

WORKING PAPER · NO. 2026-17

A Few Bad Apples? Academic Dishonesty, Political Selection, and Institutional Performance in China

Zhuang Liu, Wenwei Peng, and Shaoda Wang
JANUARY 2026

A Few Bad Apples? Academic Dishonesty, Political Selection, and Institutional Performance in China

Zhuang Liu, Wenwei Peng, and Shaoda Wang

January 2026

JEL No. M5, P00

ABSTRACT

Honesty is perceived as fundamental to societal functioning, motivating education systems worldwide to enforce strict oversight and heavy penalties for dishonest behavior. Yet much academic misconduct remains unexposed, and its broader consequences are further obscured by the sorting of individuals into careers based on probity. Applying advanced plagiarism-detection algorithms to half a million publicly available graduate dissertations in China, we uncover hidden misconduct and validate it against incentivized measures of honesty. Linking plagiarism records to rich administrative data, we document four main findings. First, plagiarism is pervasive and predicts adverse political selection: plagiarists are more likely to enter and advance in the public sector. Second, plagiarists perform worse when holding power: focusing on the judiciary and exploiting quasi-random case assignments, we find that judges with plagiarism histories issue more preferential rulings and attract a greater number of appeals— effects partly mitigated by trial livestreaming. Third, plagiarizing judges generate spillovers onto other judges and lawyers. Fourth, exploiting the staggered adoption of detection tools, we demonstrate that enforcing academic integrity leads to modest improvements in future professional conduct.

Zhuang Liu

The University of Hong Kong (HKU)

liuz@hku.hk

Wenwei Peng

Harvard University

wpengad@connect.ust.hk

Shaoda Wang

University of Chicago

Harris School of Public Policy

and NBER

shaoda@uchicago.edu

1 Introduction

Institutions act through people. Organizations, rules, or social norms play a fundamental role in influencing behavior, but they are ultimately created, maintained, and shaped by the actions of individuals (Knack and Keefer, 1997; Bertrand and Schoar, 2003; Caselli and Morelli, 2004; Besley, 2005; Jones and Olken, 2005). Whenever discretion is required, the effective functioning of an institution hinges on the personal probity of those entrusted to uphold it: judges rendering impartial decisions; tax officials accurately assessing liabilities; politicians crafting policies in the public interest; CEOs transparently disclosing corporate finances; NGO managers directing resources to their stated objectives; researchers faithfully reporting their findings — and so on. The demand for probity is particularly acute in the public sector, as surveys worldwide consistently identify “dishonesty” as the most prevalent criticism of politicians and civil servants.¹

Given the high value placed on probity, most societies strive to screen out dishonest individuals and instill strict ethical norms from a young age. Education systems worldwide not only promote these values tirelessly but also enforce stringent oversight and severe penalties for academic misconduct through honor codes. Under such codes, a single instance of plagiarism of academic work can easily result in expulsion, and even celebrated professionals risk public disgrace years later if past misconduct comes to light.² Despite such high-stakes rules and their perceived importance, there exists little rigorous evidence on the prevalence of academic misconduct, and its long-run societal implications.

Empirically studying this topic is notoriously challenging. First, there is an obvious data constraint: to determine whether academic misconduct predicts future outcomes, such as career trajectories or unethical professional behavior, researchers must observe previously undetected academic misconduct — otherwise one would not be able to disentangle the effects of hidden dishonesty from those of punishment following detection; however, by definition, undetected academic misconduct is oftentimes unobservable to researchers. Second, identification is also challenging: to assess what societal costs arise when academically dishonest individuals occupy positions of responsibility, one must compare their performance with honest peers in identical roles, yet these two types of individuals tend to endogenously sort into diverging career paths and undertake incomparable tasks.

¹For example, see: [PEW global survey](#).

²Some high-profile examples include Martin Luther King Jr., whose doctoral dissertation was found to contain plagiarized passages; former Harvard president Claudine Gay, who resigned in 2024 following scrutiny of her dissertation and published work; U.S. President Joe Biden, who acknowledged plagiarism in a 1965 Syracuse Law School paper — an issue that resurfaced during his 1987 presidential campaign; and several European politicians — including Germany’s Karl-Theodor zu Guttenberg and Annette Schavan, as well as Hungary’s former president Pál Schmitt — who lost their doctoral titles and government positions after plagiarism investigations.

In this paper, we examine China — the country with the world’s largest higher-education system and state sector — and tackle the empirical challenges outlined above to uncover previously hidden patterns of academic dishonesty and assess their implications for society. We construct a novel metric of academic misconduct by applying recently developed plagiarism-detection algorithms to more than half a million publicly available graduate dissertations. Each dissertation is scanned against the entire pre-existing academic corpus using advanced text-matching techniques that capture not only direct plagiarism but also paraphrasing and partial matches, while filtering out false positives such as quotations from canonical or authoritative works. Because dissertations are compulsory for graduation and legally mandated to be public, our approach provides a clear, comprehensive, and objective assessment of high-stakes violations of academic integrity.

