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The economics of human capital, the notion that individuals can invest in them-
selves to enhance their productive capacity, stands as one of the Chicago School’s
most enduring contributions to economic science. Beginning with Schultz (1961))
presidential address to the American Economic Association, which challenged the
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prevailing view that education was merely consumption, Chicago economists devel-
oped a coherent framework for understanding how individuals and societies invest
in skills, health, and knowledge across the life cycle. Becker (1964, 1993)) semi-
nal treatises formalized this intuition, modeling human capital investment decisions
as rational economic choices where individuals weigh current costs against future
earnings gains, just as firms evaluate physical capital investments.

Mincer (1958, 1974) provided the empirical foundation, demonstrating through
his famous earnings function how years of schooling and labor market experience
translate systematically into wage differentials—a relationship that has proven re-
markably stable across time and space. Ben-Porath (1967)) extended this framework
dynamically, showing how optimal investment strategies evolve over the life cycle as
individuals face changing opportunity costs and remaining working horizons. This
human capital research program revolutionized labor economics, education policy,
and development economics, earning Becker the Nobel Prize in 1992 and establish-
ing Chicago as the intellectual center for understanding how economies transform
raw human potential into productive capability.

Within this broader human capital tradition, Heckman and his collaborators
redirected attention to a critical yet underexplored phase: early childhood. Building
on insights from developmental psychology and neuroscience, Heckman’s research
program demonstrated that the foundational years from conception through age five
represent a uniquely productive period for human capital formation, characterized
by neuroplasticity, dynamic complementarities, and self-productivity that generate
returns far exceeding later-life investments (Cunha and Heckman 2007}, 2008; Cunha,
Heckman, and Schennach 2010)). The technology of skill formation framework for-
malized how “skills beget skills” and “learning begets learning” —early cognitive
and socio-emotional capabilities raise the productivity of subsequent investments,
creating dynamic multiplier effects across the life cycle.

Evidence from landmark interventions, such as the Perry Preschool Project and
the Abecedarian Project, documented extraordinary returns to high-quality early
childhood programs, with benefit-cost ratios approaching 10:1 through mechanisms
including improved educational attainment, higher earnings, better health, and re-
duced criminal justice involvement (Heckman et al. |2010; Campbell et al. 2014;
Garcia et al. 2020)). This work was extended by several scholars, including Pedro
Carneiro, Flavio Cunha, Jorge Luis Garcia, and many others, who established early
childhood investment as perhaps the most cost-effective strategy for reducing in-
equality while simultaneously enhancing aggregate productivity, a rare alignment of
equity and efficiency objectives.

Yet a troubling pattern emerged as policymakers attempted to translate these
findings into large-scale programs: interventions proven effective in carefully con-
trolled pilots frequently disappointed when scaled to broader populations. Head
Start, the nation’s largest early childhood program serving nearly one million chil-
dren annually at costs exceeding $10 billion, showed modest cognitive gains that



largely faded by third grade despite being inspired by the Perry Preschool success
(Puma et al. 2012).E] State pre-K expansions generated heterogeneous results far
below experimental benchmarks (Durkin et al. 2022). This efficacy-effectiveness
gap extends far beyond early childhood education. From health interventions to
financial products to behavioral nudges, researchers have documented systematic
“yoltage drops” when promising pilots reach scale (List 2022)). Indeed, it is esti-
mated that across disciplines, ranging from software development to medicine to
education and beyond, between 50 to 90 percent of results will lose voltage at scale
(List 2022).

The voltage effect phenomenon challenges the core premise of evidence-based
policymaking: that rigorous empirical evidence could reliably guide policy deci-
sions. Working with Al-Ubaydli, Suskind, and others, List developed a system-
atic framework for understanding why interventions fail at scale across diverse do-
mains—identifying common threats including false positives, representativeness fail-
ures, spillover effects, supply-side constraints, and cost structures that change with
implementation scope (Al-Ubaydli, List, and Suskind 2017, 2019, |2020; Al-Ubaydli
et al. [2021}; List 2022, 2024).

What began as pragmatic concerns about implementation has matured into a
rigorous research program with formal theoretical foundations, systematic empirical
documentation, and practical design principles. This transformation elevates scaling
from a policy challenge to a fundamental question in economic science: under what
conditions do cost-effectiveness estimates generalize, and how should researchers
design studies to maximize policy-relevant inference? The economics of scaling has
become a bona fide object of scientific study (see, e.g., Al-Ubaydli, List, and Suskind
2017; Al-Ubaydli et al. 2017; Al-Ubaydli, List, and Suskind 2019, 2020; Al-Ubaydli,
Lai, and List 2023} Brandon et al. 2022; Muralidharan and Singh 2025; Mobarak
2022} Angrist, Bergman, and Matsheng 2022; Angrist et al. 2023; Vivalt [2020;
Fatchen, List, and Pagnotta 2025; Dougan, Garcia, and Polovnikov 2025)E]

Most importantly for the purposes of this study, what emerged from this lit-
erature is a scientific approach to avoid voltage drops. List (2022, 2024) intro-
duced ”Option C thinking,” a framework that reorients the research design process.
Rather than simply adding a treatment arm to augment standard A/B testing,
Option C thinking transforms how researchers approach initial discovery. It shifts
focus from purely establishing efficacy under controlled conditions to anticipating
the constraints, moderators, and implementation realities that interventions will
face at scale. The key insight is that evidence about scalability should be gener-

1. For a recent study on fadeout using the Chicago Heights Early Childhood Center initiative
(CHECC) see (List and Uchida [2024]).

2. The emerging “science of scaling” literature makes a crucial distinction often conflated in
policy discussions: external validity versus scaling. External validity concerns whether treatment
effects generalize across populations and settings, while scaling addresses whether the benefit-cost
profile maintains when moving from pilots to population-level implementation (List [2024).



ated alongside the efficacy test, not after it. Option C thinking asks: if I want to
scale up this idea, what extra information do I need beyond demonstrating that it
works? This includes examining what constraints the intervention will face at scale,
what key factors can impact scaling success, and whether the mediation paths and
moderators observed in controlled settings persist under realistic implementation
conditions. By embedding these scaling considerations into the original experimen-
tal design, researchers produce policy-based evidence that the science of scaling
demands; evidence that reveals not just whether an intervention works, but under
what conditions and for whom it will continue working when deployed broadly.

The contribution of this study is to formalize Option C thinking within a micro-
founded model of skill production, extending Heckman’s framework to explicitly
incorporate the mechanisms that undermine scaled interventions. Given that few
policy challenges carry greater economic and social stakes than childhood inequal-
ity, the integration of the human capital formation framework with lessons from
the scaling literature represents a natural synthesis within the Chicago tradition:
rigorous theoretical foundations combined with deep attention to implementation
realities, all grounded in the belief that well-designed policy can enhance both eco-
nomic efficiency and social equity.

The model includes heterogeneous children with dynamic skill formation, where
early investments exhibit complementarity with initial endowments and later-life
outcomes. Policymakers who adopt traditional A /B testing approaches evaluate pro-
grams based on efficacy in controlled settings, then face scaling decisions that often
lead to voltage drops. In contrast, Option C thinking requires designing programs
from the outset with scalability constraints embedded in the intervention architec-
ture, anticipating implementation failures, cost dynamics, and real-world behavioral
responses. This formalization clarifies when programs designed for scalability suc-
ceed, identifies which design features prevent voltage drops, and demonstrates how
mechanism-based design improves policy outcomes.

The theoretical model generates several key insights. First, I derive conditions
under which initial disadvantage creates dynamic complementarities that favor tar-
geted over universal interventions, formalizing Heckman’s intuition about equity-
efficiency alignment. Second, I show that traditional research approaches system-
atically overestimate benefits by ignoring “voltage drops”: declining effects from
unrepresentative samples and situations, rising marginal costs, supply-side quality
degradation, and general equilibrium spillovers. Third, the comparative statics re-
veal that optimal program scale balances marginal benefits against these scaling
frictions, with the solution depending critically on the voltage drop magnitude and
policymakers’ ability to mitigate it through design adjustments. I then examine how
the model’s empirical predictions align with several recent empirical studies. The
evidence reveals broad support for the framework’s core mechanisms across diverse
domains, from the microdynamics of skill formation to family investment decisions,
peer effects, targeted interventions, and explicit analyses of scaling challenges.
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The remainder of this study proceeds as follows. Section 2 introduces a sim-
ple dynamic skill formation model specifying how investments transform into skills
through complementarity and self-productivity. Section 3 augments this simple
model by introducing a scaling framework that serves as a theoretical bridge, pro-
viding formal economic scaling foundations to offer actionable guidance for pre-
venting the voltage drops that plague scaled interventions across health, education,
and social policy domains. Section 4 derives the policymaker’s optimization prob-
lem with explicit first-order conditions and comparative statics, demonstrating how
initial disadvantage, investment efficiency, and cost structures determine optimal
targeting and scale under Option C design principles. Section 5 examines empirical
evidence across multiple domains, illustrating how Option C thinking has succeeded
in practice and where traditional approaches have failed. Section 6 concludes with
policy implications and directions for future research.

2 Dynamic Skill Formation: Simple Model Setup

Mounting evidence across neuroscience, psychology, and public health converge on a
powerful insight: the earliest years represent an unparalleled opportunity for inter-
vention. During this critical developmental window, neuroplasticity peaks as synap-
tic connections form at rates exceeding one million per second (Phillips and Shonkoff
2000)), skill formation exhibits strong complementarities through self-productivity
(Cunha and Heckman [2007; Knudsen et al. 2006), and environmental inputs be-
come biologically embedded through epigenetic mechanisms with lasting effects on
stress response systems and executive function (Shonkoff et al. 2012; Willoughby
and Blair 2016; McEwen and McEwen 2017)).

Investments during this sensitive period yield returns that compound dynami-
cally over the life cycle, affecting not only cognitive and socio-emotional development
but also physical health, social relationships, and economic productivity decades
later (Campbell et al. 2014; Garcia et al. 2020; Elango et al. [2015)). Well-designed
early childhood programs can disrupt intergenerational transmission of disadvantage
while simultaneously enhancing economic efficiency—a rare alignment of equity and
productivity objectives supported by evidence from developmental economics, ex-
perimental psychology, and program evaluation research (Doyle 2020; Duncan and
Magnuson [2013).

This section develops a stylized model in the Chicago tradition—micro-founded
with optimizing agents, explicit functional forms amenable to analytical results,
and clear mechanisms linking primitives to outcomes. The model captures three
essential features of early childhood interventions: heterogeneity in initial condi-
tions, dynamic complementarity in skill formation, and resource constraints facing
policymakers.



2.1 Environment and Timing

Consider a simplified lifecycle with two childhood periods followed by adulthood.
Period 0 corresponds to early childhood (ages 0-5), period 1 to later childhood and
adolescence (ages 6-18), and period 2 to adult labor market outcomes. This stark
periodization abstracts from continuous development while capturing the key insight
that early investments affect both immediate skills and the productivity of future
investments.

The population consists of a continuum of children indexed by i € [0, 1], each
with initial skill endowment 6, ; drawn from distribution Fy with density fy, mean o,
and variance o3. For notational convenience, I integrate over the skill distribution
using measure fo(6p;)dfy,;. This initial endowment captures all pre-intervention
factors affecting child development: parental education and income, neighborhood
quality, prenatal health, genetic endowments, and early home environment quality.
Disadvantaged children—those from low-income families, unstable households, or
under-resourced communities—are characterized by lower realizations of 0, ;.

2.2 Technology of Skill Formation

Skills evolve according to a production function that embeds two core mechanisms
from Heckman’s framework: self-productivity and dynamic complementarity. The
skill production function is given by:

O, =A- ef_u (14 T1)° + €4 (1)

where ¢ € {1,2} indexes childhood periods and ¢ indexes individual children,
with 0y representing initial endowment, 6; skills after early childhood (period 0 to
1), and 65 skills entering adulthood (period 1 to 2). In what follows, I suppress
individual subscripts when describing the production technology generically, rein-
troducing them when analyzing population distributions.

