πk

d ln ν
d ln πj

+ θ

θ − 1ψ
P,S
j

πj

ν + πj


Simplifying, and using the assumption that time-intensity is the same across all PSNs ( ν

ν+πi
≡

τi = τP ∀i ∈ P), we have:

d lnPP
d ln πj

=
[
τP

d ln ν
d ln πj

+ (1 − τP)ψP,S
j

]
(A.26)

Another implication from the assumption that time-intensity is the same across all PSNs is
that: ψP,S

j ≡ (ν+πj)zj∑
i∈P (ν+πi)zi

= zj∑
i∈P zi

.

Elasticity of total leisure time. Let us start from (A.24), take the log, and totally differ-
entiate it with respect to ln πj . This gives us:
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d lnH
d ln πj

= 1
ρ− 1

 ω
1

1−ρ

P P
1

ρ−1
P

d ln P P
d ln πj

ω
1

1−ρ

P P
1

ρ−1
P +∑

g∈Z\P ω
1

1−ρ
g P

1
ρ−1

g



+ 1
ρ− 1


∑

g∈Z\P ω
1

1−ρ
g P

1
ρ−1

g
d ln Pg

d ln πj

ω
1

1−ρ

P P
1

ρ−1
P +∑

g∈Z\P ω
1

1−ρ
g P

1
ρ−1

g



+ γ − ρ

(ρ− 1)(1 − γ)

 ω
1

1−ρ

P P
ρ

ρ−1
P

d ln P P
d ln πj

ω
1

1−ρ

P P
ρ

ρ−1
P +∑

g∈Z\P ω
1

1−ρ
g P

ρ
ρ−1

g



+ γ − ρ

(ρ− 1)(1 − γ)


∑

g∈Z\P ω
1

1−ρ
g P

ρ
ρ−1

g
d ln Pg

d ln πj

ω
1

1−ρ

P P
ρ

ρ−1
P +∑

g∈Z\P ω
1

1−ρ
g P

ρ
ρ−1

g


Using the definitions of the spending and time shares gives us:

d lnH
d ln πj

= ψH
P

ρ− 1
d lnPP
d ln πj

+ 1
ρ− 1

∑
g∈Z\P

ψH
g

d lnPg

d ln πj

+ (γ − ρ)ψS
P

(ρ− 1)(1 − γ)
d lnPP
d ln πj

+ γ − ρ

(ρ− 1)(1 − γ)
∑

g∈Z\P
ψS

g

d lnPg

d ln πj

Note that d ln Pg

d ln πj
= τg

d ln ν
d ln πj

∀g ∈ Z \ P (and g ̸= j). After plugging in (A.26), (A.25), and
finally re-arranging, we obtain:

d lnH
dπj

= −ψP,S
j (1 − τP) ×

γ−ρ
1−ρψ

S
P + 1−γ

1−ρψ
H
P

1 − γ + (η − 1)∑N
i=0

(
γ−ρ
1−ρψ

S
i + 1−γ

1−ρψ
H
i

)
τi︸ ︷︷ ︸

≡ΣP

, ∀j ∈ P (A.27)

where ψP,S
j ≡ (ν+πj)zj∑

i∈P (ν+πi)zi
= ψS

j /ψ
S
P .

A.3 Full expressions of the diversion ratios

A.3.1 Proof of Proposition 4

Proposition 4. The diversion ratio between PSN origin commodity j ∈ P and PSN destina-
tion commodity k ∈ P is given by:

Dkj = ψH
k

ψH
j

[
1

1−θ − 1
1−ρ

((
1 − ψH

P

)
−
(
τP −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

]
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+
[

1
1−ρ

((
1 − ψH

P
)

−
(
τP −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
+ ΣP

]
ψP,S

j

Proof. Let us start from the conditional demand for some PSN commodity k ∈ P given by
(A.4). Totally (log) differentiate with respect to πj ≡ κjαj + pj , and plug in (A.25), (A.26),
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and (A.27) in order to obtain d ln zk
dπj

as a function of d ln zP
dπj

:

d ln zk

dπj
= η − 1
πj(1 − θ)

d lnH
d ln πj

(τP − τk) + 1 − τP
πj(1 − θ)ψ

P,S
j + d ln zP

dπj

= 1 − τP
πj(1 − θ)ψ

P,S
j + d ln zP

dπj

The second line above follows by assumption that all PSN commodities are equally time
intensive (i.e. τk = τP).

Next, totally differentiate (with respect to πj) the (log) conditional demand for composite
PSN zP given by (A.16), and plug in (A.25), and (A.26), in order to obtain d ln zP

dπj
(where

d ln H
d ln πj

is given by (A.27)):

d ln zP
dπj

= 1
πj

d lnH
d ln πj

[
1 + η − 1

ρ− 1

(
τP −

N∑
i=0

ψH
i τi

)]
+ ψP,S

j (1 − τP) 1 − ψH
P

πj(ρ− 1)

Combining yields the cross-price elasticity of zk with respect to πj :

d ln zk

d ln πj
= ψP,S

j

1 − τP
τj

[
1

1 − θ
− 1

1 − ρ

((
1 − ψH

P

)
−
(
τP −

N∑
i=0

ψH
i τi

)
(η − 1) ΣP

)
− ΣP

]

Follow the same steps to derive the own-price elasticity of zj with respect to πj . We get the
following expression for the own-price (semi-) elasticity conditional on d ln zP

dπj
:

d ln zj

dπj
= 1 − τP
πj(1 − θ)ψ

P,S
j − 1 − τj

πj(1 − θ) + d ln zP
dπj

Plugging in the expression for d ln zP
dπj

yields:

d ln zj

dπj
= −1 − τP

πj

×
{

1
1 − θ

(
1 − ψP,S

j

)
+
[

1
1 − ρ

((
1 − ψH

P

)
−
(
τP −

N∑
i=0

ψH
i τi

)
(η − 1) ΣP

)
+ ΣP

]
ψP,S

j

}

Then:

Dkj ≡ −∂zk/∂πj

∂zj/∂πj
= −∂ ln zk/∂πj

∂ ln zj/∂πj
× ψH

k

ψH
j

Plugging in the expressions for ∂ ln zk/∂πj and ∂ ln zj/∂πj , we obtain the desired result.
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A.3.2 Proof of Proposition 5

Proposition 5. The diversion ratio between PSN origin commodity j ∈ P and non-PSN
destination commodity g ∈ Z \ P is given by:

Dgj =
ψH

g

ψH
j

[
1

1−ρ

(
ψH

P +
(
τg −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

]
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+
[

1
1−ρ

((
1 − ψH

P
)

−
(
τP −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
+ ΣP

]
ψP,S

j

Proof. Let us start from the conditional demand for some non-PSN commodity g ∈ Z \ P
given by (A.15). Take the log, totally differentiate with respect to πj ≡ κjαj + pj , and plug
in (A.25), (A.26), and (A.27) in order to obtain the cross-price elasticity d ln zg

dπj
:

d ln zg

dπj
= 1 − τP

πj
ψP,S

j

[
1

1 − ρ

(
ψH

P +
(
τg −

N∑
i=0

ψH
i τi

)
(η − 1) ΣP

)
− ΣP

]

To obtain the own-price elasticity of zj with respect to πj , start from the conditional
demand for j ∈ P given by (A.4). Totally (log) differentiate with respect to πj , and plug
in (A.25), (A.26), and (A.27) in order to obtain d ln zj

dπj
as a function of d ln zP

dπj
. Next, totally

differentiate (with respect to πj) the conditional demand for composite PSN zP given by
(A.16), and plug in (A.25), (A.26), and (A.27) in order to obtain d ln zP

dπj
. Combining yields

the own-price elasticity of zj with respect to πj (see Appendix A.3.1 for details). Then:

Dgj ≡ −∂zg/∂πj

∂zj/∂πj
= −∂ ln zg/∂πj

∂ ln zj/∂πj
×
ψH

g

ψH
j

Plugging in the expressions for ∂ ln zg/∂πj and ∂ ln zj/∂πj , we obtain the desired result.

A.4 Useful corollaries of the diversion ratios

A.4.1 Proof of Corollary 1

Proof. Assuming η = 1, the diversion ratio between PSN origin commodity j ∈ P and PSN
destination commodity k ∈ P presented in Proposition 4 is now given by:

Dkj = ψH
k

ψH
j

[
1

1−θ − 1
1−ρ

(
1 + γ−ρ

1−γψ
S
P

)]
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+ 1

1−ρ

(
1 + γ−ρ

1−γψ
S
P

)
ψP,S

j

= ψH
k

ψH
j

[
1

1−θ − 1
1−ρ

(
1 + 1−ρ−(1−γ)

1−γ ψS
P

)]
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+ 1

1−ρ

(
1 + 1−ρ−(1−γ)

1−γ ψS
P

)
ψP,S

j

= ψH
k

ψH
j

[
1

1−θ − 1
1−ρ

(
1 − ψS

P

)
− 1

1−γψ
S
P

]
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+
[

1
1−ρ

(
1 − ψS

P
)

+ 1
1−γψ

S
P

]
ψP,S

j

10



Similarly, the diversion ratio between PSN origin commodity j ∈ P and non-PSN destination
commodity g ∈ Z \ P presented in Proposition 5 is now given by:

Dgj =
ψH

g

ψH
j

1
1−ρ

(
ρ−γ
1−γ

)
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+ 1

1−ρ

(
1 + γ−ρ

1−γψ
S
P

)
ψP,S

j

=
ψH

g

ψH
j

1
1−ρ

(
1−γ−(1−ρ)

1−γ

)
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+ 1

1−ρ

(
1 + 1−ρ−(1−γ)

1−γ ψS
P

)
ψP,S

j

=
ψH

g

ψH
j

[
1

1−ρ − 1
1−γ

]
ψP,S

1
1−θ

(
1 − ψP,S

j

)
+
[

1
1−ρ

(
1 − ψS

P
)

+ 1
1−γψ

S
P

]
ψP,S

j

Note that, under η = 1:

ΣP = 1
1 − ρ

(
γ − ρ

1 − γ
ψS

P + ψH
P

)
= 1

1 − ρ

((1 − ρ

1 − γ
− 1 − γ

1 − γ

)
ψS

P + ψH
P

)
=
( 1

1 − γ
− 1

1 − ρ

)
ψS

P + 1
1 − ρ

ψH
P

An inspection of the above expressions for Dkj and Dgj reveals that they are not a function
of the relative time-intensity of j, or k (i.e., τP −

∑N
i=0 ψ

H
i τi), nor are they a function of the

relative time-intensity of g (i.e., τg −
∑N

i=0 ψ
H
i τi).