To validate this measure, we link it to original survey data that we collected on the traits and beliefs of experienced professionals. Importantly, we find that dissertation plagiarism is most strongly associated with dishonesty elicited in incentivized cheating tasks ([Hanna and Wang, 2017](#); [Barfort et al., 2019](#)). It is otherwise (a) generally uncorrelated with stated dishonesty measures (except for the stated acceptance of academic misconduct); and (b) marginally associated with neuroticism and disorderliness, while remaining uncorrelated with other personality traits such as opportunism, ambition, risk tolerance or pro-social motivation. To a first-order approximation, dissertation plagiarism appears to capture an individual’s underlying propensity for dishonesty. Nevertheless, to remain conservative in our interpretation, we refrain from broader generalizations and consistently refer to our measure either literally as plagiarism history or, in effect, as academic honesty — understood as a realized behavior rather than an *ex ante* trait.

Drawing on this novel measure, we document a series of empirical findings. First, we link plagiarism in dissertations to comprehensive rosters of public officials and document systematic adverse political selection on probity. On the extensive margin, we find that 19% of public officials in our sample exceed the 15% plagiarism rate — the most commonly used official cutoff for degree conferral — a prevalence significantly higher than the 14% average for their private-sector counterparts. On the intensive margin, using original and comprehensive data on civil service career trajectories, we find that within the public sector, exceeding the 15% plagiarism threshold is associated with a 10–15% faster promotion rate. This effect remains robust after controlling for seniority, experience, and educational background.

Second, motivated by the prevalence of academically dishonest individuals in the public service, we examine the consequences of placing such actors in positions of power. We focus on the judicial system as a proof of concept — a neat context in which high-stakes decisions

on similar cases are regularly assigned to different judges.³ Using more than 140 million publicly available court verdicts and exploiting quasi-random variation in case assignment, we show that, for otherwise identical lawsuits, those adjudicated by judges who plagiarized their dissertations — compared to those handled by their non-plagiarizing peers — yield significantly more favorable rulings for well-connected litigants, involve greater use of discretionary power, and experience more appeals. These patterns — potentially suggestive of corruption and bias — are further corroborated by subsequent higher probabilities of corruption investigations and disciplinary actions. Interestingly, these effects are muted when trials are livestreamed to the public, indicating that transparency can help constrain misconduct, potentially by deterring judges from engaging in behavior they would prefer not to expose to public scrutiny.

Third, we document spillover effects from plagiarists onto their peers: (i) new judges assigned to academically dishonest senior mentors gradually assimilate their ruling patterns; and (ii) lawyers with plagiarism histories become differentially more effective than their academically honest counterparts when their cases are exogenously assigned to judges who also have plagiarism histories. These findings suggest the presence of multiple equilibria in social norms of honesty: as a larger share of peers exhibit academic misconduct, it becomes increasingly difficult for an honest individual to function and advance within the system.

Fourth, we examine how enforcing academic integrity in schools affects both plagiarism and subsequent institutional performance. Exploiting the staggered rollout of advanced plagiarism-detection tools, we show that these tools significantly reduced plagiarism rates but did not alter adverse political selection: even under stricter screening, students with higher plagiarism rates remained more likely than their classmates to enter public service. Although part of the reduction reflects increased bunching near degree-conferral thresholds, judges from cohorts exposed to stricter screening ultimately issue marginally fewer preferential rulings — suggesting that adherence to academic honor codes can modestly foster long-term probity.

Taken together, our findings imply that academic dishonesty is widespread in society, especially among individuals holding key public service positions pertinent to social welfare. Without adequate screening at the selection stage and sufficient on-the-job checks and balances, these academically dishonest individuals can impose significant costs on society — both through their own unethical behavior and by influencing social norms that, in turn, shape others' actions. Stricter enforcement of the academic honor code, potentially aided by technology, appears to offer a modest way to mitigate such biases.

This paper relates to three strands of literature. First, it contributes to prior work in

³Judges are a specialized category of civil servants in civil law countries, including China. This contrasts with common-law systems (e.g., the U.S. and U.K.), where judges are typically appointed from among experienced lawyers and are institutionally separate from the civil service. Accordingly, throughout this paper we use “public official” or “public servant” as broad terms encompassing both judges and other civil servants.

economics on probity, where scholars have long argued that individual honesty underpins institutional functioning (Knack and Keefer, 1997; Besley, 2005; Fisman and Svensson, 2007). A burgeoning literature has also devised creative ways to elicit honesty in laboratory settings (Gneezy, 2005; Fischbacher and Föllmi-Heusi, 2013; Abeler et al., 2014), demonstrating correlations between such measures and economically or politically relevant outcomes (Hanna and Wang, 2017; Barfort et al., 2019; Olsen et al., 2019). Our paper advances this strand by constructing a real-world, high-stakes, and objective measure of academic honesty based on 521,546 graduate dissertations — an approach that is potentially scalable to over ten million post-secondary degree holders in China and beyond.⁴ In a related and important study of the private sector, Fisman et al. (2025) document a strong correlation between doctoral dissertation plagiarism and corporate malfeasance among 271 publicly listed company leaders. We complement this work by examining the public sector, documenting both adverse political selection and the causal consequences of academic dishonesty once individuals assume positions of power. We further present survey evidence showing that past plagiarism strongly predicts dishonesty in incentivized tasks; identify spillover effects of misconduct through social norms; and show that stricter enforcement of academic honor codes can modestly foster long-run ethical behavior.