In equation (1), each parameter has a clear economic interpretation:

Self-productivity (8 € (0,1)). The term 67 | captures “skill begets skill”—
children with higher skills in period ¢ — 1 develop more skills in period ¢. The
parameter A > 0 governs the overall productivity of the skill formation process,
while the exponent § < 1 implies diminishing returns to existing skills.

Investment technology (§ € (0,1)). The term (1 + I,_;)° represents how
program investments translate into skill gains, where I;; > 0 denotes investment
intensity measured in resource units (e.g., thousands of dollars per child annually).
We use 1+ I rather than [ to ensure the function is well-defined when I = 0. The
exponent § < 1 implies diminishing marginal returns to investment intensity.

Dynamic complementarity. Critically, the multiplicative form delivers:

0%6,
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This positive cross-partial formalizes dynamic complementarity: investments are
more productive for children with stronger baseline skills. The marginal product of
investment increases with existing skill levels:

0 00,
00;—1 0111

} = ABS- 0,7 - (1+1,.4)" >0 (3)

Equation (3) restates (2) with the order of differentiation reversed, underscoring
the symmetry in how prior skills enhance the productivity of investments and vice
versa, a property that follows from the commutativity of mixed partial derivatives
in the skill production function.

Dynamic complementarity creates a tension between equity (targeting low-6
children who are most disadvantaged) and efficiency (investing where marginal re-
turns are highest). The resolution of this tension depends on the degree of dimin-
ishing returns (f) and the social planner’s welfare function.

Stochastic shocks (g;;). The shock &;; ~ N(0,02) captures idiosyncratic fac-
tors affecting development—health shocks, family disruptions, peer influences, or
measurement error in skills. These shocks introduce uncertainty but, being mean-
zero and independent across children, wash out in aggregate welfare calculations.

Investment costs. Each unit of investment costs ¢; > 0, representing the
opportunity cost of resources. In the baseline model, ¢; is constant (implying perfect
supply elasticity). Below, I relax this assumption by introducing ¢;(¢) with ¢;(¢) > 0
to capture supply constraints that raise marginal costs at scale.

2.3 Outcomes and Welfare

Adult outcomes depend on accumulated skills at the end of childhood. I specify a
linear earnings function:

Wi = ¢ (4)

where ¢ > 0 translates skills into labor market productivity. This reduced-
form specification subsumes a competitive labor market where wages equal marginal
products. The linearity assumption finds support in log-linear Mincer equations
relating skills to earnings (Heckman, Stixrud, and Urzua 2006).

The policymaker maximizes a utilitarian social welfare function:

SW = / [Wz - Cofo,i - 01[1,1‘] fO(eo,i)dQO,i (5)

This specification weights all children equally (utilitarian welfare) and aggregates
earnings net of program costs across the skill distribution, with children weighted
by their population frequency fo(6p;). Importantly, with heterogeneous treatment
effects from the multiplicative production function, the utilitarian welfare function
treats absolute skill gains equivalently across all children. A child moving from



0y = 5 to 6 = 6 generates the same welfare gain (¢ - 1) as a child moving from
0y = 10 to #y = 11, even though the former represents a 20% gain while the latter
is only 10%.

Alternative specifications could incorporate inequality aversion—for instance,
prioritizing percentage improvements for disadvantaged children or using a concave
transformation of earnings such as u(W;) = W,'77/(1 — ) with v > 0. Such mod-
ifications would strengthen the case for targeting disadvantaged children beyond
what my baseline specification implies. The utilitarian baseline thus provides a
conservative benchmark for redistribution.

Three additional features merit discussion. First, the model ignores fiscal exter-
nalities and spillovers. In reality, investments that boost skills reduce future social
costs through lower crime, public assistance, and healthcare utilization while in-
creasing tax revenues (Heckman et al. 2010). Including these externalities would
increase the net benefits of intervention, raising optimal investment levels. Second,
I abstract from discounting by normalizing to present value terms. Third, I abstract
from political economy constraints, budget limitations, and implementation frictions
beyond those explicitly modeled below. The normative benchmark I characterize
represents what an unconstrained social planner would choose.

2.4 Baseline Counterfactual

Understanding how skills evolve without intervention provides the essential bench-
mark against which to measure program effects. This baseline counterfactual char-
acterizes the inequality dynamics that motivate early childhood investment: how
initial advantages compound through self-productivity, potentially widening gaps
over time even when proportional differences compress.

Without intervention (I;; = 0 for all ¢,i), skills evolve purely through self-
productivity. The production function (1) simplifies considerably when the invest-
ment term (1 + I;)° equals unity, yielding:

01 = Aefii + €1
0y = A(Aeﬁi + 51,1‘)6 + €24
~ AP 95; (suppressing shocks)

This baseline evolution exhibits complex inequality dynamics that depend crit-
ically on whether gaps are measured in relative or absolute terms. The distinction
proves essential for understanding when and why interventions can reduce inequality
and provides several insights.

A first insight is that relative inequality compresses over time. Consider two
children with initial endowments 0! > 6 (high versus low). After period 1, their



skill ratio becomes:

u_Auy_ (Y ©)
or  A(65)°  \ g
Since f < 1 by assumption (diminishing returns in self-productivity), we have
(0 /0F)P < 0F /6f, meaning the skill ratio compresses: children who start behind
catch up proportionally. This compression continues into period 2, with the skill
ratio declining to (8% /6%)%*. The multiplicative structure with 3 < 1 creates con-
vergence in percentage terms—a child starting with half the skills of another will
end up closer to parity over time purely through diminishing returns.
However, a second insight is that the absolute skill gaps tell a different story.
The absolute difference after period 1 evolves:

ef—%zAwﬁﬁkﬁgﬁ—q @

Defining r = 0} /0% > 1 as the initial skill ratio, the absolute gap can be written
as:
0 — 07 = A(67)"[r" — 1]

The absolute gap widens (i.e., 0 — 6L > 9 — 9L when:
AONTr? —1] > 0L [r — 1]
Rearranging yields the condition:

r—1

Sy

This expression reveals that absolute gaps widen when A is sufficiently strong
relative to initial disadvantage 6. The economic intuition proves subtle: even
with diminishing returns creating proportional convergence, the advantaged child’s
higher skill level generates larger absolute skill increments each period. When the
baseline 6% is not too small and A is strong, these larger increments dominate the
compression effect from diminishing returns, causing absolute gaps to expand.

Importantly, since 3 < 1 implies 7 —1 < r — 1 for » > 1, the denominator
(r® — 1) is smaller than the numerator (r — 1), raising the threshold A required
for gap widening. As initial inequality r increases, satisfying this threshold becomes
progressively harder—very large initial gaps tend to compress even in absolute terms
unless self-productivity is extremely strong.

Interestingly, the gap dynamics continue and potentially amplify as children age.
The absolute skill difference entering adulthood becomes:

2 0H ﬁQ 2 2
ef—%:Aﬁﬂ%W[(ﬁ) S =aE -
0
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The exponent % < 3 creates even stronger relative compression by adulthood—a
child starting with half the skills of another will close more than half the proportional
gap by period 2. However, the multiplicative factor A'*? scales up absolute skill
levels across both periods of development. Because the advantaged child starts from
a higher base, this scaling produces larger absolute skill increments at each stage.
The result: relative gaps compress (proportional catch-up continues) while absolute
gaps can simultaneously widen (the disadvantaged child falls further behind in skill
units). Children starting behind can fall progressively further behind in absolute
terms when self-productivity is strong (A large) and initial disadvantage is moderate
(not too small 6F).

These baseline dynamics provide the rationale for early intervention targeting
disadvantaged children. The goal is to boost 6; for low-6, children through invest-
ment I, > 0, breaking the pattern where initial disadvantages compound through
self-productivity. Early investments prove particularly powerful because they op-
erate before the 32 exponent in period-2 skills: raising a disadvantaged child’s 6,
creates a stronger foundation for subsequent development, with the gains magnifying
through both self-productivity and enhanced productivity of any later investments
I,(6,), discussed more fully below.

The model thus formalizes the tension between two forces. Self-productivity
with § < 1 creates automatic compression in relative terms, suggesting gaps may
close without intervention. But absolute gaps can widen when advantaged children’s
higher skill bases generate larger period-by-period increments, and complementarity
means these children also receive more subsequent investment, potentially locking
in or expanding initial disadvantages. Well-designed interventions aim to coun-
teract this dynamic by providing compensatory investments early in the lifecycle,
when their effects compound most powerfully through the remaining periods of skill
formation.

3 Early Childhood Meets Scaling

The model setup demonstrates why early interventions generate high returns: the
multiplicative production function creates dynamic complementarities, and dimin-
ishing returns (5 < 1) favor compensatory investment in disadvantaged children.
However, translating small-scale efficacy into population-level impact requires un-
derstanding how benefit-cost profiles systematically change during implementation
and scaling.

Recent research on the economics of scaling (Al-Ubaydli, List, and Suskind 2017,
2019, |2020; Al-Ubaydli et al. |[2021; Al-Ubaydli, Lai, and List 2023} List [2022, 2024])
identify five distinct mechanisms that generate “voltage drops” in benefit-cost pro-
files when translating pilot successes to population-level implementation: (1) false
positives, where publication bias and specification searching inflate pilot effect sizes;
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(2) sample unrepresentativeness, where pilot participants differ systematically from
target populations in motivation or baseline characteristics; (3) situational unrep-
resentativeness, where controlled pilot conditions diverge from real-world imple-
mentation environments; (4) supply-side constraints, where scaling strains provider
capacity and dilutes intervention quality; and (5) general equilibrium effects, where
population-level implementation triggers behavioral responses absent in small pi-
lots—such as crowding out private investments, generating spillovers to untreated
populations, or shifting relative pricesE]

This framework resonates with implementation science’s focus on translating
efficacious interventions into routine practice (Fixsen 2005; Chambers and Azrin
2013; Glasgow et al. 2019)). Recognizing these parallels, the National Institutes
of Health convened interdisciplinary teams to bridge economics, psychology, and
public health approaches to scaling. Complementing this interdisciplinary synthesis,
Supplee et al. (2022) argue that open science practices—including preregistration,
transparency in reporting negative results, specification of core components and
mechanisms, and rigorous testing under realistic implementation conditions—can
address the underlying incentives in research that contribute to scaling failures.

The economic scaling framework thus serves as a theoretical bridge, providing
formal economic foundations for implementation science’s empirical observations
while offering actionable guidance for preventing the voltage drops that plague
scaled interventions across health, education, and social policy domains. This sec-
tion formalizes List’s (2022, 2024) “Option C” framework by explicitly modeling
how benefit-cost profiles change when moving from controlled pilots to broad de-
ployment.

3.1 Pilot Studies and the Scaling Illusion

Consider a targeted pilot, analogous to Perry Preschool, Abecedarian, or CHECC,
conducted on n disadvantaged children with 6p; < 0. Treated children receive
investment I, = I* in period 0, while controls receive Iy = 0. No subsequent
investments occur (I; = 0), allowing observation of dynamic effects through self-
productivity.

From the multiplicative production function (1), early investment generates
treatment effects:

Afy; = (AVIYHFGE (1 4 )98 1] 9)

Two features merit emphasis. First, complementarity generates heterogeneous
treatment effects: absolute gains increase with baseline skills 6y ;. The proportional

3. Defined broadly, such effects include changes in relevant counterfactuals. For example, (Kline
and Walters|2016)) show that test score gains from Head Start are much larger if the counterfactual
is no preschool rather than another similar quality preschool program. A more recent study in
this spirit is Dougan, Garcia, and Polovnikov (2025). For recent work exploring fadeout effects of
early childhood see
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gain in period-1 skills is constant across children—each experiences (1 + I*)° —
1 proportional increase in #,. However, because these gains compound through
self-productivity in period 2, the absolute adult skill gains A#, increase with 6.
Second, dynamic amplification through self-productivity magnifies early advantages,
with the exponent 3? determining how much baseline heterogeneity affects adult
outcomes.

The pilot’s average treatment effect and benefit-cost ratio becomeff]

ATE = (APPY 5 (14 1%)% — 1] - E[07,]05,; < 0] (10)

C

Classic studies report impressive ratios: Perry Preschool achieved a B/C ratio
roughly between 7 and 10, while Abecedarian generated internal rates of return
exceeding 10%. However, these estimates systematically overstate scaled returns, as
I turn to now.