A.4.2 Proof of Corollary 2

Proof. The result on relative diversion ratios follows immediately from the expressions for
diversion ratios in Proposition 4 and 5. For the ratio of cross-price elasticities, we use d ln zk

d ln pj
=

pj

zk

dzk
dpj

and d ln zg

d ln pj
= pj

zg

dzg

dpj
. Therefore:

d ln zk/d ln pj

d ln zg/d ln pj
=
ψH

g

ψH
k

× Dkj

Dgj

A.4.3 Proof of Corollary 3

Proof. Let us start from Proposition 4, take the limit as θ → 1 and apply l’Hopital’s rule:
limθ→1Dkj =

lim
θ→1

ψH
k

ψH
j

[
1

1−θ − 1
1−ρ

((
1 − ψH

P

)
−
(
τP −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

]
ψP,S

j

1
1−θ

(
1 − ψP,S

j

)
+
[

1
1−ρ

((
1 − ψH

P
)

−
(
τP −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
+ ΣP

]
ψP,S

j

= ψH
k

ψH
j

ψP,S
j

1 − ψP,S
j
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Using the definitions of ψH
i and ψP,S

i , we have:

lim
θ→1

Dkj = zk/H

zj/H

(ν+αj+pj)zj∑
i∈P (ν+αi+pi)zi

1 − (ν+αj+pj)zj∑
i∈P (ν+αi+pi)zi

= zk

zj

(ν+αj+pj)zj

ν∑
i∈P

(ν+αi+pi)zi

ν − (ν+αj+pj)zj

ν

Using the assumption that relative time-intensity is equal across PSN commodities: τ−1
i =

(ν+αi+pi)zi

ν = τ−1
P :

lim
θ→1

Dkj = zk

zj

(1/τP)zj∑
i∈P(1/τP)zi − (1/τP)zj

= zk∑
i∈P\j zi

A.5 The role of time-intensity and functionality in determining relative
cross-price elasticities

We formally illustrate the role of time-intensity and functionality with Corollary 4 and 5. Each
of these corollaries presents an expression for the ratio of cross-price elasticities in a special
case of the model. Each special case corresponds to shutting down differences in either factor
(relative time-intensity or functionality) so as to better emphasize the role of the remaining
factor.

Corollary 4. Assume θ = ρ, and consider an increase in the price of PSN commodity j ∈ P.
Then, the ratio of cross-price elasticities for PSN commodity k ∈ P and non-PSN commodity
g ∈ Z \ P is given by:

d ln zk/d ln pj

d ln zg/d ln pj
=

1
1−ρ

(
ψH

P +
(
τk −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

1
1−ρ

(
ψH

P +
(
τg −

∑N
i=0 ψ

H
i τi

)
(η − 1) ΣP

)
− ΣP

which depends crucially on the relative time-intensity of both goods.

Proof. Start from the expression for the ratio of cross-price elasticities in Corollary 2, plug in
1

1−θ = 1
1−ρ , and simplify.

Corollary 5. Assume η = 1, and consider an increase in the price of PSN commodity j ∈ P.
Then, the ratio of cross-price elasticities for PSN commodity k ∈ P and non-PSN commodity
g ∈ Z \ P is given by:

d ln zk/d ln pj

d ln zg/d ln pj
= 1 +

1
1−θ − 1

1−ρ
1

1−ρψ
H
P − ΣP

which depends crucially on the relative substitutability of the two commodities with j (i.e.
1

1−θ − 1
1−ρ)
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Proof. Start from the expression for the ratio of cross-price elasticities in Corollary 2, plug in
η = 1, and simplify.
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B Additional Experimental Results

Figure B.1: Differences in the Distribution of Focal App Usage
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(b) Instagram

Note: Figure presents the CDF of usage of the focal app, averaged over all four weeks of the post period.
Panel A displays Facebook usage for 3,418 observations. Panel B displays the Instagram usage for 2,708
observations.
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Figure B.2: Daily Usage of Focal App
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(b) Instagram

Note: Figure presents the average daily usage for the focal app from Meta data. Panel A displays Facebook
usage for 325,500 user-day observations for 3,500 unique users. Panel B displays the Instagram usage for
257,424 user-day observations for 2,768 unique users.
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Table B.1: Robustness: Ad Holdout Experiment (Facebook) by primary OS

First-Stage Reduced-Form Wald Estimate
Outcome variable: Ad load User Time

(1) (2) (3)

% Min. % Own-
Resp.

Implied
Elast.

Panel (a): Facebook (Android users only)

Estimates -1.0 -100 1.7 8.9 -1.7 0.09

Panel (b): Facebook (iOS users only)

Estimates -1.0 -100 2.3 9.1 -2.3 0.09

Notes: Based on U.S. data for exposed users as of January 2023. Restricted to users with an identified gender and
age group and a primary OS of Android or iOS. Time use excludes FB messenger. Figures include inactive users.
Ad load in (1) is defined as ad impressions as a percent of total impressions in June 2022. The reported values for
ad load are normalized to reflect relative magnitudes compared to Facebook’s ad load in June 2022.
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C Pricing Experiment Materials

C.1 Recruitment

Participants were recruited through: (1) Facebook and Instagram ads; (2) ads placed directly
with third-party publishers accessed through Toluna, which used its network of third-party
publishers and affiliates, who recruited respondents directly to the study; and (3) firms that
maintain panels of potential participants for internet-based market research, including Kantar,
Prodege, Dynata, Symmetric Sampling, Dynata, QuestMindshare, Sago, ROI, MakeOpinion,
ThinkNow, PureSpectrum, ValueMe and Luth. We directed interested participants to the
landing page shown in Appendix Figure C.1.

Figure C.1: Recruitment Landing Page

C.2 Screener Survey Description

1. Introduction: Subjects received an introduction that explained the experiment, were
asked to complete a Captcha to screen out automated programs, and respondents who
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were detected to be using a device other than Android were removed from the study.
We then obtained informed consent from the subjects. Participants who did not con-
sent were excluded from the study. Finally, subjects had to acknowledge the Terms &
Conditions, and the Privacy Policy.

2. Demographics: Subjects answered demographic questions on their gender, age, and
primary state of residence.

3. Facebook and/or Instagram use Subjects were asked about their baseline Facebook
and Instagram use before the experiment. Those who reported that they spent at least
15 minutes on Facebook and/or at least 10 minutes on Instagram were asked to move
forward. Others were excluded.

4. Device used to assess Facebook or Instagram Next, we asked subjects about the
device used to access the apps and whether they were the only user of the device used
to access the apps.

5. Attention Check and Participation in Other Studies: Subjects needed to pass
an attention check and declare whether they were the participants in other studies.

C.3 Dashboard

Figure C.2: Dashboard in Facebook Experiment
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Figure C.3: Dashboard in Instagram Experiment
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D Pricing Experiment Design and Analysis Details

Figure D.1: Experiment Timeline

5/1 5/23 5/30

5/31: Randomization
6/2: Participants Informed of Assignment

6/4 6/11 6/18 6/25 7/1

Recruitment Baseline Week 1 Week 2 Week 3 Week 4

D.1 Aggregation of Apps to Categories

In this section, we describe the method used to aggregate individual apps measured in the
RealityMine data into the set of commodity categories used in the analysis. RealityMine
assigns individual apps with a unique identifier associated with the application in the Google
Play Store (Stevenson and Stevenson, 2021). We excluded apps that likely captured time
spent on background activities rather than capturing the user’s attention.

We first aggregated apps into the personal social network (PSN) category based on the
proposed definitions in CMA (2020) and FTC (2021). The PSN category contains the non-
focal Meta app (e.g., Facebook in the Instagram experiment) and Snapchat. The Non-PSN
category contains all other phone apps that are not included in the definitions put forth by
the FTC and CMA. Off-phone time is a residual category that contains offline time, time
spent on other devices, and the excluded time spent on background activities.

Within non-PSN time, apps were aggregated into different categories. We considered
Snapchat separately because it was proposed as the major competitor by CMA (2020) and
FTC (2021). We further study YouTube, TikTok, and Messenger separately. YouTube and
TikTok commanded a substantial share of attention from the average user relative to other
apps. Messenger commanded a large share of user attention and required logging in with a
Facebook account, which may suggest complementarity with Facebook.