Second, our findings speak to the long-standing economics literature on corruption, which emphasizes both its importance for development and the institutional determinants of its prevalence (Shleifer and Vishny, 1993, 1998; Mauro, 1995; Besley, 2005; Fisman and Gatti, 2002; Svensson, 2003; Fisman and Svensson, 2007). This work has increasingly been complemented by micro-level evidence (Olken, 2007; Bertrand et al., 2007; Ferraz and Finan, 2008, 2011; Brollo et al., 2013; Avis et al., 2018; Chen and Kung, 2019; Colonnelli and Prem, 2022). We contribute to this literature by: (i) highlighting the role of individual virtue, providing new evidence that dishonest behavior in school predicts long-run conduct in public office; and (ii) documenting how plagiarizing individuals affect the behavior and performance of their peers, underscoring the importance of social norms in shaping corrupt practices.⁵

Third, our findings contribute to the literature on political selection, which highlights the roles of institutions, motivations, patronage, incentives, and preferences for stability (Caselli and Morelli, 2004; Bó et al., 2009; Besley et al., 2011; Ferraz and Finan, 2011; Buurman et al., 2012; Gagliarducci and Nannicini, 2013; Bó et al., 2013; Banuri and Keefer, 2016; Xu, 2018; Colonnelli et al., 2020; Casey et al., 2021; Weaver, 2021). Evidence on selection into public service based on honesty is mixed: Hanna and Wang (2017) find adverse selection in India,

⁴This approach also echoes Jacob and Levitt (2003) in employing large-scale administrative data to systematically identify otherwise hidden forms of real-world cheating.

⁵Our finding that greater transparency reduces preferential rulings also relates to research on how media mitigates agency problems (Sen, 1999; Besley and Burgess, 2002; Strömborg, 2004; Qin et al., 2017).

whereas Barfort et al. (2019) find positive selection in Denmark, indicating that institutional context and corruption levels play a central role. Our results from China show pronounced adverse selection on the extensive margin — individuals with higher plagiarism scores are significantly more likely to enter the public sector. Moreover, even after controlling for rank, age, tenure, background, and other observables, those who plagiarized their dissertations are significantly more likely to be promoted. In the Chinese context, this negative selection on probity complements prior evidence of positive political selection on ability and family background (Li et al., 2024; Ang et al., 2025).⁶

The remainder of this paper is organized as follows. Section 2 describes the institutional background. Section 3 introduces the data and presents descriptive facts about dissertation plagiarism in China. Section 4 discusses political selection on probity. Section 5 examines the causal impact of dishonest officials on institutional performance. Section 6 exploits the staggered rollout of anti-plagiarism rules across universities to analyze their effects on academic misconduct, political selection, and subsequent on-the-job behavior. Section 7 concludes.

2 Background

2.1 Academic Integrity and Dissertations in China

In China, the completion and defense of a thesis is a mandatory requirement for the conferral of bachelor’s, master’s, and doctoral degrees, making it a pivotal milestone in higher education. This requirement places considerable pressure on many students, especially those contending with tight deadlines, heavy academic workloads, or inadequate preparation for independent research. Before the 2010s — when most academic works existed primarily in print and plagiarism detection tools were still rudimentary — some students sought shortcuts by copying material from obscure papers or theses, hoping that reviewers would be unable to trace the original sources. As a result, despite the Ministry of Education (MOE) and universities’ strong emphasis on academic integrity — and the threat of severe penalties such as degree revocation — plagiarism in dissertations has remained a persistent issue.

To address this problem, the Ministry of Education (MOE) began requiring universities to publish graduate dissertations via the China National Knowledge Infrastructure (CNKI), a state-owned enterprise that now serves as China’s largest academic database and central repository for graduate-level work.⁷ Through its *China Doctoral Dissertations Full-text*

⁶Our analysis of the rollout of plagiarism-detection tools further suggests that educational policies aimed at screening out dishonest candidates and fostering ethical norms can modestly improve selection on the extensive margin.

⁷Bachelor’s dissertations are not required by the MOE to be publicly disclosed and thus are not included in the CNKI database, though they can potentially be obtained upon request from universities.

Database and *China Master's Theses Full-text Database*, CNKI has archived more than 3.4 million theses and dissertations dating back to 1984, with full-text access, daily updates, and a typical publication lag of about 1.5 months after degree conferral.⁸ Its vast coverage, timely updates, and centralized access make CNKI an exceptionally comprehensive and powerful resource for monitoring academic work nationwide.

In addition to archiving dissertations, CNKI has developed and deployed the Academic Misconduct Literature Check System (AMLC), a widely used plagiarism-detection platform that scans submissions against its extensive digital corpus. Launched in 2008 and initially piloted at select universities, AMLC offers advanced text matching capabilities and generates detailed similarity reports that flag overlapping content. It is designed to detect paraphrasing and partial matches, while recognizing quoted material to reduce false positives and improve precision. Now a staple of degree evaluations, the system has reshaped dissertation oversight by providing institutions with a robust, reliable way to identify unoriginal content quickly and accurately.