(B)pilot 2 (Apilot )46 [(1 4 [%)98 — 1] -E[Hgil%,i < 0]
Co - I*

3.2 Five Sources of Voltage Drops

As discussed above, pilot benefit-cost ratios often overestimate scaled returns through
five distinct mechanisms (Al-Ubaydli et al., 2017; 2020; List, 2022; 2024). Table 1
translates each mechanism into the early childhood context, formalizing how quality
degradation, sample composition, cost inflation, compliance, and general equilibrium
effects operate through specific parameters in the skill production framework:

Quality voltage (A45¢@® = (1 — vy)APUet), Exceptional pilot implementa-
tion typically features master’s-level teachers, 4:1 child-to-staff ratios, and inten-
sive oversight from researchers committed to the program’s success. These condi-
tions prove unsustainable at scale, where teachers have standard credentials, ra-
tios increase to budget-constrained levels (often 8:1 or higher), and monitoring in-
tensity declines as interventions transition from research projects to routine pro-
gramming. The degradation in implementation quality directly reduces the pro-
ductivity parameter A in the skill formation technology. With 5 = 0.7, a 30%
quality voltage (v4 = 0.3) causes benefits to overstate scaled effects by factor
(1 —0.3)"0+07D = (0.7)7'7 ~ 2.1-—pilot studies suggest effects more than twice
as large as what scaling will achieve.

Sample composition voltage (E[Qg;|pilot] > E[Qg;]scale]). Volunteer fam-
ilies who opt into pilot programs systematically differ from populations reached

4. The benefit-cost ratio (BCR), derived from cost-benefit analysis (CBA), is a tool that com-
pares the monetary value of a policy’s benefits to its costs to determine if it is worthwhile (BCR >
1 indicates net positive). While it is widely used in areas such as environmental regulation, infras-
tructure, and public health, it has several significant limitations that can lead to flawed decisions.
Even so, I make use of it here for parsimony.
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through automatic enrollment or mandatory participation. Even within disadvan-
taged populations, pilot participants exhibit higher baseline skills, more stable home
environments, and greater organizational capacity—factors captured by higher real-
izations of ¢y. Because treatment effects scale with baseline skills through comple-
mentarity (equation 9), the same intervention generates smaller absolute gains when
applied to populations with lower average 6y. This composition effect operates mul-
tiplicatively with the 3% exponent from dynamic self-productivity, amplifying initial
skill differences across the lifecycle.

Cost inflation (¢ = (1 + x)c2"°"). Pilots benefit from below-market re-
source contributions that disappear at scale. University partners may donate facili-
ties, graduate students provide labor at trainee stipends rather than market wages,
and development costs for curriculum and assessments get amortized across research
budgets. When programs scale, they face true economic costs: market rents for facil-
ities, competitive wages for staff, and full development cost recovery. Additionally,
pilots often benefit from volunteer contributions—parents provide transportation,
staff work unpaid overtime, community organizations donate space—that cannot be
sustained when interventions become routine services. The cost multiplier x can
range from 0.5 to 2.0 (List, 2022), meaning scaled programs cost 50-200% more per
child than pilot implementations.

Compliance voltage (I°% < I*). Volunteer participants attend more regularly
and engage more intensively than populations enrolled through automatic or manda-
tory mechanisms. Perry Preschool achieved approximately 85% attendance rates,
while Head Start averages closer to 65%. Since skills evolve as 6; = A6} (1 + I,)°,
reduced dosage I°%® directly lowers skill gains by factor (I°%/1*)%. With § = 0.6
and = 0.7, a 25% reduction in effective dosage (I°T/I* = 0.75) reduces treatment
effects by (0.75)%4% ~ 0.88, a 12% voltage drop operating purely through reduced
program contact hours.

General equilibrium effects. Population-level implementation triggers be-
havioral responses absent in small pilots. Supply-side constraints emerge as scaling
strains provider capacity—the pool of master’s-level early childhood teachers is fi-
nite, causing quality to decline as programs expand beyond this constraint. Pub-
lic programs crowd out private investments as families reduce their own spending
when government provides services. Peer composition changes as interventions al-
ter neighborhood demographics and school populations. Skill price effects emerge
when population-wide skill distributions shift, potentially reducing returns to skills
through changes in relative wages. These general equilibrium channels prove difficult
to formalize in a simple reduced-form voltage parameter, as they operate through
multiple margins and often exhibit threshold effects where small programs generate
no response but large programs trigger substantial adjustments.
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The true scaled benefit-cost ratio incorporates all five voltage mechanisms:

¢ - (Aseale) T8 [(1  [eM)98 — 1] -E[Qg;]scale]

B scale
O

cBcale . Ieff

(11)

Defining total voltage drop as v = 1 — (B/C)*/(B/C)PIt empirical ev-
idence documents voltage drops of 50-90% across domains (List, 2022). A pilot
showing B/C = 8 may correspond to a true scaled ratio B/C between 2 and 4.
Understanding which specific mechanisms drive voltage drops in particular contexts
proves essential for Option C design strategies that provide evidence on how to

mitigate these effects.

Table 1:

Sources of Voltage Drops in Early Childhood Interventions

Mechanism Formal Parameter

Description

Quality voltage Ascale — (1 — ) Apilet

Sample composition

scale

Cost inflation cseale = (1 + k) ol

Ieff < JT*

Compliance voltage

General equilibrium  Multiple channels

Exceptional pilot implementation (master’s
teachers, 4:1 ratios, intensive oversight) ex-
ceeds sustainable scaled quality. Benefits
overstate by (1 — wva) 0+, with 8 =
0.7,v4 = 0.3, this equals 2.1x.

E[Qg; |pilot] > E[é’g; |scale]  Volunteer families within disadvantaged pop-

ulations have higher baseline skills than au-
tomatic enrollment reaches due to selection
on parental motivation and organization.

Pilots benefit from donated facilities, below-
market labor, and amortized development
costs. True economic costs rise at scale.

Volunteer participants attend more regularly
(85% vs. 65%), reducing effective dosage at
scale by factor (1°F/1*)%,

Supply constraints strain provider capacity;
public programs crowd out private invest-
ments; peer composition changes; skill price
effects emerge population-wide.

3.3 Three Policy Options

Upon receiving promising experimental evidence on a program, policymakers face
three distinct strategic approaches, each with different implications for ultimate
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policy outcomes.
Plan A (No Intervention). Plan A is the most conservative response because
it maintains the baseline counterfactual with I, ; = 0 for all ¢,7. Social welfare equals

2

SWy = /CbQS?di"efo(@o,i)d@o,z‘ = /¢'Al+59€,¢fo(90,i)d90,i7 (12)

foregoing potential gains but avoiding implementation costs and the risk of scaled
program failures. This strategy dominates when voltage drops are sufficiently severe
that scaled programs fail to cover their costs, or when political economy constraints
make sustained implementation infeasible. The opportunity cost of Plan A—forgone
benefits from effective interventions—must be weighed against the resource costs and
potential harms from poorly implemented scaled programs.

Plan B (Naive Scaling). Plan B represents the strategy where policymakers
extrapolate pilot results without anticipating systematic degradation in the benefit
cost profile. Under this view, the standard policy response mechanically extrapolates
pilot results to population-level implementation, assuming average treatment effects
generalize: E[A6,;|scale] = E[Af,;|pilot]. This equality potentially fails due to a
variety of reasons, including both quality (A*@l¢ < AP#t) and composition effects
(E[Qg;]scale] < E[@gz|pilot]). Expected welfare from naive scaling becomes:

SWB — / ) |:¢<912)aseline T (1 o ,Umtal)Aegilot) . C(s)cale[pilot] fO(eo,i)dQO,i (13>
90’i<93

When total voltage viar is large, programs fail to cover costs: ¢(1 — vgopa) Aby <
cseale ppilot - implying SWp < SW,4. The intervention destroys value by consuming
resources while generating insufficient benefits. This explains disappointing im-
plementations like Head Start’s modest and fading cognitive effects despite being
inspired by Perry Preschool’s extraordinary success. Plan B compounds errors by
maintaining pilot investment intensity /P"°* under degraded implementation quality
As¥le wasting resources on over-investment given the actual productivity of scaled
programs. The fundamental mistake lies in treating experimental treatment effects
as policy parameters that remain invariant across implementation contexts. This
is precisely the assumption that voltage effects systematically violate: effect sizes
change when moving from pilots to scaled implementation.

Option C (Smart Scaling). The alternative approach uses economic theory
and mechanism testing to anticipate voltage drops, then designs interventions ex-
plicitly to mitigate them. Rather than viewing scaling as simply implementing the
pilot protocol on more subjects, Option C treats scaling as a distinct design problem
requiring forward-looking analysis of how effects, costs, and implementation quality
change with scope. In the case of early childhood interventions, the approach follows
a three-stage implementation sequence:
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Stage 1: Mechanism testing under realistic conditions. Before committing to
large-scale rollout, conduct experiments testing interventions with average imple-
menters (not exceptional pilot staff), representative participants (automatic enroll-
ment rather than volunteers), realistic costs (market wages and facilities), and varied
compliance mechanisms. These “stress tests” reveal true voltage parameters vy, ve,
and cost multipliers , providing the empirical foundation for subsequent design de-
cisions. Crucially, mechanism testing identifies which components of multi-faceted
interventions drive effects, enabling designers to preserve essential elements while
eliminating costly features that contribute little to outcomes. For instance, testing
might reveal that weekly home visits generate 80% of treatment effects at 40% of
cost compared to more intensive daily center-based programs.

Stage 2: Targeted scaling based on heterogeneity. Using estimates from Stage 1,
calculate heterogeneous treatment effects: Afy; = (Ascale)Hﬁng[(l + I155)8 —1].
Individual net benefits N B; = ¢Af, ; — cic® ¢/ vary systematically across children.
Optimal targeting enrolls all children with NB; > 0, potentially using observable
characteristics correlated with 6y ;, such as parental education, family income, and
neighborhood quality, to implement means-testing or risk-based eligibility. This tar-
geting exploits the same complementarity structure that generates voltage through
sample composition, but inverts it: rather than allowing selection to bias pilot
estimates upward, policymakers deliberately concentrate resources on populations
where the intervention generates positive net value. When ( is sufficiently small
(strong diminishing returns in self-productivity), optimal targeting reaches disad-
vantaged children despite complementarity favoring investment in higher-, indi-
viduals, because the utilitarian welfare function combined with budget constraints
creates higher marginal welfare per dollar invested in initially disadvantaged popu-
lations.

Stage 3: Supply-side investments to reduce voltage. 1f Stage 1 testing reveals
that voltage stems primarily from quality degradation (vy4 is large), invest in teacher
training programs, curriculum designs that maintain fidelity with less intensive over-
sight, technology platforms supporting implementation quality, and career ladders
attracting quality staff to the early childhood sector. Formally, incorporate knowl-
edge gain k reducing voltage: A°PHRC = [1 — y, + k(training, design)]API°*. The
optimization problem weighs direct service costs against quality improvement in-
vestments: while spending resources on training and systems rather than serving
additional children reduces scale ¢ holding budget fixed, the quality improvements
may increase net benefits per child sufficiently to offset the coverage reduction. This
trade-off proves especially favorable when voltage is severe and quality improvements
are relatively cost-effective.

Critically, this is a sequential process where learning propagates forward: Stage
1 testing informs Stage 2 targeting decisions and Stage 3 quality investments, which
together determine optimal scale and resource allocation. The policymaker chooses
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optimal scale ¢* and quality investments £* by solving:

q,k

max SWe = / o [93““““ + AHQ(AOptionC)] Jo(6o:)dbo; — C(q, k) (14)
00,:€5(q)

where S(q) denotes the set of enrolled children and C(q, k) = ¢o(q,k)-I-q+ F (k)
includes both per-child costs that may vary with scale and quality, and fixed costs
F (k) for quality improvement infrastructure. Unlike Plan B, which mechanically
replicates pilot protocols at fixed intensity I7%°*, Option C optimizes both scale ¢
and quality investments k, generating a complex cost structure captured by the
reduced form C(q, k).