We aggregated the remaining non-PSN apps into one of eight categories. We followed
Aridor (2025) and aggregated apps into these categories based on the definition of Google
Play Store, which aligns with the default way that RealityMine categorizes apps. In some
cases, there was a direct correspondence between the RealityMine categories and the Google
Play Store definitions. In other cases, RealityMine categories were more detailed than the
aggregated categories we used in the analysis. In these cases, we mapped the RealityMine
category to the less detailed category from the Google Play Store. We manually assigned some
apps to the Google Play Store definitions when RealityMine failed to classify them. Table
D.7 summarizes the mapping between the RealityMine and analysis categories.
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Table D.1: Mapping from RealityMine Categories to Analysis Categories

Analysis Category RealityMine Category Description Examples

Browser Search Accessing websites Google Chrome, Safari

Communication Communication Texting & Messaging SMS/MMS, Gmail, WhatsApp

Entertainment

Entertainment
Music & Audio
Photo & Video
Media & Video

Leisure or having fun Netflix, Spotify

Games

Card, Board, & Casino
Puzzle & Trivia
RPG & Simulation
Action, Adventure, & Arcade
Racing

Gaming apps Coin Master, Candy Crush

Lifestyle

Lifestyle
Social Networking
Health & Fitness
Dating
House & Home
Beauty
Family

Fitness, dating, food Twitter, Reddit, Pinterest

Productivity Business & Finance
Productivity Aim to improve efficiency CashApp, DoorDash, Uber

Shopping Shopping Browse and buy goods and services Amazon, eBay, Instacart

Other

Books & Reference
Food & Drink
Travel & Local
Sports
News & Magazines
Education
Art & Design
Weather
Auto & Vehicles
Reference
Events
Utilities

All other apps Unidentifiable categories

Notes: Table presents a summary of the mapping from RealityMine categories to the categories used in the analysis.
Table excludes Facebook, Instagram, Snapchat, TikTok, YouTube, and Messenger which are considered separately.
All of the apps in this table are considered Non-PSN time under the definitions laid out by FTC (2021) and CMA
(2020).
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D.2 Allocation to experimental samples

In total, the Facebook experiment included 3,500 participants, and the Instagram experiment
included 2,768 participants. We discuss below how we arrived at these sample sizes. We
had targeted a sample sample size of 3,500 for each experiment. As noted above, we set
minimum thresholds for baseline usage of 15 minutes of Facebook for the Facebook experiment
and 10 minutes of Instagram for the Instagram experiment. Depending on their baseline
usage, participants could be eligible for the Facebook experiment only, Instagram experiment
only, or both the Facebook and Instagram experiments. For the Facebook experiment, we
targeted a balance of 83% Facebook-only eligible participants and 17% Facebook/Instagram
participants, which matches the Meta population data. For the Instagram experiment, we
targeted a balance of 56% Instagram-only eligible participants and 44% Facebook/Instagram
participants, also to match the Meta population data.

The recruitment process generated more Facebook-only eligible participants (n=3,457)
and more Facebook/Instagram participants (n=2,237) than Instagram-only eligible partici-
pants (n=1,127). This occurred for several reasons, including: (i) a smaller share of partici-
pants who provided their Instagram IDs were successfully matched to Meta data; (ii) a smaller
share of Instagram users met the required average daily use requirement; and (iii) lower click
through rates on Instagram ads compared to Facebook ads during recruitment.

We first allocated participants to the Facebook experiment in order to achieve a target
sample size of 3,500 with a balance of approximately 83% Facebook-only (n=2,904) and
approximately 17% Facebook/Instagram-eligible participants (n=596). Within each subgroup
– Facebook-only and Facebook/Instagram eligible – we stratified eligible participants based
on gender, age and baseline usage. We then randomly selected participants from each strata
with the aim of best matching the proportions of each strata in the Meta population, given the
characteristics of our participants. After we had selected the Facebook-only participants for
the Facebook experiment randomization, we excluded the remaining Facebook-only eligible
participants from the remainder of the experiment. After we selected the Facebook/Instagram
eligible participants for the Facebook experiment randomization, we allocated the remaining
Facebook/Instagram eligible participants to the Instagram experiment. We also assigned all
Instagram-only participants to the Instagram experiment.

This approach maximized the potential sample size for the Instagram experiment but left
the sample with a lower share of Instagram-only users as opposed to Instagram/Facebook users
relative to the target. Following this approach, a total of 3,500 participants were assigned
to the Facebook experiment, and 2,768 participants were assigned to the Instagram exper-
iment. Of the 3,500 Facebook experiment participants, 596 (17.0%) were eligible for both
experiments, as targeted. Of the 2,768 Instagram experiment participants, 1,641 (59.3%)
were eligible for both experiments. This is higher than the target of 46%. We describe the
allocation procedure more specifically below.

To allocate enough Facebook/Instagram eligible participants to the Facebook experiment,
the 2,237 participants who were eligible for both experiments were first stratified into eight
strata based on: gender (female, male), age (under 40, 40 or older), average time spent on
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the mobile device during the baseline period (less than 400 minutes, 400 minutes or more).
Then, a total of 596 Facebook/Instagram eligible participants were randomly selected from

the eight strata in proportion to the mix of stratified characteristics observed in the joint
distribution of Facebook/Instagram eligible users and assigned to the Facebook experiment.
The remaining 1,641 Facebook/Instagram eligible participants (= 2,237 – 596) were assigned
to the Instagram experiment, which had a total of 2,768 participants. This approach ensures
that characteristics of the Facebook/Instagram eligible participants allocated to the Facebook
experiment mirrors that observed in the Facebook population as closely as possible.

The remaining 2,904 (= 3,500 – 596) Facebook experiment participants were randomly
selected from a total of 3,457 Facebook-only eligible participants in an iterative process. Prior
to selecting Facebook-only participants, we determined the target distribution of Facebook
participants based on the distribution of Facebook-eligible participants observed in Meta’s
Study data for 32 combinations of the following characteristics:33 gender (female, male), age
(18–29, 30–39, 40–49, 50 or older), average time spent on the mobile device during the baseline
period (less than 200 minutes, 200–399 minutes, 400–599, 600 minutes or more).

After accounting for the distribution of the 596 Facebook/Instagram eligible participants
already selected for the Facebook experiment, Facebook-only participants were then randomly
selected from each of the 32 bins in proportion to the mix of stratified characteristics observed
in Meta Study. If a bin remained unfilled after the initial iteration, then a new iteration of
the allocation was performed at a higher level of aggregation based on non-exhausted bins.
For example, if a given category (say, men/600+ minutes/ages 30–39) remained unfilled after
the initial iteration, then a second iteration of the allocation was performed aggregating to
two age groups: less than 40 and 40 and older. This process was followed iteratively until the
desired number of Facebook-only participants were selected. This process ensures that the
selected participants mirror the distribution of users observed in the Meta Study data for the
32 categories of participants, subject to the constraints of the characteristics of the recruited
sample.

In round 1 of the sample selection, each of the 3,457 Facebook-only eligible participants
were assigned a randomly generated number. For each of the 32 bins, a participant was
selected in ascending order of the randomly assigned number as long as the bin was not yet
filled. A total of 2,472 participants were selected from the Facebook-only eligible participants
in round 1. A total of 985 participants (= 3,457 – 2,472) were not selected in round 1 and
were retained to be potentially selected in subsequent rounds.

In round 2, prior to generating a new random number for the 985 retained participants
from round 1, the age bins were collapsed into 2 bins (less than 40, 40 and older), resulting
in 16 bins. Each of the retained 985 participants were assigned a new randomly generated
number. For each of the 16 bins, a retained participant was selected in ascending order of the
randomly assigned number as long as the bin was not yet filled. A total of 17 participants were
selected from the Facebook-only eligible participants in round 2. A total of 968 participants
(= 985 – 17) were not selected in round 2 and were retained to be potentially selected in

33The Meta Study data were used in this allocation because they contain a measure of average daily time
spent on their mobile device.
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subsequent rounds.
In round 3, prior to generating a new random number for the 968 retained participants

from round 2, the time spent bins were collapsed into 2 bins (less than 400 minutes, 400
minutes or more), resulting in 8 bins. Each of the retained 968 participants were assigned a
new randomly generated number. For each of the 8 bins, a retained participant was selected
in ascending order of the randomly assigned number as long as the bin was not yet filled. A
total of 60 participants were selected from the Facebook-only eligible participants in round 3.
A total of 908 participants (= 968 - 60) were not selected in round 3 and were retained to be
potentially selected in round 4.

In round 4, prior to generating a new random number for the 908 retained participants
from round 3, the gender bins were collapsed into 1 bin, resulting in 4 bins. Each of the
retained 908 participants were assigned a new randomly generated number. For each of the 4
bins, a retained participant was selected in ascending order of the randomly assigned number
as long as the bin was not yet filled. A total of 355 participants were selected, resulting in a
total of 3,500 Facebook experiment participants.
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D.3 Randomization

For the Facebook experiment, we stratified the randomization on: (i) deciles of Facebook use
in the baseline period; (ii) whether or not they had used Instagram in the baseline period;
and (iii) whether or not they had used Snapchat in the baseline period. For the Instagram
experiment, we stratified the randomization on: (i) quintiles of Instagram use in the baseline
period; (ii) terciles of Facebook use in the baseline period; and (iii) whether or not they had
used Snapchat in the baseline period.