Following the introduction of CNKI's plagiarism-detection tools, universities across China adopted the system rapidly, and it soon became the *de facto* mechanism for upholding academic integrity. Policy has kept pace with technology, yielding a formal, increasingly detailed framework to deter misconduct in higher education. The first cornerstone — the “Measures for Handling Academic Degree Thesis Fraud” (2013) — empowered universities to revoke degrees and sanction responsible parties based on evidence of plagiarism.⁹ After 2016, CNKI and other plagiarism-detection tools became widely adopted across universities. A detailed 2019 policy issued by the State Council further clarified definitions and penalties for plagiarism, fabrication, falsification, and other breaches of research integrity, enabling coordinated enforcement across government agencies and universities.¹⁰

Beyond internal academic oversight, CNKI's dissertation databases and text-matching tools have also enabled public scrutiny of theses authored by officials and public figures, with tangible institutional consequences. In 2024, Nanjing University confirmed that the master's thesis of Liu Sailian, a vice president of the Yingtan Intermediate People's Court, contained plagiarism, following a complaint supported by CNKI similarity checks.¹¹ Earlier, Hunan

⁸Coverage is substantially more comprehensive in recent years, including over 70% of all graduate dissertations from the 2010s. Aside from technical barriers in earlier years (e.g., the absence of scanned copies for some older dissertations), the missing cases in more recent years typically reflect universities choosing to disclose through alternative channels, such as other online platforms rather than CNKI. Such missing data occurs at the university-year level, while sample selection at the individual level remains rare.

⁹These standards were reinforced by the 2014 “Opinions on Strengthening Graduate Education Quality Assurance.” Source: http://www.moe.gov.cn/sccsite/A22/s7065/201402/t20140212_165554.html (in Chinese).

¹⁰Source: https://english.www.gov.cn/policies/policywatch/201910/23/content_WS5dafad68c6d0bcf8c4c15981.html.

¹¹Source: <https://news.sciencenet.cn/htmlnews/2024/6/524270.shtml> (in Chinese).

University announced an investigation into allegations that two former doctoral students — then serving as provincial officials, including the director of the political department of the Hunan High People’s Court — had plagiarized substantial portions of their dissertations.¹² Outside the public sector, actor Zhai Tianlin had his doctorate revoked by the Beijing Film Academy in 2019 after an investigation into academic misconduct.¹³ Even Zhang Wenhong, a prominent infectious disease expert who gained fame for being outspoken about China’s COVID control measures, faced online accusations in 2021 that his 2000 doctoral dissertation contained plagiarized passages, prompting a formal review by Fudan University.¹⁴

The combination of centralized dissertation repositories and CNKI’s highly sensitive text-matching tools has made plagiarism detection in China exceptionally powerful. Because nearly all graduate theses are publicly accessible and can be scanned against CNKI’s vast digital corpus, misconduct — past or present — can be uncovered with a precision and scale unmatched in most other contexts. As numerous high-profile cases have shown, dissertation plagiarism is no longer an obscure academic infraction but a high-stakes societal issue, capable of prompting degree revocations, ending careers, tarnishing institutional reputations, and eroding trust. This unique environment therefore offers an unprecedented opportunity to study academic integrity and misconduct at scale.

Students’ Awareness of and Access to CNKI Plagiarism Detection Tools. CNKI’s plagiarism-detection system was gradually rolled out to universities after 2013, but students had very limited access to use it throughout most of our sample period. Crucially, CNKI did not offer its detection service to individuals until June 2022. Before then, access was effectively restricted to university administrators, with only a small black market — operated informally by clerks in university anti-plagiarism offices — providing checks at prohibitively high prices (often several thousand Yuan per report). Thus, while many students were likely aware of the algorithm’s existence, they were rarely able to use it themselves, rendering strategic adjustment of dissertations largely infeasible. Consistent with this interpretation, our results are robust when restricting the sample to the early years of the period, before the algorithm was widely adopted by universities. We further examine potential strategic responses in Section 6.1.

¹²Source: <https://www.sixthtone.com/news/1004238/hunan-university-investigates-party-officials-for-plagiarism> (in Chinese).

¹³Source: <https://www.chinadaily.com.cn/a/201902/19/WS5c6bd3f6a3106c65c34ea29d.html>

¹⁴Source: <https://www.scmp.com/news/china/science/article/3146077/chinas-dr-fauci-zhang-wenhong-clarified-thesis-plagiarism>

2.2 China's Public Sector

Civil service positions are among the most coveted and prestigious careers in China, a status rooted in a long bureaucratic tradition that prizes administrative talent and public service. Historically, entry into government was determined through the imperial *Keju* examinations; today, that legacy endures in the modern civil service system, which continues to reward merit, discipline, and education.

Aspiring civil servants face stringent entry requirements. Applicants must hold at least an undergraduate degree — often from a leading university — and certain positions specify preferred majors such as law, economics, or public administration. The gateway to government employment is the National Civil Service Examination (NCSE), an extremely competitive test institutionalized in the 1990s to assess candidates' knowledge of law, policy, and analytical ability. Fewer than two percent of more than a million applicants succeed each year, and those who pass must undergo an additional round of interviews and background checks before appointment.

To ensure fairness and prevent corruption in recruitment, the results of the NCSE are publicly disclosed on government websites. These announcements list successful candidates' names, university, exam scores, rankings, and sometimes basic demographic information such as gender, cohort, and major. This transparency has made the civil service one of the most closely monitored and publicly scrutinized career pipelines in China.

Once appointed, civil servants occupy a central place in China's governance structure. Even at the grassroots level, they exercise considerable discretion in implementing policy, allocating resources, and communicating local conditions to higher authorities. Because senior leadership positions are filled through internal promotion rather than elections, these officials form the talent pool from which future policymakers emerge. The civil service thus functions not only as the administrative foundation of the state but also as the pathway through which China's political elite is continually renewed.