The fundamental insight of Option C thinking is that scaling represents a design
problem distinct from demonstrating efficacy. Pilot studies answer “does this work
under ideal conditions?” while Option C asks “how should we modify the interven-
tion to maintain effectiveness at scale given realistic implementation constraints?”
This reframing transforms voltage drops from threats to be ignored (Plan B) into
predictable challenges to be addressed through mechanism-based design (Option C).

4 Optimal Policy: Characterization and Implica-
tions

This section characterizes the policymaker’s optimal investment strategy under the
dynamic skill formation technology, deriving conditions under which targeted inter-
ventions maximize social welfare. The analysis proceeds in two steps: first solving
the social planner’s optimization problem to characterize optimal investment paths,
then examining how these optimal policies respond to scaling challenges including
voltage drops and heterogeneity across children.

4.1 The Social Planner’s Problem

Consider a benevolent social planner who chooses investment trajectories to maxi-
mize aggregate social welfare, defined as the sum of adult earnings net of investment
costs across all children. The planner faces the skill formation technology specified
in equation (1), which constrains how investments transform into skills through self-
productivity and dynamic complementarity. The optimization problem balances the
marginal productivity of investments against their opportunity costs, accounting for
how early investments affect not only immediate skill development but also the re-
turns to subsequent investments through complementarity.

Consider first the optimization problem for a representative child with initial
skills 8. I suppress individual subscripts ¢ in this section for notational simplic-
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ity, reintroducing them in Section 4.3 when analyzing heterogeneous populations.
Formally, the planner solves:
Formally, the planner solves:

max SW = (beg — C()[(] — 01[1 (15)

Io,I1
subject to the technology of skill formation:

0p=A-00 (1+1)°
0p=A-07. (1+1)°

The objective function (15) captures three elements. First, ¢, represents adult
productivity valued at wage ¢ per skill unit, assuming competitive labor markets
where wages equal marginal products. Second, c¢oly and c;I; represent the opportu-
nity costs of early childhood and later childhood investments respectively, where ¢;
denotes the resource cost per unit of investment in period ¢. The utilitarian specifi-
cation weights all children equally, treating a one-unit increase in any child’s adult
skills as generating identical welfare gains ¢ regardless of that child’s position in the
skill distribution. This provides a normatively neutral baseline; modifications incor-
porating inequality aversion would strengthen the case for targeting disadvantaged
children beyond what our results demonstrate.

The production function constraints embed the model’s key economic mecha-
nisms. Self-productivity parameter 8 € (0, 1) captures how existing skills enhance
future skill development, with § < 1 implying diminishing returns—children with
higher skills develop faster, but at a decreasing rate. Investment technology param-
eter 0 € (0,1) governs how resource inputs translate into skill gains, with § < 1
implying diminishing marginal returns to investment intensity. Critically, the mul-
tiplicative form creates dynamic complementarity: 0%0;/90;_101; 1 > 0, meaning
investments prove more productive for children entering each period with higher
skills.

I solve this problem through backward induction. The approach first charac-
terizes optimal later-childhood investment I} conditional on entering skills ¢;, then
works backward to determine optimal early-childhood investment [} accounting for
how it affects both immediate skills ; and the optimal response I7(6;) in the sub-
sequent period. This recursive structure reveals how early investments create value
through two distinct channels: direct effects on intermediate skills and indirect ef-
fects on the productivity of future investments through complementarity.

Initially, I treat the problem as deterministic, suppressing the stochastic shocks
¢ that add realism but complicate exposition without changing fundamental in-
sights. I also begin by analyzing a representative child with initial skills 6, before
extending to heterogeneity across children indexed by ¢ with different initial endow-
ments 6; drawn from distribution £y. This simplification clarifies the core economic
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mechanisms before introducing distributional considerations essential for targeting
policy.

4.2 Key Scaling Results
4.2.1 Optimal Investment Path

The first-order conditions characterize optimal investments in each period by equat-
ing marginal benefits to marginal costs. These conditions reveal how complementar-
ity creates path dependence: optimal investments today depend on inherited skills,
and create skills tomorrow that influence optimal future investments.

Later childhood investment. Consider first the simpler problem of choosing
I; to maximize ¢#, — c1I; conditional on entering period 1 with skills 8. From the
production function 0y = AQ? (1+1,)?, the marginal product of period-1 investment

is:
00,

—2 = A0 (1 + 1,)°?
a1, 591< + 1)

Setting marginal benefit ¢-00, /01, equal to marginal cost ¢; yields the first-order
condition:

G- A (1 + 1)L = ¢
Solving for optimal investment gives:

_1
1-46

B
L R (16)

&1

[f(el) =

This policy function reveals several key properties. First, optimal investment
increases with entering skills 6; due to complementarity—the partial derivative is:

Iz A5 8
oL _ 5 V—ﬂ 917 > 0 (17)

801 N 1-96 C1
This can be rewritten more intuitively as:

of; B I +1
9, 1-6 6 '

The elasticity of optimal investment with respect to entering skills equals 3/(1 —
9), combining the complementarity parameter § (measuring how much baseline skills
raise investment productivity) with the investment technology curvature § (measur-
ing diminishing returns to investment intensity). When complementarity is strong
(B large) or returns to investment are highly diminishing (§ small), the investment
gradient steepens sharply—high-skill children should receive substantially more re-
sources than low-skill children.
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Second, optimal investment increases with the skill price ¢, the technology pa-
rameter A, and decreases with costs ¢;. These comparative statics reflect standard
economic logic: when returns to skills rise or investment becomes more productive
or cheaper, optimal investment increases. The specific functional form, however,
reveals non-linear responses: a 10% increase in skill prices raises optimal investment
by 1/(1 — §) times 10%, approximately 2.5 times as much when § = 0.6. This
amplification reflects how higher returns justify pushing further into the region of
diminishing marginal returns.

Third, unlike models with separable production functions where optimal invest-
ment depends only on cost-benefit ratios independent of existing skills, here com-
plementarity creates state-dependence: the same child receives different optimal
investments depending on skills carried forward from earlier periods. This path-
dependence proves central to understanding why early interventions matter—they
shape not just immediate outcomes but the entire subsequent trajectory of optimal
investment and skill development.

Early childhood investment. The problem of choosing I, proves more com-
plex because early investments affect welfare through two channels: directly boost-
ing 61, and indirectly raising the productivity of subsequent investments through
the complementarity 017 /06, > 0. The planner maximizes ¢02(0; (1), I7(01(1o))) —
colo — c115(01(1y)) by choosing Iy, where we make explicit that both #; and optimal
later investment I depend on the early investment choice.

Applying the chain rule to account for these indirect effects, the first-order con-
dition becomes:

PA2BS - 0507 (L + 1) Y1+ 17)° = ¢ (18)

This condition has a natural interpretation. The left side represents the marginal
benefit of early investment, which factors as: ¢ (value per unit adult skill) times A2
(productivity compounded across two periods) times 3§ (elasticities of production
with respect to skills and investment) times the skill terms Hg 9{3 ! (reflecting how
baseline skills and resulting intermediate skills combine through complementarity)
times the investment terms (1+1;)°~1(1+17)° (capturing diminishing returns in both
periods). The multiplier Aﬁef ~! captures dynamic returns: early investments boost
0, which increases period-2 skills both directly through self-productivity (A67) and
indirectly by raising the productivity of later investments (0I;/00; > 0 combined
with complementarity).

The presence of I in the first-order condition creates an implicit relationship
between I and 6, that I analyze through comparative statics. Note that /] depends
on 0y = A (1 + Ip)°, creating a feedback loop where early investments influence
their own returns by shaping the productivity of subsequent investments. This
dynamic linkage—absent in static models—proves central to understanding optimal
targeting in the presence of complementarity.
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4.2.2 Targeting Disadvantaged Children

A critical policy question asks whether to target disadvantaged (low 6y) or advan-
taged (high 6y) children. The answer proves non-trivial: equation (3) demonstrates
that investments have higher marginal products for high-skill children (complemen-
tarity), yet optimal policy may still favor targeting the disadvantaged. This section
resolves the apparent tension.

Applying the implicit function theorem to the first-order condition (equation
18) and using the relationship 6; = A (1 + I,)°, I find an optimality targeting
condition: when diminishing returns in self-productivity are sufficiently strong (/5
sufficiently below 1) and the utilitarian welfare function places equal weight on all
children, optimal early investment decreases with initial skills:

I
df,

<0 (19)

From the FOC (18), the relationship between optimal early investment and initial
skills can be derived by taking the total derivative with respect to 6’| The sign of
dl}/dfy depends on whether §(14-8) > 1. When investment technology is sufficiently
productive relative to self-productivity—as holds for empirically plausible values § =~
0.7, § ~ 0.6—we obtain dIj/df, < 0, implying optimal policy targets disadvantaged
children.

The condition §(1+3) > 1 balances three forces: (i) Complementarity (026/06,01, >
0) favors investing in high-y children; (ii) Diminishing returns in self-productivity
(8 < 1) mean initial skill differences compress through the nested structure 65 o< 6’5 2,
reducing the importance of initial heterogeneity; (iii) Investment productivity (J) de-
termines how efficiently resources can be deployed to disadvantaged children. When
investment technology is sufficiently productive (d high enough given (), the gains
from targeting disadvantaged children overcome the complementarity effect that
would otherwise favor the advantaged. This reconciles the apparent tension be-
tween dynamic complementarity and progressive targeting.

Beyond the formal mathematics, three complementary mechanisms explain why
the optimal policy targets disadvantaged children when 6(1 4 ) > 1:

1. Welfare per dollar spent: While both high- and low-6, children experi-
ence similar proportional gains in period-1 skills, the social planner evaluates
investments based on absolute lifetime earnings gains. With linear earnings
(W = ¢by), the welfare gain from moving 6, from 5 to 5.5 equals the gain from
moving it from 10 to 10.5. When investment productivity ¢ is sufficiently high,
achieving these equal absolute gains for disadvantaged children requires less
investment than for already-advantaged children, making disadvantaged chil-
dren more cost-effective targets.

5. The implicit function theorem yields dIt/dfy = 8%(1 + Iy)/[00(1 — 6 — B3)].
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2. Compounding from a lower base: The multiplicative structure 6, =
A0?(1+1,)° means that investments lifting a disadvantaged child to moderate
skills create strong foundations for period-2 development. A child moving from
6y = 0.3 to 6; = 0.5 gains more dynamically than one moving from 6, = 0.8
to #; = 1.0, even though both represent similar proportional changes, because
the former creates greater scope for productive later-life investments. When ¢
is sufficiently high, this compounding effect dominates complementarity.

3. Budget constraints and marginal returns: When resources are limited
(formalized in Section 4.3), the social planner faces diminishing marginal wel-
fare returns. Complementarity means that achieving large absolute skill gains
for high-6, children becomes increasingly expensive. When investment produc-
tivity 0 satisfies §(1+3) > 1, resources are better allocated spreading moderate
improvements across many disadvantaged children rather than concentrating
on large gains for few advantaged children.

This result reconciles complementarity with progressive targeting: optimal hu-
man capital policy targets disadvantaged children not despite complementarity,
but because when investment technology is sufficiently productive relative to self-
productivity—formalized as §(1+/5) > 1—the utilitarian welfare function and dimin-
ishing returns in skill production create stronger welfare gains per dollar invested
in disadvantaged populations. This formalizes Heckman’s insight about equity-
efficiency alignment in early childhood investment[f]

4.2.3 Voltage Drops Amplify Through Dynamics

The comparative statics directly connect to scaling challenges. If scaling reduces in-
vestment efficiency from AP to A%ale = (1—v,) APt optimal investment declines.
To characterize this relationship, I consider a log-linear approximation around the
optimal investment path. Taking logs of the first-order condition (18) and differen-
tiating with respect to log A (accounting for the indirect effect through 6;) yieldsﬂ

6. Note that this result depends on parametric assumptions. The condition §(1+5) > 1 is satis-
fied for a range of empirically plausible values: with 5 € [0.6,0.8] and ¢ € [0.5,0.7], compensatory
targeting emerges under utilitarian welfare. With inequality-averse social welfare functions that
place extra weight on disadvantaged children, the targeting recommendation would strengthen
and hold under weaker conditions. The key insight is that even under neutral utilitarian welfare,
the structure of skill formation can justify progressive targeting when investment productivity is
sufficiently high.