For each experiment, we conducted 3,000 randomizations using the relevant strata. For
each randomization, we conducted balance tests on our stratified variables as well as 60 (63)
balancing variables in the Facebook (Instagram) experiment. The balancing variables were:
Average baseline usage of Facebook and Instagram in the past 28 days, according to Meta
data; Facebook friend counts and Instagram follows, according to Meta data; average Insta-
gram follower count; average Instagram follow count; average number of Facebook friends;
terciles of number of Facebook friends (Facebook experiment only); terciles of Instagram
follower count (Instagram experiment only); terciles of Instagram follow count (Instagram
experiment only); baseline daily usage of apps and app categories, according to RealityMine
data: Browser, Communication, Entertainment, Facebook, Games, Instagram, Lifestyle, Mes-
senger, Productivity, Shopping, Snapchat, TikTok, YouTube, All Other Apps, All Apps; share
of total time spent on device according to RealityMine data for the apps and categories above
(except for “All Apps”); zero/non-zero use according to RealityMine data for the apps and
categories above (except for “All Other apps”, “All Apps”, Facebook in the Facebook exper-
iment, and Instagram in the Instagram experiment ); demographics: % female, % age 18–34,
% age 35–54. % age 55+, average age; region: south (%), northeast (%), midwest (%), west
(%); recruitment source: % sourced from panels; % of days with missing device monitor data
in the baseline period.

The balance tests include F -tests of equality of means across the treatment and control
groups for each balancing variable; and Kolmogorov-Smirnov test statistics of average daily
time spent on the main apps and app categories: Facebook, Instagram, Snapchat, YouTube,
TikTok, games category, and total phone time. A total of 43 iterations in the Facebook
experiment and 34 iterations in the Instagram experiment resulted in no significant differences
(using a 10% significance level) between treatment and control groups for each balancing
variable. The final iteration was selected based on having the highest minimum p-value from
the F -tests among the main apps and app categories for all eligible iterations.
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Table D.2: Balance of Additional Baseline Characteristics

Treatment Arm

All
(1)

Control
(2)

Treatment
(3)

p-value test
(4)

a. Facebook Experiment:

Female (%) 78.714 78.686 78.743 0.967
(0.692) (0.979) (0.978)

Age (Years) 41.642 41.493 41.791 0.411
(0.181) (0.257) (0.255)

Facebook Friend Count 587.720 571.057 604.384 0.170
(12.149) (16.692) (17.653)

Instagram Follower Count 193.125 189.288 196.962 0.532
(6.135) (8.417) (8.929)

Instagram Followings Count 414.690 409.072 420.308 0.693
(14.244) (19.392) (20.873)

Recruited from Advertisements (%) 10.314 10.057 10.571 0.617
(0.514) (0.719) (0.735)

Observations 3,500 1,750 1,750

b. Instagram Experiment:

Female (%) 69.581 69.725 69.436 0.869
(0.875) (1.235) (1.239)

Age (Years) 38.471 38.403 38.539 0.741
(0.205) (0.295) (0.285)

Facebook Friend Count 535.187 527.049 543.325 0.541
(13.316) (18.536) (19.127)

Instagram Follower Count 346.172 346.064 346.281 0.991
(9.237) (13.709) (12.389)

Instagram Followings Count 870.905 840.046 901.764 0.160
(21.979) (29.444) (32.628)

Recruited from Advertisements (%) 13.945 13.078 14.812 0.188
(0.659) (0.907) (0.955)

Observations 2,768 1,384 1,384

Notes: Table presents the average baseline characteristics of subjects in the Experiment. Standard errors are reported
in parentheses. The statistics in panel are based on survey responses or information from Meta. Panel (a) displays
information from the Facebook experiment and Panel (b) displays information from the Instagram experiment.
Column (1) is based on the entire Facebook experiment subject pool. Column (2) is based on subjects who do not
receive financial incentives to reduce Facebook Usage. Column (3) is based on subjects who do receive financial
incentives to reduce Facebook usage. Column (4) reports the p-value of a test of equal means across the two
treatment groups.
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D.4 Representativeness and Reweighting

In the Facebook experiment, we weighted the sample observations to match internal Meta data
on the share of all Facebook users who would be eligible for the Facebook experiments on two
sets of usage categories. The first category is based on Instagram use in the baseline period.
It includes three groups: those with zero Instagram use, those with an average (positive) daily
Instagram use of 10 minutes or less, and those with an average daily Instagram use of over 10
minutes. The second category is based on Facebook usage in the baseline period. It includes
two groups: one with an average daily Facebook use above 60 minutes and the other with an
average use of 60 minutes or less. We also use demographic weights to account for the age
and gender distributions of the target population. We classify the target population into two
gender groups (female and male) and three age categories (18–34, 35–54, and 55+).

In the Instagram experiment, we weighted the sample observations to match internal Meta
data on Instagram users who would be eligible for the Instagram experiment across two usage
categories. The first category is based on Facebook use in the baseline period. It includes
three groups: those with zero Facebook use, those with an average (positive) daily Facebook
use of 50 minutes or less, and those with an average daily Facebook use of more than 50
minutes. The second category is based on Instagram use in the baseline period. It includes
two groups: one with an average daily Instagram use above 40 minutes and the other with
an average daily Instagram use of 40 minutes or less. We also use demographic weights to
account for the age and gender distributions of the target population. We classify the target
population into two gender groups (female and male) and three age categories (18–34, 35–44,
and 45+). For Instagram users, Meta does not maintain complete data for user gender. As a
result, the gender distribution for Instagram users relies on the data available, which covers
approximately 82% of the target population.

27



Table D.3: Comparison of Weighted and Unweighted Samples with the Population

Sample Weighted Target Population

Panel A: Facebook Experiment
Facebook ADU 75 min/day 80 min/day 83 min/day
Instagram ADU 9 min/day 7 min/day 7 min/day

Demographics
Ages 18-34 27.5% 20.1% 23.1%
Ages 35-54 58.7% 41.1% 43.1%
Ages 55+ 13.8% 38.9% 33.8%
Female 78.7% 50.9% 50.8%
Non-Female 21.3% 49.1% 49.2%

Focal Meta App
Facebook Use: <= 60 min 52.9% 45.9% 45.8%
Facebook Use: > 60 min 47.1% 54.1% 54.2%

Non-Focal Meta App
No Instagram Use 42.5% 68.7% 58.5%
IG Use 57.5% 31.3% 41.5%

<= 10 min 71.5% 52.1% 59.4%
> 10 min 28.5% 47.9% 40.6%

Sample Weighted Target Population
Panel B: Instagram Experiment
Facebook ADU 45 min/day 32 min/day 37 min/day
Instagram ADU 47 min/day 52 min/day 48 min/day

Demographics
Ages 18-34 37.6% 47.5% 43.5%
Ages 35-54 54.0% 44.1% 43.5%
Ages 55+ 8.4% 8.4% 13.0%
Female 69.6% 44.3% 46.7%
Non-Female 30.4% 55.7% 53.3%

Focal Meta App
Instagram Use: <= 40 min 61.7% 57.9% 57.9%
Instagram Use: > 40 min 38.3% 42.1% 42.1%

Non-Focal Meta App
No Facebook Use 16.9% 43.0% 36.4%
Facebook Use 83.1% 57.0% 36.6%

<= 50 min 60.3% 57.3% 56.0%
> 50 min 39.7% 42.7% 44.0%

Notes: Table presents the mean values for the unweighted experimental sample, the reweighted experimental
sample, and the target population.
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Table D.4: Balance of Baseline Usage in the Facebook Experiment (reweighted)

Treatment Arm

All
(1)

Control
(2)

Treatment
(3)

p-value test
(4)

Facebook Minutes 72.086 72.508 71.666 0.676
(1.009) (1.432) (1.423)

Facebook Minutes (Meta) 80.189 79.622 80.752 0.603
(1.087) (1.504) (1.572)

Instagram Minutes 6.875 7.130 6.622 0.464
(0.347) (0.514) (0.466)

Instagram Minutes (Meta) 7.109 7.258 6.961 0.684
(0.365) (0.517) (0.515)

Snapchat Minutes 2.094 2.007 2.180 0.573
(0.153) (0.228) (0.205)

YouTube Minutes 22.897 22.494 23.298 0.647
(0.878) (1.135) (1.340)

TikTok Minutes 9.405 9.727 9.085 0.517
(0.496) (0.722) (0.680)

Browser Minutes 62.397 59.556 65.224 0.004
(0.975) (1.357) (1.396)

Games Minutes 74.431 75.163 73.703 0.671
(1.718) (2.485) (2.374)

Communication Minutes 42.585 41.504 43.661 0.116
(0.686) (0.910) (1.027)

Entertainment Minutes 27.094 25.357 28.823 0.037
(0.831) (1.066) (1.275)

Lifestyle Minutes 16.363 17.046 15.684 0.137
(0.457) (0.679) (0.613)

Messenger Minutes 20.154 19.554 20.751 0.296
(0.573) (0.766) (0.851)

Productivity Minutes 18.276 18.597 17.956 0.449
(0.423) (0.616) (0.580)

Shopping Minutes 14.796 14.458 15.131 0.407
(0.406) (0.555) (0.592)

Other App Minutes 18.725 19.069 18.382 0.496
(0.505) (0.735) (0.692)

Total Phone Minutes 408.178 404.170 412.166 0.200
(3.116) (4.501) (4.310)

Percent of Missing Days 1.492 1.504 1.480 0.856
(0.065) (0.091) (0.094)