2.3 China's Judicial System

In China, the judiciary is not a separate, coequal branch in the Western sense but part of the state apparatus under Communist Party leadership. The selection and qualifications of judges reflect the broader civil service system: judges are, first and foremost, career officials (Ng and He, 2017). In the 1980s and 1990s, many were transferred from the military or other government agencies and lacked formal legal training. In 2002, China introduced the National Judicial Examination — now part of the National Unified Legal Professional Qualification Examination — as a prerequisite for new judges, prosecutors, and attorneys. This reform

gradually raised professional standards; today, nearly all newly appointed judges are law graduates who have passed the exam. Entry into the profession requires passing the civil service exam; judges hold civil-service ranks and pay scales and are evaluated, promoted, and transferred like officials in other government departments.

With no jury system and no binding precedent, judges in China wield significant discretion in individual cases. They investigate evidence, find facts, apply statutes, and issue judgments. Most cases are decided by a single judge; a minority of complex or high-profile cases go to a three-judge collegial panel. Even on panels, a designated “responsible judge” typically oversees the case from beginning to end and drafts the judgment, thus significantly shaping the outcome. As a result, the effectiveness and fairness of China’s judiciary hinge largely on the incentives, professionalism, and integrity of judges at the local level.

3 Data and Descriptive Facts

This section introduces the data sources that underpin our analysis, explains how we measure dishonesty based on plagiarism reports generated by CNKI’s detection system, and validates this measure against independent benchmarks from an original incentivized survey of experienced professionals. We then turn to supplementary administrative datasets — civil service exam rosters, judicial case files, and business registries — that allow us to connect integrity measured at graduation to later career trajectories and institutional performance.

3.1 Measuring Dishonesty

3.1.1 Plagiarism Reports

Our primary measure of dishonesty is based on applying CNKI’s official plagiarism-detection algorithm to more than half a million graduate dissertations publicly disclosed via the CNKI platform.¹⁵ The system, widely adopted by Chinese universities since the early 2010s, is designed to detect both direct copying and close paraphrasing, while filtering out citations and quotations from classic or authoritative materials that could otherwise inflate false positives.

The CNKI system compares the full text of each dissertation against an extensive corpus of pre-existing materials. These include the China Academic Journals Database, China Books Database, Master’s Theses Database, Doctoral Dissertations Database, Conference Papers Database, Newspaper Database, Patents Database, Standards Database, Encyclopedias Database, Web Content Database, Document-Sharing Repositories, Institutional Self-Built

¹⁵Some universities make their dissertations available through other platforms, such as the National Library’s dissertation repository or their own institutional library systems. These are not included in our sample but could be accessed and analyzed by future researchers.

Collections, Work Reports, Ideological/Political Reports, and Project Proposals. Each dissertation is checked line by line against this corpus, and all overlapping passages are flagged. Appendix B describes the corpus and key technologies used by the CNKI system in greater detail.

Figure 1 presents sample excerpts from plagiarism reports generated by CNKI. As shown, the system produces a standardized comparison report that provides detailed diagnostics at multiple levels. At the aggregate level, the reports summarize several key statistics: (i) the overall percentage of text identified as copied, (ii) the maximum overlap with any single source, and (iii) the total number of overlapping characters and words. These statistics enable us to quantify the extent of plagiarism for each dissertation in a consistent and comparable manner.

At a more granular level, the reports identify paragraph-by-paragraph matches to specific sources in the reference corpus. Each flagged segment is highlighted and linked to the original text, allowing us to distinguish between wholesale verbatim copying and partial paraphrasing. These paragraph-level flags enable us to construct section-specific plagiarism measures (e.g., for introductions, theoretical frameworks, analyses, and conclusions), helping to differentiate relatively minor copying of background material from more serious misconduct in a dissertation’s core sections.

This procedure produces a set of detailed, replicable measures of plagiarism for each dissertation, allowing us to systematically quantify academic dishonesty across institutions and over time.

3.1.2 Survey Data on Experienced Professionals

To examine whether past instances of plagiarism are associated with long-term personality traits — such as current levels of probity — we conducted an incentivized survey of experienced professionals in collaboration with an elite legal research institute in China during its recruitment process. As part of the application for a senior product manager position, candidates were required to upload their master’s or doctoral dissertations to demonstrate academic capability; we later used these submissions to detect dissertation plagiarism. After completing the online application, applicants were invited to participate in a questionnaire designed to measure personality traits. They were explicitly informed that their responses would be used solely for academic research by an independent team of scholars, and would not affect their job application outcomes.

We employed two approaches to measure probity. The first relied on attitudinal questions about dishonest behavior, providing an indirect assessment. For example, applicants were asked to indicate their level of agreement with statements such as: “Most people would lie for personal gain if they were certain they wouldn’t get caught,” “If your supervisor hinted at

skipping a formal compliance registration to save time, how likely would you be to comply?” and “Some students hire professionals to write their dissertations—how acceptable do you find such a practice?”

The second approach followed standard practices in experimental economics to directly elicit dishonest behavior through incentivized tasks (Fischbacher and Föllmi-Heusi, 2013; Hanna and Wang, 2017). Applicants were instructed to privately roll a die ten times and received monetary rewards based on the number of reported sixes. The rolls were unobserved and unverifiable—only the reported outcomes determined the payoffs. Because the probability of rolling a six is fixed, reporting an unusually high number of sixes indicates a greater likelihood of dishonest reporting. This design does not explicitly prime respondents on dishonesty but allows them to feel comfortable knowing that no one can determine with certainty whether they are cheating. We use this measure as a proxy for lying behavior.