7. To see this, note that log-transforming both sides of the FOC (18) yields:

logd+2log A+1log 8+1logd+ Blogby+ (B —1)logby + (6 — 1) log(1 + I) + dlog(1+ I7) = log co.
Since 6; = AQg(l + 1p)°, we have log#; = log A + Blogfy + §log(1 + Iy). Differentiating with

respect to log A and using the chain rule for 6, yields the approximation, where the denominator
includes B¢ from the indirect effect through 6; and Iy. The approximation assumes changes in I
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dlog Iy 2
dlogA ~ 1—6+f36
For typical parameter values (8 = 0.7, 6 ~ 0.6), this gives:

(20)

dlog I} 2 2
~ ~ ~2.44
dlogA 1-0.6+0.7(0.6) 0.82

Therefore, a voltage drop v4 reduces optimal investment by approximately:

scale
I 0

pilot
1 0

~ (1= )™ (21)

This implies voltage drops have strongly amplified effects on optimal investment.
A 30% quality reduction (v4 = 0.3) reduces optimal investment by approximately
(0.7)% =~ 0.42, or a 58% decline—substantially more than the direct 30% efficiency
loss.

Why does amplification occur? The exponent exceeds 1 for two reasons: (1)
efficiency A directly enters the marginal product of investment, and (2) lower A
reduces 6, which further decreases the marginal product through complementarity.
These effects compound, making optimal investment highly sensitive to implemen-
tation quality. Plan B (naive scaling) compounds this error by maintaining pilot
investment levels [P0t = [x(APUet) > [*(A%€) under degraded efficiency A
wasting resources. Treatment effects realize as:

scale

1+
Ae;cale — <Api10t> Aegzlot _ (1 . ,UA)H»ﬁAeénlot (22)

The exponent 1+ [ arises because voltage affects both periods of skill formation.
With 3 ~ 0.7, voltage drops are amplified by factor (1 — v)™# ~ (1 — v)17
for treatment effects—compounding across periods but less than the 2.44 factor
for optimal investments, which include endogenous behavioral adjustments through
the complementarity mechanism. This distinction matters for policy: while scaled
programs may see moderated effect sizes, the amplified investment reductions could
exacerbate equity gaps if not addressed through Option C designs.

Option C prevents these failures by (1) testing under realistic conditions to
estimate A%¢ accurately, then (2) setting optimal investment I (A*%€) rather than
mechanically using IP%°! and (3) investing in quality improvements k to reduce

dominate elasticity calculations. The approximation in equation (20) holds exactly when 8 = 1
(linear self-productivity), where it simplifies because indirect effects through 6; fully offset when
the multiplicative and power structures align, and provides a good approximation for 8 € [0.6,0.9],
typical of empirical estimates in the skill formation literature. The exact elasticity is 2/(1—3d+ 39),
accounting for indirect effects through 6, and I7.

23



voltage: A% = (1—wv,+k)AP%! The amplification result underscores why accurate
estimation of scaled efficiency is crucial—small errors in measuring v4 translate into
large errors in optimal investment levels.

Taking stock of the insights thus far reveals the crucial interaction between tar-
geting and voltage drops. The targeting result from Section 4.2.2 shows that dis-
advantaged children should receive more investment when [ is sufficiently small.
However, voltage drops disproportionately undermine this optimal targeting strat-
egy. Since the rationale for compensatory investment depends on achieving sufficient
treatment effects to overcome initial disadvantage, quality voltage (v4) has partic-
ularly severe consequences for disadvantaged populations. When A%#e < APilot the
optimal threshold 6 rises, implying fewer disadvantaged children clear the benefit-
cost hurdle. This interaction explains why naive scaling (Plan B) often fails most
dramatically for the populations that would benefit most from well-implemented
programs—a troubling pattern observed across Head Start implementations and
state pre-K expansions.

4.3 Heterogeneity and Budget-Constrained Targeting

The analysis thus far has characterized optimal investment for a representative child
with initial skills fy. I now extend to the realistic setting where policymakers face
a heterogeneous population of children with different initial endowments and must
allocate a finite budget across this distribution. This extension transforms the ab-
stract characterization of optimal investment into concrete guidance for program
design: who should receive services, how much should each child receive, and when
do budget constraints bind such that some children optimally receive zero investment
despite potentially positive returns?

Consider a continuum of children indexed by i € [0, 1] with initial skill endow-
ments 0y, drawn from distribution Fjy with density fo, mean pg, and variance o3.
This distribution captures all pre-intervention heterogeneity stemming from parental
education and income, neighborhood quality, prenatal health, genetic endowments,
and early home environment quality. Disadvantaged children—those from low-
income families, unstable households, or under-resourced communities—concentrate
in the left tail of F{y with low realizations of 6 ;.

The policymaker faces a realistic budget constraint B > 0 limiting total expen-
ditures across both investment periods and all children:

max /¢927if0(007i)d907i Subject to /(C()I(M' —|— Clllvi)f()(H()ﬂ‘)deoﬂ‘ S B (23)

Ioi Iy

This constrained optimization problem incorporates three key features distin-
guishing it from the unconstrained representative-agent analysis. First, the objec-
tive integrates welfare across the entire skill distribution, weighting each child by
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the density fo(fo;) with which they appear in the population. Second, the bud-
get constraint couples investment decisions across children—resources allocated to
one child reduce availability for others, creating opportunity costs absent in the
single-child problem. Third, heterogeneity in 6, generates heterogeneous treat-
ment effects through complementarity, making the targeting decision economically
meaningful rather than simply distributional.

Introducing multiplier A > 0 on the budget constraint, I formulate the La-
grangian as follows:

L= /¢92,if0(90,i)d00,i - A {/(Cofo,i +c11h,;) fo(6o,i)dbo; — B (24)

Taking first-order conditions with respect to Iy; and I;; for each child ¢ yields
the optimality conditions:

¢682,i _ )\CO

8[071'

0, (25)
T

These conditions have a natural economic interpretation: the shadow value of the
budget constraint A represents the marginal welfare gain from relaxing the budget
by one dollar. At the optimum, this marginal welfare gain must equal the marginal
product of investment (in welfare units) divided by the per-unit cost for every child
receiving positive investment. If any child had marginal product above Ac¢;, reallo-
cating a dollar toward that child would increase welfare. If any child had marginal
product below A¢;, reallocating away from that child would increase welfare.

When the budget constraint binds (A > 0), optimal policy exhibits three distinct
features that characterize realistic program targeting:

Property 1: Incomplete coverage. There exists a threshold skill level §; such that
children receive positive early investment if and only if their initial skills fall below
this threshold:

I, >0 & 6y, <6; (26)

This threshold emerges because complementarity creates a skill gradient in marginal
products: children with very high 6y have such high marginal products that achieving
the same welfare gains requires prohibitive resource expenditures given diminishing
returns 0 < 1. Below some critical 6, the marginal benefit per dollar spent exceeds
A, justifying positive investment. Above this threshold, marginal products remain
positive but insufficient to justify resource allocation given opportunity costs.

The threshold 6 is determined endogenously by two conditions: (i) the first-
order condition must hold with equality for the marginal child at ¢, meaning their
marginal product equals Acp; (ii) the budget constraint must bind with equality,
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meaning total expenditures across all served children exactly exhaust available re-
sources B. These two equations jointly determine both the threshold ¢ and shadow
price A.

Property 2: Declining investment within treated population. Among children
receiving intervention (6p; < 6), optimal investment intensity decreases with initial

skills:
8[071'
00y,

This within-program gradient reflects the same forces driving the targeting con-
dition in Section 4.2.2: when [ is sufficiently small, disadvantaged children offer
higher welfare returns per dollar invested. The budget constraint sharpens this gra-
dient by introducing explicit opportunity costs—every additional dollar allocated
to a moderate-skill child means one less dollar available for the most disadvantaged
children, and the planner chooses the allocation that maximizes aggregate welfare
given these trade-offs.

The declining investment schedule Iy ;(6y ;) takes a specific functional form deter-
mined by the first-order condition (25). For children below the threshold, investment
solves:

< 0 for all ¢ with 6y, < 6 (27)

b A%B6 - 951.9?’;1 L+ Io,) N1+ 17,)" = Ao (28)

As 6,; rises toward 6, the left side increases (marginal product rises with skills
through complementarity), so Ip; must decline to maintain equality given diminish-
ing returns (1 + Ip;)°~! decreasing in Ip,;. At the threshold itself, investment drops
discontinuously to zero because the marginal benefit per dollar just equals oppor-
tunity cost A at infinitesimal investment, but any finite investment would yield
marginal product below A\ given diminishing returns.

Property 3: Budget exhaustion determines threshold. The optimal threshold 6;
satisfies the budget constraint with equality:

0
/ (ol (Bos) + ex Tt 4(60.)) folBo.)dbo; = B (20)
0

This condition embeds comparative statics revealing how the threshold responds
to policy parameters. Increasing the budget B raises 0, expanding coverage to mod-
erately disadvantaged children as resources permit serving more of the distribution.
Improving technology parameter A or reducing costs ¢; also raises 6 because each
dollar generates more welfare, stretching the budget to cover more children. Con-
versely, voltage drops that reduce A% below AP lower 6, contracting optimal
coverage as degraded implementation cannot justify serving as many children given
fixed budget.

These three properties jointly characterize optimal means-tested programs. Pro-
grams like Head Start implement precisely this structure: eligibility criteria target
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families below income thresholds (incomplete coverage based on observables corre-
lated with 6y), and within eligible populations, more intensive services often reach
the most disadvantaged families (declining investment schedule), with coverage ex-
panding or contracting as federal appropriations vary (budget-determined thresh-
old).

The heterogeneity analysis clarifies three critical insights connecting individual
optimization to population-level program design and therefore hold key scaling im-
plications:

Insight 1: Sample composition matters enormously. Treatment effects follow the
multiplicative structure:

Abz; = (A)FP05](1+ 1) — 1] (30)

Average treatment effects therefore depend critically on the distribution of 6y in
the treated sample. A pilot enrolling volunteers with mean baseline skills E[f, ;|pilot] =
Ipilot generates different average effects than scaled implementation reaching auto-
matic enrollees with mean E[f);|scale] = piscate- If fpitot > fscale due to positive
selection, the pilot ATE overstates scaled effects even if implementation quality
and compliance remain identical. The bias operates through the e{fj term, which
amplifies baseline differences through dynamic self-productivity.

More subtly, the entire distribution Fj matters, not just the mean. With con-
cave treatment effects Afy(0y) when 52 < 1, Jensen’s inequality implies E[Af] <
ABy(E[fy])—average effects fall below what we would predict from mean skills. If
pilot samples have lower variance o3, < 02, through screening processes that
exclude both very high and very low performers, scaled implementation reaching a
wider distribution will generate systematically different effects through the nonlin-
earity of Aby(fy).

Insight 2: Optimal targeting requires estimating heterogeneity. Option C designs
should include subgroup analyses estimating the treatment effect function Afy(6)
rather than reporting only average effects. This requires either: (i) pre-specified
analyses stratifying by baseline skills measured through assessments, with sufficient
sample sizes in each stratum; (ii) interaction terms between treatment assignment
and baseline characteristics in regression specifications; or (iii) machine learning
approaches that flexibly estimate conditional average treatment effects as functions
of covariates.

Without heterogeneity estimates, policymakers cannot implement the optimal
targeting rule characterized in equations (26)-(29). They face a stark choice: uni-
versal coverage (serving all children regardless of 6,) or crude categorical eligibility
(serving all below some income threshold regardless of how 6, varies within low-
income families). Both approaches sacrifice efficiency relative to the optimal policy
that conditions investment intensity on predicted 6y using all available informa-
tion. The welfare losses from ignoring heterogeneity can be substantial—targeting
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resources toward children with 6, just below the optimal threshold wastes money on
populations generating minimal net benefits while underfunding children far below
the threshold who offer the highest returns.