Observations 3,500 1,750 1,750

Notes: Table presents reweighted means and then standard errors in parentheses for the Facebook experiment sample.
Column (1) uses the full sample. Column (2) uses those who did not receive incentives to reduce Facebook Usage.
Column (3) uses those who do receive incentives to reduce Facebook usage. Column (4) reports the p-value of a
test of equal means across the two treatment groups. Data collected from RealityMine unless otherwise stated.
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Table D.5: Balance of Baseline Usage in the Instagram Experiment (reweighted)

Treatment Arm

All
(1)

Control
(2)

Treatment
(3)

p-value test
(4)

Facebook Minutes 29.973 29.808 30.132 0.867
(0.966) (1.335) (1.397)

Facebook Minutes (Meta) 31.817 32.346 31.304 0.600
(0.993) (1.402) (1.408)

Instagram Minutes 48.433 49.264 47.630 0.382
(0.933) (1.362) (1.277)

Instagram Minutes (Meta) 52.255 53.491 51.059 0.235
(1.024) (1.639) (1.237)

Snapchat Minutes 5.677 5.697 5.658 0.956
(0.353) (0.505) (0.493)

YouTube Minutes 40.813 36.711 44.780 0.006
(1.475) (1.682) (2.408)

TikTok Minutes 19.920 21.179 18.701 0.180
(0.923) (1.342) (1.269)

Browser Minutes 61.860 63.241 60.523 0.184
(1.023) (1.411) (1.481)

Games Minutes 51.791 50.301 53.232 0.326
(1.492) (1.972) (2.234)

Communication Minutes 42.792 44.940 40.715 0.006
(0.775) (1.057) (1.130)

Entertainment Minutes 31.758 32.746 30.804 0.285
(0.907) (1.305) (1.262)

Lifestyle Minutes 25.980 24.465 27.445 0.052
(0.765) (0.978) (1.174)

Messenger Minutes 7.952 8.520 7.403 0.156
(0.393) (0.554) (0.556)

Productivity Minutes 17.010 16.561 17.443 0.310
(0.435) (0.516) (0.696)

Shopping Minutes 14.172 14.038 14.301 0.777
(0.465) (0.649) (0.666)

Other App Minutes 25.179 24.925 25.426 0.740
(0.756) (1.016) (1.118)

Total Phone Minutes 423.310 422.397 424.194 0.795
(3.448) (4.808) (4.944)

Percent of Missing Days 1.128 1.220 1.040 0.167
(0.065) (0.096) (0.089)

Observations 2,768 1,384 1,384

Notes: Table presents reweighted means and then standard errors in parentheses for the Instagram experiment
sample. Column (1) uses the full sample. Column (2) uses those who did not receive incentives to reduce Instagram
Usage. Column (3) uses those who do receive incentives to reduce Instagram usage. Column (4) reports the p-value
of a test of equal means across the two treatment groups. Data collected from RealityMine unless otherwise stated.
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Table D.6: Balance of Additional Baseline Characteristics (reweighted)

Treatment Arm

All
(1)

Control
(2)

Treatment
(3)

p-value test
(4)

a. Facebook Experiment:
Female (%) 50.866 50.641 51.090 0.790

(0.845) (1.195) (1.195)
Age (Years) 47.178 46.882 47.472 0.178

(0.219) (0.308) (0.311)
Facebook Friend Count 513.843 500.078 527.540 0.235

(11.552) (15.812) (16.840)
Instagram Follower Count 121.150 126.945 115.384 0.312

(5.711) (8.494) (7.639)
Instagram Followings Count 261.646 278.425 244.950 0.163

(12.008) (17.898) (16.013)
Recruited from Advertisements (%) 10.513 10.813 10.214 0.564

(0.519) (0.743) (0.724)
Region: South (%) 44.541 46.218 42.872 0.046

(0.840) (1.192) (1.183)
Region: Northeast (%) 14.320 13.105 15.530 0.041

(0.592) (0.807) (0.866)
Region: Midwest (%) 25.676 25.618 25.732 0.938

(0.739) (1.044) (1.045)
Region: West (%) 15.463 15.059 15.866 0.509

(0.611) (0.855) (0.874)
Observations 3,500 1,750 1,750

b. Instagram Experiment:
Female (%) 44.321 46.047 42.651 0.072

(0.944) (1.340) (1.330)
Age (Years) 36.795 36.816 36.774 0.926

(0.224) (0.327) (0.308)
Facebook Friend Count 376.244 374.638 377.798 0.893

(11.751) (16.183) (17.034)
Instagram Follower Count 306.903 311.707 302.257 0.583

(8.595) (12.739) (11.565)
Instagram Followings Count 813.091 773.323 851.553 0.075

(21.990) (28.515) (33.386)
Recruited from Advertisements (%) 14.825 13.903 15.718 0.180

(0.676) (0.930) (0.979)
Region: South (%) 41.509 41.922 41.110 0.665

(0.937) (1.327) (1.323)
Region: Northeast (%) 17.073 18.843 15.360 0.015

(0.715) (1.052) (0.970)
Region: Midwest (%) 17.230 17.636 16.837 0.578

(0.718) (1.025) (1.006)
Region: West (%) 24.189 21.598 26.694 0.002

(0.814) (1.107) (1.190)
Observations 2,768 1,384 1,384

Notes: Table presents the reweighted average baseline characteristics of subjects in the Experiment. Standard errors
are reported in parentheses. The statistics in panel are based on survey responses or information from Meta. Panel
(a) displays information from the Facebook experiment and Panel (b) displays information from the Instagram
experiment. Column (1) is based on the entire Facebook experiment subject pool. Column (2) is based on subjects
who do not receive financial incentives to reduce Facebook Usage. Column (3) is based on subjects who do receive
financial incentives to reduce Facebook usage. Column (4) reports the p-value of a test of equal means across the
two treatment groups.
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D.5 Missing Outcome Data

In this section, we describe the attrition of subjects from our experiment. Attrition in this
experiment refers to missing outcome data, which is not an absorbing state. That is, subjects
may be missing outcome data for some week of the experiment, even though we observe data
for a later week. Outcome data is missing because the participant stopped sending device
monitor data in that week. This could be because the subject removed the device monitor
from their phone or because their phone was off for the entire week.

Table D.7 reports the number of missing observations by experiment, treatment, and week
of the experiment. Because having a week of baseline data was a condition for randomization,
we are not missing any of the baseline outcome data for any subject. In week 1, 125 (3.5%) of
the Facebook experiment subjects and 96 (3.5%) of the Instagram experiment subjects have
missing outcome data. The amount of missing outcome data increases to its maximum in
week 4, where it is 7.2% in the Facebook experiment and 6.6% in the Instagram experiment.
This is substantially lower than the 15.3% attrition typically found in field experiments and
the 20.7% found in similar high-income countries (Ghanem et al., 2023). We find evidence
that the subjects are more likely to have missing outcome data in the control group of the
Instagram experiment during week 1. However, this pattern does not persist significantly in
later weeks.

Table D.7: Missing Outcome Data

Facebook Experiment Instagram Experiment

Treatment Control P-value Treatment Control P-value

Baseline 0 0 1.000 0 0 1.000

Week 1 65 60 0.649 39 57 0.062

Week 2 84 89 0.697 58 72 0.209

Week 3 123 105 0.218 77 82 0.683

Week 4 136 119 0.269 85 98 0.320

Notes: Table presents the number of observations with missing outcome data by experiment, week, and treatment.
P-values correspond to a test of whether the portion of missing observations differs based on treatment within an
experiment. In the Facebook Experiment, 1,750 subjects were randomized to each treatment. In the Instagram
experiment, 1,384 subjects were randomized to each treatment.

Next, we investigate whether any baseline characteristics determine whether a subject has
missing outcome data in any week of the experiment. Table D.8 presents the results from
linear regressions where the outcome variable is an indicator equal to one if the participant
is missing any outcome data throughout the duration of the experiment. We regress this
outcome on the baseline outcome, baseline usage of other PSN and non-PSN commodities,
and baseline demographics. Column (1) displays the coefficient estimates of this regression for
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the Facebook experiment and Column (2) displays the coefficient estimates of this experiment
from the Instagram experiment. This table shows that subjects who use more of the focal app
at baseline are less likely to leave the experiment. Subjects who are recruited from ads are
also more likely to have missing outcome data than subjects who are recruited from panels.
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Table D.8: Determinants of Attrition Test

(1) (2)
Facebook Experiment Instagram Experiment

Treated 0.553 -0.756
(0.995) (1.086)

Baseline Facebook Usage -0.0354∗∗∗

(0.00862)

Baseline Instagram Usage -0.0274∗∗

(0.0134)

Baseline Other PSN Usage -0.0235 -0.00981
(0.0210) (0.00997)

Baseline Non-PSN Usage 0.00120 -0.00407
(0.00297) (0.00344)

Female -3.941∗∗∗ -1.695
(1.366) (1.229)

Age 35 - 54 -1.807 -0.393
(1.200) (1.172)

Age 55+ -3.461∗∗ -1.707
(1.623) (1.989)

Subject in the Midwest 0.0166 -0.0397
(1.603) (1.921)

Subject in the South 1.630 -0.238
(1.523) (1.601)

Subject in West 2.915 -1.168
(1.860) (1.746)

Source is Ads 3.482∗ 3.860∗∗

(1.831) (1.766)

Average Friends Count 0.00104 0.00129
(0.000805) (0.000931)

Average Followings Count -0.000284 -0.000801
(0.000725) (0.000522)

Average Followers Count -0.00348∗∗ 0.00174
(0.00143) (0.00147)

Constant 14.90∗∗∗ 13.13∗∗∗

(2.291) (2.396)

F-Stat 3.991 1.362
R-Squared 0.015 0.008
Observations 3500 2768

Notes: Table displays coefficients from regressions of treatment assignment and baseline covariates on indicators for
whether the subject is ever missing an observation. Column (1) displays the results o the Facebook Experiment.
Column (2) displays the results of the Instagram experiment. Table includes all 3,500 subjects randomized in the
Facebook experiment and all 2,768 subjects randomized in the Instagram experiment. Significant at *10%, **5%,
***1%. Robust standard errors in parentheses.
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Finally, in Table D.9, we conduct the two mean tests of internal validity recommended
by Ghanem et al. (2023). Columns display regression estimates of the mean of baseline
outcomes based on interactions of their treatment status and whether they ever have missing
outcome data. Columns (1) through (4) display these regressions for the four main commodity
categories in the Facebook experiment while Columns (5) through (8) display these regressions
for the four main commodity categories in the Instagram experiment.