In addition, we measured other personality traits, including openness, conscientiousness, extraversion, agreeableness, and neuroticism. The full survey design and questionnaire are provided in Appendix D.

Of the 443 job applicants invited to participate, 387 completed the questionnaire, yielding a high response rate of 87%. To test for potential attrition bias, we conduct a balance test across a rich set of personal and professional characteristics, including gender, age, GPA, scholarship status, degree, employment status, and indicators for attending a top-tier university or residing in a major city. As shown in Appendix Table A.2, we find no statistically significant differences between respondents and nonrespondents across any of these dimensions. This suggests that attrition is unlikely to be systematically correlated with observable characteristics or to bias our analysis.

Validation of Plagiarism as a Measure of Dishonesty. The survey indicates that our plagiarism measure captures a persistent tendency toward dishonest behavior in incentivized tasks. Figure 2 Panel (a) shows histograms of the dissertation plagiarism score for two groups in the survey: “High Reporters” (those who reported more than two sixes in the incentivized dice-rolling task) and “Low/Average Reporters” (those who reported two or fewer). The distribution for High Reporters is clearly shifted to the right, indicating that individuals who plagiarized their dissertations years earlier continue to exhibit higher levels of dishonest behavior today. Strikingly, among the most egregious plagiarists (plagiarism rates above 50%), very few individuals reported low numbers of sixes, suggesting that dishonesty may be particularly persistent in the right tail.

Panel (b) of Figure 2 visualizes the correlations between dissertation plagiarism rates and all personality traits elicited in the survey, with all variables standardized to facilitate comparison across traits. Appendix Table A.1 presents the corresponding regression results

in greater detail. Consistent with Panel (a), dishonest reporting in the dice task strongly predicts higher plagiarism shares, with coefficients of 0.26–0.30 that remain significant at the 1% level — even after controlling for a broad set of attitudinal, psychological, demographic, and academic characteristics.

Overall, stated preferences about honesty show limited association with actual plagiarism, in contrast to the much stronger relationship observed for incentivized measures of dishonesty. This underscores the value of assessing probity through real actions rather than self-reported attitudes. One notable exception is that respondents who expressed greater acceptance of hiring a ghostwriter to complete a thesis are themselves significantly more likely to have plagiarized. Given that the dice-rolling task suggests plagiarism reflects a broader propensity for dishonesty rather than purely academic misconduct, the stronger predictive power of stated attitudes toward ghostwriting may reflect two mechanisms: (i) while plagiarism correlates with general dishonesty, it is most tightly linked to academic dishonesty, making domain-specific attitudes especially informative; and (ii) respondents may hold motivated beliefs that downplay their own misconduct by viewing such behavior as socially acceptable.

Correlation Between Plagiarism and Other Individual Characteristics. Among personality traits, higher neuroticism and lower orderliness are modestly associated with higher plagiarism, suggesting that the measure also captures behavioral tendencies linked to emotional stability and self-discipline. In contrast, traits such as opportunism, risk-seeking, time management, and pro-social motivation show no relationship, indicating that plagiarism is not simply an outcome of opportunism or impatience.

Indicators of academic ability — such as GPA and scholarship status — exhibit negative and statistically significant correlations with plagiarism, though these associations weaken once we introduce university and cohort fixed effects in Column (6). Similarly, the initially positive correlation between plagiarism and being female becomes insignificant once institutional fixed effects are included, suggesting that these differences likely reflect variation across universities rather than intrinsic gender differences.

Taken together, these results suggest that our plagiarism measure primarily captures an underlying propensity toward dishonest behavior, while also reflecting aspects of personality and ability related to self-control and conscientiousness. Accordingly, although we interpret plagiarism as a powerful proxy for intrinsic dishonesty, we recognize that it encompasses broader behavioral dimensions. Therefore, to remain conservative in our interpretation, we avoid broader generalizations and refer to the measure either literally as plagiarism history or, in effect, as academic dishonesty — understood as a realized behavior rather than an *ex ante* trait.

3.2 Linking Plagiarism to Other Administrative Records

To connect academic misconduct to subsequent career trajectories/performances, we link individuals across several large-scale administrative datasets.

Civil Service Exam and Civil Servants. We begin with rosters of 347,531 candidates who passed the National Civil Service Examination (NCSE) between 2014 and 2022, the main entry route into nearly all entry-level non-judicial central government positions. The rosters report each candidate’s name, college, and — when available — graduation year and exam registration region.¹⁶ We link these records to dissertations using (i) exact matches on Chinese name and college and (ii) temporal consistency (graduation year must precede the exam year). Because this approach focuses on new entrants via the NCSE, it naturally excludes senior officials who obtained degrees mid-career (e.g., through part-time or in-service programs), who are generally not comparable to regular full-time graduate students.

To reduce false positives, we exclude the top 5% most common names in the CNKI sample and require a unique, time-consistent dissertation match; ambiguous cases are conservatively dropped. This yields a final matched sample of 60,201 civil servants (17.3% match rate). The overall match rate is mechanically limited by CNKI’s coverage of postgraduate dissertations. Among civil servants known to hold a master’s degree or higher, the match rate rises to 63.4%, indicating that the procedure performs well for the relevant subpopulation.¹⁷ Appendix C provides a flowchart of the matching steps and documents sample changes under alternative exclusion thresholds.