Insight 3: Universal programs face efficiency-equity tradeoffs. While targeted
programs align efficiency and equity by concentrating resources on disadvantaged
children who simultaneously face the largest skill deficits and offer the highest
marginal returns per dollar invested (when ( is small), universal programs covering
all children face a fundamental tension. Complementarity means universal imple-
mentation generates larger absolute gains for advantaged children: A#, increases
with 0y even though welfare per dollar Afy/I may decrease.

This creates a trilemma for universal programs. If investment intensity varies op-
timally across children (17 (6)), advantaged children receive more resources through
complementarity, creating political sustainability challenges ("why does the rich
child get more than mine?”). If investment is uniform across all children (I; = I),
the program wastes resources on advantaged children who need less while under-
funding disadvantaged children who need more. If the program attempts to invert
the gradient by giving disadvantaged children more resources, it fights against com-
plementarity and sacrifices aggregate efficiency.

Targeted programs avoid this trilemma by focusing resources within the region
0y < 05 where optimal investment naturally decreases with baseline skills. The in-
complete coverage removes precisely those children (high 6y) for whom complemen-
tarity would otherwise demand high investment levels in an efficiency-maximizing
allocation, eliminating the tension between optimal resource allocation and progres-
sive distributional objectives.

Translating these theoretical targeting rules into operational program design
raises several implementation challenges. First, 8y is not directly observable—it is
a latent variable capturing all pre-intervention factors affecting development. Prac-
tical targeting must rely on observable proxies: family income, parental education,
neighborhood characteristics, or assessment scores. The quality of targeting depends
critically on how well these observables predict 6, with measurement error or weak
correlations causing mistargeting that reduces program effectiveness.

Second, categorical eligibility based on income thresholds creates discontinuities
that may not align with the smooth optimal allocation I*(y). A child just above the
income cutoff might have lower 6y than one just below due to other disadvantages,
yet they receive no services while the higher-skill child receives full program bene-
fits. Continuous eligibility sliding scales based on multiple risk factors could better
approximate optimal targeting, but administrative complexity and compliance costs
often favor simpler categorical rules.

Third, means-testing generates stigma and take-up barriers that create addi-
tional voltage through reduced participation. If targeted programs induce shame
or signal low status, eligible families may decline enrollment, systematically se-
lecting away the most disadvantaged children who might benefit most. Universal
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programs avoid these participation barriers but sacrifice targeting efficiency. The op-
timal choice depends on the relative magnitudes: how much does targeting improve
benefit-cost ratios versus how much do take-up effects and stigma reduce coverage
of the most disadvantaged?

5 Putting the Chicago School Theory to the Test

The theoretical framework developed in this paper formalizes how naive extrap-
olation from pilot studies systematically overestimates policy efficacy by ignoring
voltage drops—declining treatment effects due to quality degradation, sample un-
representativeness, cost inflation, and general equilibrium spillovers when moving
from controlled pilots to population-level implementation. This section provides
summaries of ten recent studies, across diverse domains of human capital invest-
ment, which each provide crucial evidence on the model’s scaling mechanisms.

The studies are ordered to build a coherent narrative: I begin with foundational
work on the micro-dynamics of skill formation and measurement, progress through
family investment decisions and intergenerational transmission, examine peer effects
and social context, explore targeted interventions with heterogeneous effects, and
conclude with explicit analyses of scaling challenges and implementation realities.

Collectively, these papers validate the Option C framework while revealing new
dimensions of complexity—from endogenous technology parameters that evolve with
investment histories to multi-generational complementarities that delay returns across
decades to general equilibrium responses that fundamentally alter treatment effects
at scale. The empirical richness documented here both confirms the theoretical pre-
dictions and suggests important extensions, particularly regarding heterogeneity in
production function parameters, discrete stage-specific technologies, and feedback
loops between investment activity and future productivity that create path depen-
dence in skill formation.

5.1 Study Summaries

5.1.1 Heckman and Zhou: “A Study of the Microdynamics of Early
Childhood Learning”

Heckman and Zhou (2026)) exploit unique weekly measurement data from a scaled
Chinese home-visiting program to investigate the micro-level mechanics of skill for-
mation that aggregate models necessarily obscure. Their novel contribution chal-
lenges the standard skill production function 6,,1 = f(6;, I;, G;) by demonstrating
that skills nominally classified as identical across developmental stages in fact do not
share a common unit scale—a mathematical complication with profound substantive
implications.
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The estimated microdynamics reveal that different skill levels are characterized
by different production functions, rejecting the standard assumption of a single
time-invariant technology f(-) operating across the entire lifecycle. Instead, learn-
ing occurs through “skill-lifecycle-stage-specific learning processes” that align more
closely with reinforcement learning mechanisms from cognitive psychology than with
the continuously differentiable CES functions typically employed in economics. This
finding directly addresses a persistent puzzle: the ubiquitous “fadeout” phenomenon
where measured treatment effects decline over time, which researchers typically
attribute to depreciation (skills decay without continued investment) or catch-up
growth (control group receives compensatory investments). The estimated model
provides an alternative explanation: fadeout reflects measurement artifact arising
from arbitrary test score scales that change meaning across ages combined with
genuine forgetting processes operating at different rates for different skills.

Speaking to the theoretical framework advanced in this study, this microdynamic
analysis reveals that the voltage parameter v, (quality degradation in scaled imple-
mentation) varies not just across programs but across developmental stages and
skill domains within the same program. The Chinese home-visiting intervention—
designed to promote parenting through curriculum delivered by village health workers—
shows heterogeneous effects depending on parental baseline capabilities and home
environments, with the intervention effectiveness varying substantially across the
skill distribution. This suggests that optimal targeting criterion 6§ (the skill thresh-
old below which intervention generates positive net benefits) is not a scalar but a
vector varying by skill domain and developmental stage, complicating the simple
targeting rule derived in equation (19) (and the properties in section 4.3).

The methodological innovation of bypassing input endogeneity issues and lack
of comparable measures of skills that plague previous studies through careful ex-
perimental design and item response theory measurement provides a roadmap for
Option C thinking: rather than assuming treatment effects generalize across pop-
ulations and contexts, researchers should measure the micro-mechanics of how in-
terventions affect learning processes, then use structural models to aggregate these
mechanisms into predictions about scaled implementation. In addition, the find-
ing that family environments mediate treatment effects, with “different effects for
children with different types of parents and home environments,” formalizes the
interaction between program quality (A) and household characteristics (6y, Itamily)
that generates composition voltage: average treatment effects in pilots with selected
families systematically overstate effects when scaling to broader populations where
complementarity between program inputs and family inputs proves weaker.

Most profoundly, the paper demonstrates that the standard specification treating
skills as cardinally measured stock variables evolving smoothly through time rep-
resents an oversimplification that masks critical discontinuities, state dependencies,
and forgetting processes that become visible only with high-frequency measurement.
This suggests that our theoretical understanding of skill formation, including the dy-
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namic complementarity and self-productivity mechanisms central to my theoretical
framework, requires refinement to accommodate the actual discrete, stage-specific,
and stochastic learning processes operating at micro timescales.

5.1.2 Cotton, Hickman, List, Price, and Roy: “Why Don’t Struggling
Students Do Their Homework? Disentangling Motivation and
Study Productivity as Drivers of Human Capital Formation”

Cotton and colleagues (2026) provide identification of a two-dimensional model sep-
arating unobserved student motivation (willingness to study) from unobserved pro-
ductivity (conversion rate of study time into skill), using field-experimental data
combining real-time web-based activity tracking with randomized incentive variation
across 1,676 middle school students in diverse Chicago-area districts. Their struc-
tural estimates reveal a counterintuitive finding with interesting implications: many
struggling students actually exhibit higher motivation than their higher-performing
peers, but face severe productivity disadvantages: they cannot efficiently convert
study time into completed work and skill gains.

This finding directly challenges the standard interpretation of low investment in
my theoretical framework, which typically attributes underinvestment to either bud-
get constraints or preference parameters, but the productivity decomposition reveals
a third channel: students with low A (productivity parameter) rationally choose low
I (investment) because their skill production function 6,4 = A - 67 - (1 + I)? offers
poor returns to effort. The distributional analysis proves particularly striking: Black
and Hispanic students demonstrate higher willingness to study but face “substantial
productivity disadvantages, largely attributable to school quality differences,” sug-
gesting the achievement gap operates primarily through Aminority < Amajority rather
than through differential investment choices conditional on productivity.

This mechanism has deep implications for Option C thinking about intervention
design: programs providing incentives or information about returns to schooling (at-
tempting to increase motivation) will fail because they target the wrong margin—
struggling students already want to succeed but lack the foundational skills, instruc-
tional support, or learning environments to convert effort into achievement. Effective
interventions must address the productivity constraint directly through remedia-
tion, scaffolding, or school quality improvements that raise the A parameter. The
estimated feedback loop between investment activity and productivity—where sus-
tained engagement in learning improves future learning efficiency—creates dynamic
complementarity operating through the technology itself rather than simple skill
stocks: Aip1 = h(Ay, Iy, age), with 0A;1/01; > 0. This generates path dependence
where early productivity disadvantages compound: low-A students rationally disen-
gage, which prevents the productivity-enhancing feedback from operating, creating
“poverty traps” in skill formation.

The finding that dynamic skill complementarities “arise mainly from children’s
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aging and from a feedback loop between investment activity and productivity, rather
than from carrying forward past skill stocks” challenges the standard CES specifi-
cation where 6, enters directly but A remains fixed, suggesting production functions
should model technology parameters as evolving endogenously through accumulated
learning experiences. For scaling theory, the productivity-motivation decomposi-
tion reveals why promising interventions often fail: pilots typically attract selected
samples with higher baseline productivity (higher A), meaning treatment effects
E[0:+1 — 0;|pilot] overstate effects when scaled to populations with lower productiv-
ity who cannot effectively utilize the intervention—a composition voltage operating
through heterogeneity in production function parameters rather than initial skill
endowments.

5.1.3 Caucutt, Lochner, Mullins, and Park: “Child Skill Production:
Accounting for Parental and Market-Based Time and Goods In-
vestments”

Caucutt and colleagues (2026) tackle a fundamental identification challenge in skill
formation: distinguishing complementarity in the production function from selec-
tion in investment decisions. Their innovation lies in developing a relative demand
estimation strategy that exploits intratemporal optimality conditions to identify
substitutability parameters between parental time, home goods, and market-based
childcare while separately estimating intertemporal dynamics governing how skills
evolve.

Using PSID-CDS data on children ages 5-12, they find moderately strong com-
plementarity between all inputs (refuting perfect substitution) but little difference in
production technology by parental education—a result with profound implications
for my framework’s targeting conclusions in section 4.2.2. If high-educated parents
invest more primarily through income effects and preference parameters rather than
having fundamentally more productive investment technologies (higher A), then the
rationale for compensatory targeting of disadvantaged children strengthens: opti-
mal investment () decreases with initial skills not because of production function
curvature alone, but because disadvantaged children face similar production possi-
bilities yet receive fewer investments due to budget constraints.

The paper’s methodological contribution to Option C thinking emerges from de-
composing total voltage into component mechanisms: scaling a program that pro-
vides free childcare will generate different effects than one subsidizing home goods
or incentivizing parental time, because these inputs enter the production function
0.1 = A - f(time, goods, childcare; 6;) with different substitution elasticities. The
estimated complementarity (rejecting perfect substitution) implies that voucher pro-
grams allowing parents to substitute freely between time and market childcare will
achieve lower skill gains than integrated programs providing both inputs in fixed
proportions—the voltage drop operates through substitution patterns not captured
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in pilot studies where researchers control input bundles.

The counterfactual simulations prove that “estimated input complementarity
has important implications for policies that subsidize inputs or provide free child
care,” with effect sizes varying substantially depending on which margin families
adjust. This formalizes a key Option C principle: understanding mechanism hetero-
geneity across populations and contexts requires estimating structural parameters
(substitution elasticities, productivity differences) rather than simply scaling average
treatment effects. The finding of little technology difference by parental education
further challenges models assuming skill-skill complementarity necessarily implies
skilled parents are more productive investors—instead, the socioeconomic gradient
in outcomes arises primarily from differential investment levels Iy > Ipoor under
similar production possibilities, suggesting policies removing budget constraints for
disadvantaged families could substantially narrow skill gaps.