For each baseline outcome, we provide mean tests of internal validity for respondents (IV-
R). Here, we test whether the average potential outcome without the treatment is identical for
the treatment and control responders as well as the treatment and control attritors. Ghanem
et al. (2023) shows that when the IV-R assumption holds, the estimates from Section 3.3
represent those for the respondent population. Across all eight columns, we fail to reject null
hypothesis for any of the baseline outcomes, supporting the internal validity of respondents.

We additionally provide mean tests of internal validity for participants (IV-P). Here, we
test whether the average potential outcome without treatment is identical across all treatment
and responder categories. Ghanem et al. (2023) shows that when the IV-P assumption holds,
the estimates from Section 3.3 identify the treatment effects for the study population. By
in large, we find support for this assumption. However, we reject the equality of the means
across these four categories for the baseline Facebook usage in the Facebook experiment.

Table D.9: Selective Attrition Test

(1) (2) (3) (4) (5) (6) (7) (8)
Facebook Other PSN Non-PSN Non-Phone Instagram Other PSN Non-PSN Non-Phone

Treated × Ever Missing 58.30 10.30 356.2 1015.2 33.32 43.14 322.9 1040.6
(4.704) (1.830) (12.89) (14.18) (3.585) (5.258) (17.62) (18.57)

Control × Ever Missing 53.78 9.521 336.8 1039.9 40.71 46.40 322.7 1030.2
(4.235) (1.821) (13.24) (13.73) (4.599) (5.086) (14.63) (16.79)

Treated × Never Missing 71.95 11.61 340.7 1015.7 43.20 48.42 334.0 1014.4
(1.519) (0.590) (4.209) (4.453) (1.181) (1.658) (4.706) (4.975)

Control × Never Missing 71.66 12.10 341.4 1014.8 43.64 46.93 336.4 1013.0
(1.461) (0.654) (4.295) (4.513) (1.279) (1.600) (4.682) (5.064)

Experiment Facebook Facebook Facebook Facebook Instagram Instagram Instagram Instagram
IV-R Test 0.768 0.820 0.571 0.452 0.434 0.734 0.936 0.900
IV-P Test 0.000 0.496 0.691 0.378 0.052 0.763 0.739 0.409
R-squared 0.587 0.183 0.803 0.970 0.489 0.403 0.799 0.970
Observations 3500 3500 3500 3500 2768 2768 2768 2768

Notes: This table displays regressions of four baseline outcomes on interactions between the treatment status and
whether the subject was ever missing data during the experiment without a constant term. The IV-R Test evaluates
whether the average potential outcome without the treatment is identical for the treatment and control responders
as well as the treatment and control attritors. The IV-P test evaluates whether the average potential outcome
without treatment is identical across all treatment and responder categories.
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D.6 Specification Checks

First, we investigate whether the results we find are false positives resulting from not adjusting
the significance level of our hypotheses to reflect the fact that we are testing for differences
across many commodities (List et al., 2019). We use the Romano and Wolf (2016) procedure
to control the family-wise error rate and allow for dependence amongst p-values within a fam-
ily. We follow Rubin (2021) and group hypotheses into a family when performing disjunction
testing among that group of commodities. These criteria leave us with four families: (1) indi-
vidual commodities in the Facebook experiment, (2) aggregate commodities in the Facebook
experiment, (3) individual commodities in the Instagram experiment, and (4) aggregate com-
modities in the Instagram experiment. Columns (2) in Table D.10 and Table D.11 display
reproductions of estimates using the main specification with adjusted p-values. Panels (a)
show that the statistical significance of substitution towards individual commodities is largely
unchanged for both the Facebook and Instagram experiments. Similarly, Panels (b) show the
same pattern for aggregated commodity categories.

In Columns (3), we control for strata fixed effects rather than linear functions of the
variables on which we stratified and other baseline characteristics to reflect the randomization
strategy (Athey and Imbens, 2017; Czibor et al., 2019). Columns (4) control only for the strata
variables linearly rather than discretized variables used in the randomization or including other
baseline covariates. The results are qualitatively similar to the main results but with more
substitution towards non-PSN commodities and less substitution away from phone use. In
the Facebook experiment, we also see substantially more substitution towards browser and
communication apps. In comparison, we see even more substitution towards YouTube and
slightly more substitution towards Facebook in the Instagram experiment.

As discussed in Section 3.3, our analysis focuses on weeks 2-4 of the post-period to estimate
diversion ratios once the subjects’ behavior stablized. Columns (5) evaluate how our results
would change if we included the first week in our analysis. We find that, across all apps and
aggregated categories, the results are not materially affected by excluding the first week of
data.

In Columns (6), we study the role of missing data in our results. Because of how the
RealityMine app worked, we can observe all commodity usage for a week or no app usage over
that week. Overall, missingness in the experiment is low.34 We are missing RealityMine data
for 5.58% of the subject-weeks in the Facebook experiment and 5.13% of the subject-weeks in
the Instagram experiment.

Across both experiments, we find that roughly 4% of data is missing in week 1, 5% in week
2, 6% in week 3, and 7% in week 4. Because the attrition rate is so low, we do not expect the
missingness to substantially bias our estimates. Nevertheless, we follow Giuntella et al. (2021)
and repeat the analysis, replacing missing outcome data with an individual’s baseline value.
This imputation will lead us to find less evidence of substitution because we are not allowing
any substitution for users with missing outcome data. We show the results in Columns (6) of

34Ghanem et al. (2023) finds that on average, longitudinal experiments have substantially higher attrition
at 15%, with higher rates in high-income countries.
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Table D.10 and Table D.11 and confirm that our results are not substantially influenced by
missing outcome data.
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Table D.10: Robustness: Facebook Experiment

Diversion Ratio

Main MHT Strata FE Sparse Incl. Week 1 Imputed Unweighted
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Aggregated Categories

PSN -0.057∗∗∗ -0.057∗∗∗ -0.059∗∗∗ -0.057∗∗∗ -0.056∗∗∗ -0.057∗∗∗ -0.075∗∗∗

(0.012) (0.012) (0.019) (0.012) (0.011) (0.012) (0.011)
Non-PSN Time -0.550∗∗∗ -0.550∗∗∗ -0.639∗∗∗ -0.620∗∗∗ -0.527∗∗∗ -0.560∗∗∗ -0.608∗∗∗

(0.093) (0.093) (0.192) (0.194) (0.089) (0.093) (0.065)
Offline Time -0.393∗∗∗ -0.393∗∗∗ -0.302 -0.323∗ -0.418∗∗∗ -0.382∗∗∗ -0.318∗∗∗

(0.094) (0.094) (0.194) (0.195) (0.090) (0.094) (0.066)
Panel (b): Individual Apps

Instagram -0.050∗∗∗ -0.050∗∗∗ -0.049∗∗∗ -0.050∗∗∗ -0.049∗∗∗ -0.051∗∗∗ -0.072∗∗∗

(0.011) (0.011) (0.017) (0.012) (0.010) (0.011) (0.010)
Snapchat -0.007∗ -0.007∗ -0.010∗ -0.007∗ -0.007∗ -0.007∗ -0.003

(0.004) (0.004) (0.006) (0.004) (0.004) (0.004) (0.005)
Messenger -0.010 -0.010 -0.034 -0.025 -0.008 -0.011 0.031∗∗∗

(0.020) (0.020) (0.041) (0.043) (0.020) (0.020) (0.012)
TikTok -0.047∗∗ -0.047∗∗ -0.045 -0.030 -0.051∗∗∗ -0.047∗∗ -0.066∗∗∗

(0.019) (0.019) (0.031) (0.031) (0.017) (0.019) (0.016)
YouTube -0.084∗∗∗ -0.084∗∗ -0.091 -0.089 -0.081∗∗∗ -0.085∗∗∗ -0.063∗∗∗

(0.032) (0.032) (0.062) (0.063) (0.029) (0.031) (0.019)
Browser -0.095∗∗∗ -0.095∗∗ -0.168∗∗∗ -0.168∗∗∗ -0.094∗∗∗ -0.098∗∗∗ -0.090∗∗∗

(0.034) (0.034) (0.060) (0.062) (0.033) (0.034) (0.022)
Communication -0.057∗∗ -0.057∗∗ -0.110∗∗∗ -0.102∗∗ -0.059∗∗∗ -0.056∗∗ -0.036∗∗

(0.024) (0.024) (0.042) (0.043) (0.022) (0.024) (0.015)
Entertainment -0.034 -0.034 -0.072 -0.072 -0.033 -0.036 -0.052∗∗