After identifying these officials, we construct a panel of their career trajectories by compiling legally mandated public announcements of promotions and scraping official bulletins for records of disciplinary actions or corruption investigations. This unique and comprehensive dataset on career outcomes for entry-level civil servants — the first of its kind in the Chinese context — allows us to link an individual’s academic dishonesty to their subsequent promotion and likelihood of corruption investigation. Appendix F provides further details.

Judicial Case Records and Judges. Judges enter through a separate recruitment and career system and are therefore not included in the NCSE-based civil-service sample above. To study judicial officials, we collect over 140 million civil and administrative court decisions from 2014–2022 from *China Judgment Online* (CJO), the official platform for court verdicts. For each case, we extract structured information on courts, trial and ruling dates, judges,

¹⁶Appendix Figure A.2 provides an example roster.

¹⁷The remaining missing rate is likely driven by (i) graduate dissertations publicized via platforms other than CNKI and (ii) exclusions based on highly common names.

clerks, litigants, court fees, dispute types, claims, rulings, and the court’s reasoning.¹⁸

From the full verdict corpus, we construct rosters of 190,871 judges with complete case histories and observed career paths.¹⁹ We link judges to their dissertations using the same matching and disambiguation procedure as above, resulting in 61,345 matched judges (32.1% match rate). As with civil servants, the rate is constrained by CNKI’s coverage of postgraduate dissertations; the higher match rate among judges reflects their generally higher educational attainment. We further enrich the judge dataset with biographical information from court websites, Baidu Encyclopedia profiles, and provincial and prefectural anti-corruption bulletins. This allows us to trace promotions, transfers, and disciplinary actions. Appendix A.3 details the full construction.

To measure judges’ work performance, we focus on case outcomes. Our primary metric in civil litigation is each party’s win rate, derived from the allocation of court fees.²⁰ Following Liu et al. (2023a, 2025), we define: $WinRate_j = \frac{CourtFee_i}{CourtFee_i + CourtFee_j}$. In administrative cases where citizens sue the government, we classify the plaintiff as victorious if at least one claim is upheld (Zhang and Liu, 2025).

3.3 Descriptive Statistics

Table 1 reports summary statistics for the key variables. Panel A presents plagiarism rates. Among the 512,366 dissertations we processed through CNKI’s plagiarism-detection system, the average plagiarism rate is 7.7%, and this estimate remains stable whether plagiarism is measured by the overall duplication rate or by more specialized section-level indicators. After reweighting to correct for the oversampling of public-sector employees, the nationally representative mean declines slightly to 7.4%.²¹ Overall, these statistics indicate that plagiarism is highly prevalent among graduate-degree holders in China.

We further disaggregate plagiarism rates by individual characteristics. Dissertation plagiarism is more common among public-sector workers than among private-sector workers, among graduates of non-elite universities relative to elite institutions, and — though to a lesser degree — among women relative to men.

In Panel B, we report additional individual characteristics. We find that 97% of the sample is of Han ethnicity, 3% received national scholarships during graduate school, 29% attended elite universities,²² 54% are female, and 25% eventually entered the public sector.

¹⁸Appendix Figure A.1 illustrates a sample civil judgment.

¹⁹We also identify 542,269 lawyers with representation records and over 5 million corporate litigants linked to business registration data.

²⁰For example, if the plaintiff prevails entirely, they pay 0% of fees; a 50–50 split implies equal success.

²¹In the full sample, 14% of dissertations exceed the 15% plagiarism threshold — the most commonly used official cutoff for degree conferral.

²²“Elite university” refers to institutions classified under the national “Double First-Class” initiative or the

4 Plagiarism and Political Selection

As discussed in the previous section, probity may be systematically linked to political selection in China. Such a relationship, if present, would be highly consequential for two reasons: (i) the public service is a critical sector, employing roughly 70 million well-educated individuals who shape the well-being of 1.4 billion citizens; and (ii) probity is widely regarded as a key determinant of public service performance, particularly in positions that involve power and discretion.

In this section, we investigate the relationship between probity and political selection by tracking both entry into and career advancement within the public sector. On the extensive margin (Section 4.1), we compare students who entered the public service — based on mandated disclosures by recruiting government units — with their classmates in the same college-major cohort, testing whether dissertation plagiarism differs systematically between the two groups. On the intensive margin (Section 4.2), we examine career progression within the public service, comparing promotion speed between public officials with plagiarism records and their colleagues in the same unit and cohort who did not plagiarize their graduate dissertations. We also discuss alternative interpretations of our findings (Section 4.3).

4.1 Entry into the Public Service

We identify public servants recruited in China between 2014 and 2022 from publicly disclosed recruitment lists, which provide each recruit’s name and college. By matching this information to the CNKI dissertation database, we identify their major and graduation cohort. These identifiers then enable us to define a representative control group by randomly sampling their classmates from the same university, major, and cohort within the CNKI dissertation repository. In addition to conducting plagiarism detection to each matched public official’s dissertation, we draw a random subsample of their classmates within the same college-major-cohort and run their dissertations through the same algorithm.