5.1.4 Del Boca, Flinn, Verriest, and Wiswall: “Parenting with Patience:
Parental Incentives and Child Development”

Del Boca and colleagues (2026) construct a clever Markov Perfect Equilibrium frame-
work where both forward-looking parents and adolescent children endogenously
choose investments in the child’s cognitive development, with the critical innova-
tion being that parental incentive provision Iicentives today affects the child’s dis-
count factor dq;q tomorrow. This creates an intertemporal trade-off formalized as
a time-inconsistency problem: extrinsic motivation boosts short-run cognitive skill
accumulation 6; but reduces the child’s future intrinsic motivation to self-invest by
lowering their discount factor, thereby reducing 6, through decreased future self-
investment.

Their model provides micro-foundations for dynamic complementarity that op-
erate through preference formation rather than production function curvature. In
the framework’s notation, excessive use of extrinsic incentives reduces the child’s fu-
ture willingness to self-invest (lowering their own Iepig future) by damaging intrinsic
motivation, creating an endogenous voltage where interventions succeed at raising
0, while undermining the self-productivity mechanism that would compound those
gains into #5. While this operates through preference formation rather than the
production technology parameter A directly, the effect manifests as reduced future
investment that mimics a voltage drop in the technology itself.

This mechanism importantly explains a puzzling empirical regularity: interven-
tions that successfully boost test scores in the short run often show fadeout effects,
which researchers typically attribute to depreciation of skills dgepreciation > 0. But
this paper suggests an alternative mechanism—that the intervention itself damaged
the production technology by reducing children’s intrinsic motivation, creating an
endogenous voltage drop where Afutwe = Abaseline _ L (ipncentives). The policy im-
plication challenges the foundation of many accountability systems: testing-focused
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interventions may succeed on their explicit objective (raising ¢;) while undermin-
ing the deeper goal of fostering self-directed learning that drives 6, through skill
self-productivity.

5.1.5 Dettmer, Heckman, Pantano, Ronda, and Suomi: “Effects of Multi-
Generational Exposure to Early-Life Advantage: Lessons from a
Primate Study”

Dettmer and colleagues (2026) leverage three decades of randomized rearing assign-
ments in rhesus monkeys to identify multigenerational complementarities impossible
to measure in human populations. The experimental design, which randomly as-
signs both mothers (generation ¢) and their offspring (generation ¢ + 1) to either
mother-rearing (high-quality early environment) or nursery-rearing (adverse condi-
tions), permits clean identification of how treatment effects depend on the previous
generation’s experience.

The central finding dramatically illustrates intergenerational skill complemen-
tarity: benefits of mother-rearing materialize only for offspring whose mothers
were themselves mother-reared, with precisely zero treatment effects for offspring of
nursery-reared mothers regardless of the offspring’s own treatment assignment. This

. . . i . 29
represents a pure interaction term in the production function: 7 -~ 68910“‘1dd — > 0,
mo er grandmo er

where investments in generation ¢ only yield returns conditional on investments in
generation ¢t — 1.

The theoretical implications for my model in this study prove profound. Stan-
dard skill production models specify 6;,, = A- 9,56 -(1+1;)°, assuming the technology
parameter A is fixed or varies only with observable characteristics. But this primate
evidence suggests A itself depends on ancestral investments: Agqia = Apaseline
9(Igrandmother ), Where Igrandmother denotes the investment the grandmother made in
the mother during her childhood, and ¢(-) is strongly increasing—potentially even
step-functional (A = 0 if mother nursery-reared).

This creates a fundamental scaling challenge: interventions providing high-quality
early environments to generation ¢ will show disappointing effects when evaluated
on contemporaneous outcomes, because the benefits require complementary invest-
ments in generation ¢t + 1 to materialize. The voltage drop takes an unusual form—
not declining treatment effects with scale, but delayed treatment effects across gen-
erations, systematically biasing short-run benefit-cost calculations. The identified
transmission mechanism—parenting quality as the primary pathway, with no effects
detected through in-utero environment despite shared gestational exposure—reveals
that interventions targeting parent-child interactions face voltage drops when mov-
ing from controlled pilots (where interaction quality is maintained through intensive
oversight) to scaled implementation (where quality degrades).

The critical implication for Option C thinking: programs addressing intergen-
erational transmission require sustained multi-generation commitment, because the
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full returns to investing in disadvantaged mother at age ¢ materialize only through
enhanced productivity of investments in her children at ¢ + 20. Naive extrapola-
tion from single-generation pilots will systematically underestimate long-run benefits
while overestimating short-run returns, creating political economy challenges where
myopic policymakers abandon effective interventions before complementarities man-
ifest across generations.

5.1.6 Agostinelli, Doepke, Sorrenti, and Zilibotti: “It Takes a Village:
The Economics of Parenting with Neighborhood and Peer Effects”

Agostinelli and coauthors (2026) fascinating study provides perhaps the most direct
empirical demonstration of the voltage effect operating through general equilib-
rium mechanisms. Their structural model, estimated on Add Health data, reveals
that parents endogenously adopt authoritarian parenting styles, restricting chil-
dren’s peer selection, as a compensatory response to heterogeneous or low-quality
peer environments. This behavioral response creates a fundamental tension in scal-
ing: small-scale “Moving to Opportunity” style interventions generate substantial
benefits by relocating individual disadvantaged children to affluent schools where
the peer environment remains unchanged, but scaling these interventions triggers
defensive parental responses that erode treatment effects by half.

The formal connection to my theoretical framework in this study operates through
the unmodeled general equilibrium channel: the benefit-cost ratio (B/C)Plt fails
to account for systematic changes in parents’ equilibrium investment strategies
I, (6, peer composition). When one child moves, receiving community parents main-
tain permissive styles because their children’s peer group remains high-quality. But
when scale increases from one to forty children, the discontinuous jump in peer het-
erogeneity induces affluent parents to switch to authoritarian restrictions, directly
counteracting the intervention’s intended mechanism.

The theoretical contribution in Agostinelli et al. (2026) extends my simple scal-
ing model by formalizing how interventions that change population-level distribu-
tions Fj trigger behavioral responses that were not present in pilot studies. Most
keenly, the paper demonstrates that successful scaling requires overcoming both ho-
mophily bias in children’s preferences and strategic parental interference, barriers
that strengthen rather than weaken with program scale. Unlike standard models
where marginal costs remain constant or increase linearly with scale, these behav-
ioral responses create convex cost functions C(q, k) with %QTQ > 0, making some
interventions fundamentally unscalable without addressing the general equilibrium
mechanisms.
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5.1.7 Falk, Kosse, and Pinger: “Mentoring and Schooling Decisions:
Causal Evidence”

Falk and colleagues (2026) provide rare causal evidence that a low-intensity mentor-
ing intervention can address inequality of opportunity arising from Germany’s early
tracking system, where children from low-SES families are 31.1 percentage points
less likely to enter academic tracks than high-SES children—a gap that persists at
21.7 percentage points even after conditioning on academic performance. The one-
year mentoring program (cost: €1,000 per child) increased high-track attendance
among treated low-SES children by 11 percentage points at the time of tracking
(Grade 5), an effect that persisted with minimal fadeout at 10.3 percentage points
five to six years later (Grade 9/10), closing roughly one-third of the unconditional
gap.

This effect size proves particularly remarkable when interpreted through the tar-
geting framework developed above: despite complementarity in the educational pro-
duction function that might favor investing in already-advantaged children, the in-
tervention succeeded by operating at a critical decision juncture, Germany’s fourth-
grade tracking system, where relatively modest investments can shift trajectories
with lasting consequences. The minimal fadeout from 11 to 10.3 percentage points
over five years suggests the intervention created dynamic advantages through changed
educational placement rather than direct skill production, illustrating how targeted
interventions at key junctures can generate persistent returns through trajectory
changes.

The theoretical mechanism underlying this success deserves emphasis: the inter-
vention operates primarily through information and beliefs, shifting both teacher
perceptions (who observe mentored children and update recommendations) and
parental expectations (who become familiar with academic-track education through
mentor role models), rather than directly entering the skill production function
6 = A-0°.(1+1)°. This suggests an important extension to the scaling framework:
some of the most cost-effective interventions target decision-making under imperfect
information at critical junctures, operating outside the production function through
belief formation and information provision. Such interventions may exhibit different
voltage characteristics than programs attempting direct skill production, with lower
implementation costs but greater sensitivity to institutional context and information
environments.

The mechanistic evidence reveals dual pathways operating through both supply
and demand sides of the tracking decision. On the supply side, treated children
received improved teacher recommendations, suggesting the mentoring enhanced ei-
ther actual capabilities or teachers’ perceptions of children’s potential for high-track
success. On the demand side, parents of treated children more frequently overruled
low-track recommendations, indicating shifted beliefs about educational returns.
The intervention targeted low-SES families one to two years before tracking, with
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mentors all having completed high track and enrolled in university. The mentors
served as role models who introduced academic-track concepts into family contexts
where such paths were often unfamiliar.

Yet, the paper’s most profound contribution to scaling theory emerges from its
cost-effectiveness: at €1,000 per child generating 11 percentage point effects on
high-stakes educational outcomes, the benefit-cost ratio substantially exceeds many
intensive early childhood programs. This suggests that targeting specific decision
nodes, the tracking juncture, rather than attempting comprehensive skill produc-
tion may represent an Option C approach that maintains efficacy while achieving
scalability through modest cost structure ¢y(g) that remains approximately linear
even as ¢ increases substantially.

5.1.8 Cappelen, Charness, Ekstrom, Gneezy, and Tungodden: “Exercise
Improves Academic Performance”

Cappelen and colleagues (2026) demonstrate a profound empirical validation of skill
complementarity operating through an unexpected channel: physical health capital
enhancing educational persistence and completion. Their randomized intervention,
which provided free gym access to university students, generated 0.15 standard de-
viation improvements in completed study points through reduced course dropout
and exam failure, without affecting grade performance on completed exams. Their
study suggests the mechanism operates primarily through improved self-regulation
and sustained effort rather than enhanced cognitive ability per se. The treatment
effect heterogeneity proves most theoretically illuminating: the entire effect con-
centrates among students with poor baseline lifestyle habits and low self-control,
yielding gains of approximately 0.5 standard deviations for students who scored
below the median on lifestyle, self-control, happiness, and study hours at baseline
(Cappelen et al., Table 7, column 1), while producing negligible effects for other
students.

This pattern directly instantiates the targeting theorem from the theoretical
framework above: when [ (self-productivity) is sufficiently small, disadvantaged
individuals become the optimal intervention targets. The mechanism of improved
self-control functioning as an increase in the child’s effective discount factor ¢ in
skill production also speaks to dynamic complementarity. Students with initially
compromised self-regulation cannot efficiently convert study time into learning (low
productivity parameter A), but physical exercise removes this constraint, effectively
increasing A for the treated group. The specificity of effects on course completion
rather than grades reinforces that the intervention addresses a behavioral constraint
(persistence, time-consistent decision-making) rather than enhancing raw cognitive
capacity.

The study’s deepest contribution to scaling theory lies in what it reveals about
the interaction between targeting mechanisms and composition voltage. The pi-
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lot’s volunteer participants likely exhibited higher baseline 6, than would character-
ize universal implementation, meaning the observed 0.15 SD average effect embeds
positive selection bias through standard composition voltage. However, the strong
heterogeneity by baseline self-control suggests a more nuanced scaling prediction: if
the intervention specifically removes a binding constraint (self-control) that is more
severe in non-volunteer populations, automatic enrollment might reach students
for whom the constraint binds more tightly, potentially generating larger effects
despite lower baseline 6y. This would represent composition voltage working in re-
verse—with E[952i|scale] < E[ng]pﬂot] predicting larger rather than smaller scaled
effects. Testing this hypothesis requires actual scaling studies that measure both
baseline self-control and treatment effects across volunteer versus automatic enroll-
ment populations, demonstrating how Option C thinking identifies when standard
voltage predictions may be inverted by mechanism-specific heterogeneity.