(0.028) (0.028) (0.052) (0.053) (0.027) (0.028) (0.021)
Games -0.145∗∗ -0.145∗∗ -0.090 -0.104 -0.129∗∗ -0.149∗∗ -0.224∗∗∗

(0.061) (0.061) (0.124) (0.126) (0.057) (0.061) (0.039)
Lifestyle -0.010 -0.010 0.018 0.018 -0.013 -0.011 -0.028∗∗

(0.025) (0.025) (0.038) (0.037) (0.024) (0.025) (0.013)
Productivity -0.035∗∗ -0.035∗∗ -0.018 -0.017 -0.030∗∗ -0.036∗∗ -0.017

(0.016) (0.016) (0.026) (0.027) (0.015) (0.016) (0.011)
Shopping -0.004 -0.004 -0.012 -0.011 0.001 -0.004 -0.036∗∗∗

(0.015) (0.015) (0.024) (0.024) (0.016) (0.015) (0.011)
Other -0.029 -0.029 -0.017 -0.022 -0.028 -0.028 -0.027∗∗

(0.018) (0.018) (0.032) (0.033) (0.018) (0.019) (0.013)
Strata Fixed Effects ✓

Strata Covariates ✓ ✓ ✓ ✓ ✓ ✓

Additional Covariates ✓ ✓ ✓ ✓ ✓

Weights ✓ ✓ ✓ ✓ ✓ ✓

Romano Wolf p-values ✓

Include First Post Week ✓

Impute Missing Data ✓

F Statistic 39.22 39.22 32.62 186.65 45.85 40.25 93.66
Subjects 3,361 3,361 3,361 3,361 3,418 3,500 3,361
Observations 9,844 9,844 9,844 9,844 13,219 10,500 9,844

Notes: Significant at *10%, **5%, ***1%. Standard errors in parentheses are clustered at the individual level. This
table reports 2SLS estimates of regressions discussed in Section 3.3. Panel (a) reports the estimates from separate
regressions for each commodity where the dependent variable is the weekly usage of that category. Panel (b) reports
analogous results for aggregated commodity categories. The PSN category contains Instagram and Snapchat.
The Non-PSN category contains all other commodities. Column (1) replicates the main specification in Table 3.
Column (2) replicates the main specification with stars from p-values that correct for multiple comparisons using
the procedure from Romano and Wolf (2016). Column (3) replaces the controls with strata fixed effects. Column (4)
controls only for linear versions of the variables used to construct the strata (baseline Facebook usage, Instagram
usage, and Snapchat usage). Column (5) adds data from week 1 to the main specification. Column (6) replicates
the main specification but imputes zeros for all missing values. Column (7) removes the weights from the main
specification.
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Table D.11: Robustness: Instagram Experiment

Diversion Ratio

Main MHT Strata FE Sparse Incl. Week 1 Imputed Unweighted
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Aggregated Categories

PSN -0.156∗∗∗ -0.156∗∗∗ -0.170∗∗∗ -0.150∗∗∗ -0.153∗∗∗ -0.156∗∗∗ -0.235∗∗∗

(0.037) (0.037) (0.048) (0.038) (0.034) (0.037) (0.034)
Non-PSN Time -0.552∗∗∗ -0.552∗∗∗ -0.611∗∗ -0.609∗∗ -0.589∗∗∗ -0.548∗∗∗ -0.524∗∗∗

(0.145) (0.145) (0.287) (0.294) (0.139) (0.144) (0.100)
Offline Time -0.292∗ -0.292∗∗ -0.219 -0.241 -0.258∗ -0.296∗∗ -0.241∗∗

(0.150) (0.150) (0.292) (0.297) (0.143) (0.148) (0.105)
Panel (b): Individual Apps

Facebook -0.134∗∗∗ -0.134∗∗∗ -0.150∗∗∗ -0.129∗∗∗ -0.130∗∗∗ -0.133∗∗∗ -0.206∗∗∗

(0.032) (0.032) (0.040) (0.032) (0.030) (0.032) (0.032)
Snapchat -0.022 -0.022 -0.020 -0.021 -0.023 -0.024 -0.029∗∗

(0.019) (0.019) (0.025) (0.020) (0.016) (0.018) (0.013)
Messenger 0.022∗∗ 0.022∗ 0.040∗ 0.049∗∗ 0.019∗ 0.021∗ 0.024∗

(0.011) (0.011) (0.022) (0.024) (0.011) (0.011) (0.013)
TikTok -0.105∗∗∗ -0.105∗∗∗ -0.026 -0.022 -0.085∗∗ -0.102∗∗∗ -0.104∗∗∗

(0.040) (0.040) (0.087) (0.091) (0.037) (0.038) (0.026)
YouTube -0.189∗∗∗ -0.189∗∗∗ -0.419∗∗ -0.437∗∗ -0.193∗∗∗ -0.190∗∗∗ -0.147∗∗∗

(0.061) (0.061) (0.168) (0.176) (0.059) (0.061) (0.036)
Browser -0.183∗∗∗ -0.183∗∗∗ -0.121 -0.133 -0.195∗∗∗ -0.183∗∗∗ -0.129∗∗∗

(0.051) (0.051) (0.090) (0.091) (0.051) (0.051) (0.033)
Communication 0.007 0.007 0.105 0.107 -0.018 0.008 0.013

(0.039) (0.039) (0.071) (0.070) (0.037) (0.039) (0.026)
Entertainment -0.006 -0.006 0.050 0.060 -0.027 -0.005 -0.041

(0.049) (0.049) (0.072) (0.072) (0.047) (0.049) (0.041)
Games -0.029 -0.029 -0.104 -0.088 -0.008 -0.026 -0.104∗

(0.080) (0.080) (0.123) (0.125) (0.073) (0.079) (0.058)
Lifestyle -0.037 -0.037 -0.061 -0.074 -0.043 -0.046 -0.036

(0.044) (0.044) (0.069) (0.072) (0.043) (0.043) (0.024)
Productivity 0.036 0.036 0.005 0.007 0.031 0.036 0.036∗∗

(0.024) (0.024) (0.039) (0.037) (0.022) (0.024) (0.017)
Shopping -0.013 -0.013 -0.025 -0.024 -0.010 -0.007 -0.016

(0.017) (0.017) (0.030) (0.031) (0.017) (0.017) (0.016)
Other -0.056 -0.056 -0.054 -0.054 -0.061 -0.055 -0.020

(0.042) (0.042) (0.072) (0.076) (0.039) (0.042) (0.027)
Strata Fixed Effects ✓

Strata Covariates ✓ ✓ ✓ ✓ ✓ ✓

Additional Covariates ✓ ✓ ✓ ✓ ✓

Weights ✓ ✓ ✓ ✓ ✓ ✓

Romano Wolf p-values ✓

Include First Post Week ✓

Impute Missing Data ✓

F Statistic 33.97 33.97 23.82 168.89 42.79 37.08 57.11
Subjects 2,677 2,677 2,677 2,677 2,706 2,768 2,677
Observations 7,832 7,832 7,832 7,832 10,504 8,304 7,832

Notes: Significant at *10%, **5%, ***1%. Standard errors in parentheses are clustered at the individual level.
This table reports 2SLS estimates of regressions discussed in Section 3.3. Panel (a) reports the estimates from
separate regressions for each commodity where the dependent variable is the weekly usage of that category. Panel
(b) reports analogous results for aggregated commodity categories. The PSN category contains Facebook and
Snapchat. The Non-PSN category contains all other commodities. Column (1) replicates the main specification in
Table 3. Column (2) replicates the main specification with stars from p-values that correct for multiple comparisons
using the procedure from Romano and Wolf (2016). Column (3) replaces the controls with strata fixed effects.
Column (4) controls only for linear versions of the variables used to construct the strata (baseline Facebook usage,
Instagram usage, and Snapchat usage). Column (5) adds data from week 1 to the main specification. Column (6)
replicates the main specification but imputes zeros for all missing values. Column (7) removes the weights from the
main specification.
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E Comparing iOS and Android Users in the Pilot

We conducted a pilot study to assess the feasibility of various logistical aspects of the ex-
periment and calibrate the study parameters. This study did not utilize a device monitor
or evaluate diversion to other apps. This choice ensured that the parameters chosen for the
experiment were not affected by considerations of diversion to other apps and allowed us to
study the behavior of iOS users.

In the pilot, there were four randomizations using procedures similar to the main ex-
periment, one for each operating system (Android or iOS) and focal app (Facebook and
Instagram) combination. We randomized the iOS users to either a treatment where they were
paid $8/hour to reduce focal app usage or the control group used in the main experiment. We
randomized Android users into these treatments along with additional treatments that varied
whether engagement was shown to the control group subjects, the payment for reducing focal
app usage, and the compensation baseline to help calibrate the experiment. For brevity, we
discuss the two treatment conditions that we administered to both iOS and Android users.

We conducted the pilot study from January 3, 2023, through February 11, 2023. We
recruited participants from Facebook and Instagram ads and a panel provider, Prodege. Po-
tential recruits took a “screener survey" to determine whether they met the eligibility criteria,
including that they must have spent 15 minutes or more on Facebook and/or 10 minutes or
more on Instagram on average in the prior 28 days.

Table E.1 displays the average baseline usage of the focal app for subjects by treatment over
four baseline weeks, measured using data from Meta. In the baseline period, both Android
and iOS subjects used about 72 minutes of Facebook and about 42 minutes of Instagram.
There are no statistically significant differences across groups.

Table E.2 displays the changes in average engagement of the focal app in the treatment
and control group, along with the difference-in-differences separately for both Android and
iOS subjects. It also displays the difference in these values between Android and iOS users.