5.1.9 Mullins: “A Structural Meta-Analysis of Welfare Reform Exper-
iments and Their Impacts on Children”

Mullins (2026]) pioneers a structural approach to meta-analysis that directly im-
plements Frisch’s (1936) vision: using economic theory to coordinate accumulation
of empirical evidence rather than simply averaging treatment effects. By estimat-
ing a unified model across three welfare reform experiments (Connecticut Jobs First,
Florida’s Family Transition Program, Minnesota Family Investment Program) span-
ning six sites, he identifies how variation in experimental design (changes in benefit
formulae, mandatory services, time limits, childcare subsidies) maps to deep param-
eters governing maternal labor supply, childcare use, and skill formation technology.

This methodology provides precisely what the Option C framework requires:
structural parameters invariant across policy regimes rather than reduced-form treat-
ment effects that vary with implementation details. The model reveals that seem-
ingly similar “welfare-to-work” interventions operate through distinct mechanisms—
time limits reduce participation while mandatory services increase employment pri-
marily by raising job arrival rates rather than imposing non-pecuniary costs, decom-
posing treatment effects into interpretable economic channels. The skill formation
estimates prove troubling: increases in household income generate modest posi-
tive effects (1% SD per log-point increase), but the transition from unpaid to paid
childcare associates with 6.9% SD losses in behavioral skills, with substantial het-
erogeneity across latent types suggesting complementarity between maternal quality
and childcare quality.

The theoretical contribution to the framework herein operates through revealing
how voltage drops vary systematically with latent individual characteristics: exper-
imental populations disproportionately select individuals with lower labor market
productivity and temporary negative shocks, implying E[fy|experiment| differs from
E[fy|population] not just in mean but in the entire distribution of unobserved het-
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erogeneity. The counterfactual applying estimated treatment effects to the repre-
sentative SIPP sample demonstrates dramatic composition voltage—average treat-
ment effects look “quite different” in the non-selected population, with concerning
negative consequences for children’s behavioral skills that were masked in the ex-
perimental samples.

This keen insight illustrates a subtle scaling failure: heterogeneous treatment ef-
fects combined with selection on latent productivity means pilot benefit-cost ratios
systematically overstate scaled returns not because the intervention changes (qual-
ity voltage) but because the population changes (composition voltage) in ways that
interact with treatment effect heterogeneity. The structural approach enables cal-
culating optimal policy under realistic assumptions about population composition,
demonstrating how the Option C thinking of anticipating heterogeneity and selec-
tion can improve policy design relative to naive extrapolation from experimental
means.

5.1.10 Cuddy and Currie: “Rules vs. Discretion: Treatment of Mental
Illness in U.S. Adolescents”

Cuddy and Currie (2026]) cleverly investigate a fundamental tension in the sci-
ence of scaling: how evidence from carefully controlled clinical trials translates
into population-level treatment guidelines, and how practitioner adherence to those
guidelines affects real-world outcomes. Using national insurance claims covering
45,000 adolescents, they create a natural experiment in scaling approaches by com-
paring three regulatory regimes: FDA-approved treatments (Plan A: strict evidence-
based rules), professional association guidelines allowing off-label use (Option C:
informed flexibility), and practitioner discretion inconsistent with any guidelines
(Plan B: unguided scaling).

The results demonstrate that implementation quality, captured as adherence to
evidence-based protocols, exhibits voltage drops with severe consequences: “red-
flag” prescribing increases self-harm rates, emergency room visits, and healthcare
costs over 24 months relative to guideline-consistent treatment. Linking to the
proposed framework above, this careful empirical work maps directly to quality
voltage where Ared-flag - Aguidelines - AFDA "hyt with a critical insight: the optimal
scaling strategy is not strict FDA approval (which would restrict treatment menus
too severely) but professional guidelines that allow controlled experimentation while
maintaining quality standards.

The empirical magnitudes underscore the practical importance of these voltage
distinctions. Adolescents receiving red-flag prescriptions experience significantly el-
evated rates of adverse outcomes compared to those receiving guideline-consistent
care, with effects persisting throughout the 24-month follow-up period. The mecha-
nism through which professional guidelines maintain quality while preserving flexi-
bility proves instructive: rather than restricting practitioners to a narrow formulary,
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guidelines synthesize evidence from the broader clinical literature (including off-label
uses with empirical support) while explicitly flagging combinations that lack any
evidence base. This approach addresses the fundamental information problem that
FDA approval processes create systematic gaps where effective treatments remain
unapproved for pediatric populations. The finding that guideline-consistent care
achieves the lowest facility use and total costs while maintaining safety demonstrates
how the Option C approach successfully navigates the tension between standardiza-
tion and adaptation.

In this manner, the Cuddy and Currie (2026 study empirically validates the
Option C framework by showing that guidelines represent a middle path—more
flexible than rigid FDA protocols but more structured than complete practitioner
discretion—that successfully addresses scaling challenges while preserving treatment
efficacy. The theoretical contribution reveals that scaling mechanisms differ funda-
mentally between consumer goods (where quality might degrade gradually with sup-
ply constraints) and expert services (where practitioner judgment creates discrete
quality tiers).

Further, the comparative statics prove that voltage parameter v, varies discon-
tinuously with regulatory regime: treatments consistent with some evidence base
maintain quality, while deviations into pure discretion trigger sharp voltage drops.
This suggests that optimal scaling policy for expert services requires mechanism-
based design principles embedded in flexible but binding guidelines rather than ei-
ther pure centralization (FDA only) or pure decentralization (practitioner discretion)—
precisely the Option C approach of anticipating implementation realities while pro-
viding structured frameworks that preserve treatment integrity.

6 Synthesis, Implications, and Paths Forward

These ten studies collectively validate the core predictions of the scaling framework
while revealing layers of complexity that demand theoretical extensions. Three
fundamental insights emerge with particular force.

First, voltage drops operate through more diverse channels than the initial frame-
work suggests. Beyond the standard mechanisms, such as quality degradation (v4),
composition effects (E[@g;|scale] + E[Qg;|pilot]), and cost inflation, the empirical
evidence reveals endogenous technology changes where the production function pa-
rameter A itself evolves with investment histories (Cotton et al. 2026), intergenera-
tional complementarities where returns materialize only across multiple generations
(Dettmer et al. |2026]), and general equilibrium responses where populations strate-
gically counteract interventions (Agostinelli et al. [2026)).

The Del Boca et al. (2026) finding that extrinsic incentives reduce future in-
trinsic motivation represents perhaps the most troubling voltage mechanism: in-
terventions can succeed on their explicit objectives while inadvertently degrading
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the very technology they aim to enhance. This result suggests equation (1) should
be augmented to include technology parameters that depend on past intervention
strategies: A;1 = A(ly, 11, ...,1;), capturing how implementation choices create
path dependence in production possibilities.

Second, heterogeneity in unobserved productivity parameters fundamentally al-
ters optimal targeting and scaling predictions. The Cotton et al. (2026|) decomposi-
tion of motivation versus productivity reveals that achievement gaps reflect primarily
differences in the technology parameter A rather than in skill endowments 6, or in-
vestment levels I conditional on productivity. This implies that composition voltage
operates not just through the distribution of initial skills but through the distribu-
tion of production function parameters themselves—a dimension of heterogeneity
that standard models miss entirely. When pilots select on unobserved productivity
(higher A individuals volunteer), treatment effects systematically overstate popula-
tion effects because low-A individuals cannot effectively utilize the intervention.

The Mullins (2026) structural meta-analysis confirms this mechanism empiri-
cally: welfare reform experiments selected participants with temporarily depressed
labor market opportunities, and counterfactual simulations on representative pop-
ulations show dramatically different effects. This suggests equation (11) for scaled
benefit-cost ratios requires an additional term capturing heterogeneity in A:
(B/C)scale = ¢ . (Ascale) 145 . [(1 4 )98 — 1] -E[ng|scale, A]/(ceate . 1) where the
expectation now conditions on productivity as well as skill levels.

Third, the studies reveal profound tensions between short-run and long-run eval-
uation horizons that challenge conventional benefit-cost analysis. The Dettmer et
al. (2026)) primate study demonstrates that returns to early interventions may re-
quire a full generation to materialize through improved parenting quality in the next
generation, while Heckman and Zhou (2026) show that fadeout in measured effects
reflects arbitrary test score scales and stage-specific production functions rather
than genuine depreciation. These findings suggest that typical evaluation windows
(2-5 years) systematically underestimate true returns while potentially overweight-
ing short-run effects that prove ephemeral.

The tension becomes acute in the Del Boca et al. (2026) finding that interven-
tions boosting short-run skills may damage long-run prospects by reducing intrinsic
motivation—a dynamic that requires decades to fully manifest but would be invisi-
ble in standard evaluation horizons. This time-scale problem creates a fundamental
challenge for Option C thinking: how can researchers conduct mechanism tests
that reveal long-run effects without waiting decades for results? The Cappelen et
al. (2026) study offers a potential solution by focusing on mechanisms (self-control,
lifestyle habits) that have well-established connections to long-run outcomes, allow-
ing immediate measurement of mediators rather than waiting for ultimate effects.

The synthesis across studies also reveals a more optimistic dimension: well-
designed interventions can achieve remarkable cost-effectiveness when they target
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binding constraints at critical junctures. The Falk, Kosse, and Pinger (2026) men-
toring program generated large, persistent effects at one-fortieth the cost of inten-
sive early childhood programs by addressing the specific mechanism (parental be-
liefs and teacher recommendations) operating at Germany’s tracking decision point.
Similarly, Cappelen et al. (2026) achieved substantial gains by removing barriers
to exercise for students whose self-control problems prevented effective studying—
the intervention succeeded precisely because it targeted the constraint rather than
attempting comprehensive skill enhancement. This suggests that Option C think-
ing should emphasize diagnostic precision: identifying which specific parameter in
the production function equation constrains development for which subpopulations,
then designing targeted interventions that address those specific parameters rather
than implementing universal programs that attempt to raise all inputs for all chil-
dren.

The Caucutt et al. (2026) finding that production technologies show little differ-
ence by parental education offers particular policy relevance when combined with
evidence on investment complementarity. If disadvantaged families face similar pro-
duction possibilities but provide fewer investments due to budget constraints, then
policies removing financial barriers could substantially narrow achievement gaps—
a finding that strengthens the case for progressive targeting derived in equation
(19). However, the strong complementarity between inputs (time, goods, childcare)
revealed in their estimates suggests that narrow interventions subsidizing single in-
puts may generate disappointing returns as families substitute away from other
complementary inputs. This points toward integrated programs providing balanced
input packages rather than categorical subsidies targeting isolated margins.

Finally, the Cuddy and Currie (2026) analysis of mental health treatment pro-
vides perhaps the clearest empirical validation of the Option C framework itself.
By comparing three scaling approaches (strict evidence-based rules (FDA), flexible
guidelines (professional associations), and unguided discretion (practitioner choice)),
they demonstrate that the middle path balancing structure with adaptation achieves
the best outcomes. This finding generalizes beyond mental health treatment: op-
timal scaling requires neither mechanical replication of pilot protocols (which fails
when contexts differ) nor complete adaptation to local conditions (which permits
quality degradation), but rather structured frameworks that maintain fidelity to
core mechanisms while allowing controlled variation in implementation details. The
paper thus validates the three-stage Option C approach: mechanism testing under
realistic conditions (identifying which treatment components drive effects), targeted
scaling based on heterogeneity (reaching populations most likely to benefit), and
supply-side investments to reduce voltage (maintaining quality through professional
standards and training).

These empirical insights suggest several theoretical extensions. The standard
production function 0,1 = A -6 - (1 + I,)° requires augmentation to capture:
(i) endogenous technology parameters A, 1(Io, ..., I;) that evolve with investment
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histories; (ii) stage-specific production functions f()(-) that vary discontinuously
across developmental stages rather than smoothly over time; (iii) intergenerational
complementarities where Acyiq depends on papent's childhood; and (iv) general equilib-
rium feedbacks where population-level implementation alters the peer environment
and parental responses that enter the production function. Incorporating these ex-
tensions while maintaining tractability for policy analysis represents an important
agenda for future theoretical work. The empirical studies reviewed here provide
rich guidance for how these extensions should be structured to capture the actual
mechanisms operating in skill formation and program scaling.
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