As in the main experiment, charging a pecuniary price for focal app engagement leads to
large and statistically significant reductions in engagement for both platforms relative to the
control groups. Table E.2 shows that both Android and iOS users had similar and statistically
indistinguishable average reductions relative to baseline and relative to the control groups.
These results show that engagement on Facebook and Instagram is similar between Android
and iOS users. Thus, there is no reason to suspect that the diversion ratios would be different
between these two samples.
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Table E.1: Baseline Usage in First-Stage Pilots

(1) (2) (3)
Operating System Focal App Control Treatment p-value

Android Facebook 72.55 71.12 0.80
(64.24) (51.67)

N = 204 N = 204

Android Instagram 41.99 41.88 0.97
(36.78) (37.76)

N = 174 N = 174

iOS Facebook 72.03 72.03 1.00
(54.41) (51.48)

N = 198 N = 199

iOS Instagram 43.40 43.39 1.00
(31.67) (33.57)

N = 122 N = 122

Notes: Table presents the baseline usage of the focal app for Android and iOS users in the first-stage pilot experiments
with standard deviations in parentheses. Column (1) presents these values for the control groups that received no
incentive to reduce focal app usage. Column (2) presents these values for those who received $8 to reduce focal app
usage. Column (3) presents the p-value from the test of equality between means.
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Table E.2: Changes in Average Engagement from Baseline

(1) (2) (3)

Control Treatment Treatment − Control

Panel A: Facebook Pilot
Android Subjects -12.91∗∗∗ -37.65∗∗∗ -24.74∗∗∗

(2.55) (3.53) (4.35)
N = 204 N = 204 N = 408

iOS Subjects -15.01∗∗∗ -37.73∗∗∗ -22.72∗∗∗

(2.83) (3.45) (4.46)
N = 199 N = 199 N = 398

Android - iOS 2.10 0.08 -2.01
(3.81) (4.94) (6.23)

N = 403 N = 403 N = 806

Panel B: Instagram Pilot

Android Subjects -7.36∗∗∗ -23.26∗∗∗ -15.90∗∗∗

(2.25) (2.19) (3.13)
N = 174 N = 174 N = 348

iOS Subjects -4.26∗∗ -20.35∗∗∗ -16.09∗∗∗

(2.11) (2.59) (3.34)
N = 122 N = 122 N = 244

Android - iOS -3.10 -2.91 0.19
(3.08) (3.39) (4.58)

N = 296 N = 296 N = 592

Notes: Table presents the difference in average post period usage of the focal app from baseline usage of the focal
app separately by operating system and focal app. Standard errors are in parentheses. Column (1) presents these
values for the control groups that received no incentive to reduce focal app usage. Column (2) presents these values
for those who received $8 to reduce focal app usage. Column (3) presents the difference between the treatment
and control groups. Engagement changes based on regression estimates of changes in focal app usage between the
baseline period and experiment weeks using Meta data. Regressions control for users’ demographic characteristics.

F Optimal Ad load under One-Sided Model

In this section, we estimate the optimal ad load in a counterfactual model where the net profit
per ad shown on the platform, Pi − ci, is fixed, and thus does not depend on the total number
of ads on the platform QA

i , or the number of ads on competing platforms QA
j , or the ad load

αi.35 Pi denotes the average revenue per ad and ci is a constant marginal cost. This model
is essentially a one-sided model. Accounting for joint ownership of Facebook and Instagram,

35We assume no ad-blindness and normalize λ (αi) = 1. We also assume no social multiplier (i.e. µi = 1).
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the objective function of the merged platforms is

max
α0,α1

(P0 − c0)α0Z0 + (P1 − c1)α1Z1

The associated first-order conditions are:

εZ
i = 1 + (Pj − cj)αjZj

(Pi − ci)αiZi
εZ

ji ≥ 1

where εZ
i ≡ −diiκi

αi
Zi(p,α) is the own ad load elasticity of demand, and εZ

ji ≡ djiκi
αi

Zj(p,α) is
the elasticity of demand for j to ad load on platform i. Plugging in the assumption of linear
demand (12) and estimated demand parameters, we solve for the implied optimal level of ad
load. The calibration of Pi and ci is summarized in panel B of Tigure 6 (more details are also
provided in Section 5.4). The basic model predicts that current ad loads should be:

Facebook: α0 = 6.5
Instagram: α1 = 10.3

Note that reported ad loads are normalized to reflect relative magnitudes compared to Face-
book’s ad load in June 2022, and that observed levels are 1.0 on Facebook and 0.74 on
Instagram. The above predictions fail to rationalize the current equilibrium. The implied
equilibrium ad load is 7 − 14 times as large as currently observed ad load.
Intuitively, the large implied levels of ad load are driven by the fact that the estimated
responses in user engagement to ad load are relatively low. In this basic model, it would
therefore be optimal for Facebook and Instagram to substantially increase ad loads so as to
raise (and maximize) the number of ad impressions on the platform. This suggests that it
is important to allow for either a social multiplier thereby making aggregate user responses
more elastic to ad load, or to model the firms as two-sided platforms, or both.
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G Additional Robustness on De-Merger Results

Table G.1: Robustness - Implied Own-Price Elasticity of Residual Advertiser Demand to
Facebook and Instagram.

Lower Bound Diversion equal to
market share Upper Bound

Model Parameters Implied Advertiser Demand

µi ξi ci FB IG FB IG FB IG

Panel A: Baseline Model
1.5 0.2 0.22 1.8 1.8 2.0 2.1 12.4 25.9

Panel B: Sensitivity on µi

1.0 0.2 0.22 1.8 1.7 1.9 2.1 14.5 31.6
1.5 0.2 0.22 1.8 1.8 2.0 2.1 12.4 25.9
2.0 0.2 0.22 1.9 1.8 2.0 2.1 10.7 21.4
3.0 0.2 0.22 2.0 1.8 2.1 2.1 8.4 14.9
4.0 0.2 0.22 2.1 1.8 2.3 2.1 6.9 10.5
5.0 0.2 0.22 2.4 1.8 2.6 2.1 6.1 7.4

Panel C: Sensitivity on ξi

1.5 0.1 0.22 1.5 1.5 1.6 1.8 13.3 30.4
1.5 0.2 0.22 1.8 1.8 2.0 2.1 12.4 25.9
1.5 0.3 0.22 2.3 2.2 2.5 2.6 12.1 22.6
1.5 0.4 0.22 3.1 2.8 3.4 3.3 12.5 20.0
1.5 0.5 0.22 4.9 3.9 5.3 4.6 14.4 18.0

Panel D: Sensitivity on ci

1.5 0.2 0.00 1.3 1.3 1.4 1.5 10.0 21.6
1.5 0.2 0.11 1.5 1.5 1.6 1.8 11.1 23.6
1.5 0.2 0.22 1.8 1.8 2.0 2.1 12.4 25.9
1.5 0.2 0.33 2.3 2.2 2.5 2.6 14.1 28.8
1.5 0.2 0.44 3.0 2.9 3.3 3.4 16.5 32.2
1.5 0.2 0.55 4.5 4.2 4.9 5.0 20.3 37.0

Panel E: Varying all parameters at once
1.5 0.2 0.22 1.8 1.8 2.0 2.1 12.4 25.9
1.88 0.25 0.28 2.3 2.2 2.6 2.6 11.5 21.2
2.25 0.3 0.33 3.4 2.9 3.7 3.4 11.3 16.8
2.63 0.35 0.38 5.8 4.1 6.3 4.7 13.4 13.0
3.0 0.40 0.44 54.6 8.6 58.9 8.8 81.5 10.1

Notes: Table reports the implied own-price elasticity of advertiser demand evaluated at the current
equilibrium: −1/ ∂ ln Pi

∂ ln QA
i

. Marginal cost ci correspond to a percentage of current average revenue (e.g.
22%). The specification assumes that the diversion ratios between Facebook and Instagram correspond
to our experimental estimates from section 3: DU

01 = 0.13 and DU
10 = 0.05.
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Figure G.1: De-Merger when Symmetry is Violated

(A) Percentage Change in Ad Load on Facebook
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(B) Percentage Change in Ad Load on Instagram
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(C) Percentage Change in Joint Consumer Surplus
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Notes: Figure (A) shows the implied own-price elasticity of advertiser demand evaluated at the current equilibrium:
−1/ ∂ ln Pi

∂ ln QA
i

. Figure (B) shows the estimated percentage change in ad load caused by a de-merger between Facebook

and Instagram:
(

αd
i − αc

i

)
/αc

i . Figure (C) shows the estimated percentage change in joint consumer surplus from
Facebook and Instagram. The joint consumer surplus after the de-merger is given by
1
2 κ0

(
Z

d
0

)2
/b00 + 1

2 κ1

(
Z

d
1

)2
/b11 where Z

d
i is estimated total user minutes after the de-merger. The joint consumer

surplus before the de-merger is given by 1
2 κ0
(

Z
c
0
)2

/b00 + 1
2 κ1
(

Z
c
1
)2

/b11. The specification assumes µ0 = µ1 = 1.5,
ξ0 = ξ1 = 0.2, c0 = 0.15, and c1 = 0.15. Both marginal costs estimates ci correspond to 22% of current average revenue
per unit. The specification also assumes that the diversion ratios between Facebook and Instagram correspond to our
experimental estimates from Section 3: DU

01 = 0.13 and DU
10 = 0.05. On the advertiser-side, we make different

assumptions about the relative size of the cross-price effects.
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