We begin by comparing individuals who enter the public sector with their classmates who remain in the private sector. As shown in Figure 3, Panel A, those who enter public service are significantly more likely to have plagiarized their dissertations — a pattern that persists across the entire upper half of the plagiarism-score distribution. Panel B shows that this public-private gap is stable over the past decade, suggesting that the selection pattern has persisted even as students have become increasingly aware of plagiarism-detection tools in recent years.²³

historical 985/211 programs at the time of graduation.

²³Likewise, the regression results reported in this and subsequent sections are not sensitive to splitting

To quantify these graphical patterns, we estimate the following econometric model:

$$Plagiarism_{icmt} = \alpha \cdot Civil_i + X'i\Gamma + \lambda_c + \gamma_m + \eta_t + \epsilon_{icmt} \quad (1)$$

where $Plagiarism_{icmt}$ is the plagiarism score of individual i , from college c and major s , graduating in cohort t . $Civil_i$ is a binary variable that equals 1 if individual i entered the public service system upon graduation, and 0 otherwise. $X'i$ is a vector of individual characteristics, including gender, ethnicity, and a binary indicator for winning the National Scholarship (our proxy for high ability). λ_c , γ_m , and η_t represent university, major, and cohort fixed effects, respectively. This specification therefore tests whether students who enter public service exhibit higher plagiarism rates than their classmates. Standard errors are clustered at the university level.

Table 2 Panel A reports the main findings, revealing a 1.2 percentage points gap in plagiarism rates between students entering the public versus private sectors — a 15.6% increase from the baseline plagiarism rate. As shown in Columns 2 and 3, this gap exists in both elite and non-elite universities, but is more pronounced in the latter. Since the plagiarism-detection algorithm uses only publications predating the dissertations and already excludes quotes from classical materials and authoritative documents such as policies and legal codes, the reported gap in plagiarism scores reflects actual differences in violations of academic honesty codes — the same standard widely adopted by universities nationwide when making high-stakes decisions about degree conferral.

That said, violations of academic honesty codes are generally perceived to differ in severity. For example, copying literature review paragraphs might be considered by many to be less egregious than plagiarizing a paper’s main arguments or core analyses. Motivated by this distinction, in Panel A, Columns 4 and 5, we separate plagiarism in non-essential sections (background, data description, literature review, etc.) from plagiarism in essential sections (analysis, results, conclusion, etc.) and examine which type of plagiarism drives the main findings.

We find that the public–private sector gap in plagiarism is not primarily explained by less serious violations, such as paraphrasing literature reviews, dataset descriptions, or institutional background sections. While we observe differences in both essential and non-essential sections — likely reflecting the correlation of these behaviors within individuals — the adverse selection into the public sector is even stronger when measured by the more severe forms of plagiarism, namely in the theoretical framework, supporting evidence, and conclusions. These results indicate a substantive gap in academic honesty between the two groups, rather than mere

the sample by cohort, indicating that increased student awareness in recent years is not driving our findings. Additional robustness results are available upon request.

differences in familiarity with academic norms.

Panel B investigates how adverse political selection varies across public service domains. The pattern is evident across all categories, though its magnitude differs: it is particularly pronounced among tax and customs officials, who have 25–26% higher plagiarism rates than their classmates, and more modest among judges, at 16%. Identifying the precise sources of these probity gaps — both between the public and private sectors and across different branches of public service — is beyond the scope of this paper but represents a promising avenue for future research.

4.2 Career Advancement in the Public Service

Having established the adverse political selection based on probity at the entry level, we now examine whether public officials who plagiarized their dissertations also advance faster within the government hierarchy.

For civil servants, we draw on the detailed ranking information described in Appendix F. Specifically, for each individual who has served in the civil service for at least five years, we construct his or her official rank in the fifth year after entry. We then estimate the following individual-level regression:

$$Rank_{igt} = \alpha \cdot Plagiarism_i + \lambda_{gt} + \epsilon_{igt} \quad (2)$$

where $Rank_{igt}$ denotes the official rank, five years into civil service, of individual i who entered government unit g in year t . $Plagiarism_i$ is the plagiarism score of individual i , and λ_{gt} is the government-unit-by-cohort fixed effect. This specification therefore tests whether public servants who plagiarized their dissertations are promoted more quickly than colleagues within the same unit and with identical seniority. Standard errors are clustered at the government-unit level.

Table 3 presents the main findings. As shown in Column 1, among colleagues with identical seniority, individuals who plagiarized their dissertations advanced 9% more rapidly in the first five years of their careers. Columns 2–4 reveal that this pattern holds across different public service domains, and is particularly pronounced among customs and tax officials — the two domains in which we also observed the strongest extensive-margin selection based on probity. The results remain robust after controlling for individual background characteristics such as gender, university, major, degree, and year of graduation.

For the judges analyzed in Column 4, we are able to draw on unusually detailed performance measures based on the universe of 140 million court verdicts they have issued. Using this information, Column 5 repeats the previous analysis while controlling for key performance

indicators — such as the number of cases handled, appeal rates received, the number of junior judges mentored, and the share of major cases (proxied by monetary claim size) — that closely align with the official criteria used in judicial promotion decisions. Even under this more stringent specification, the coefficient on the plagiarism measure remains positive and statistically significant, indicating that judges with higher plagiarism scores are more likely to be promoted to senior positions through channels independent of their actual work performance.

4.3 Alternative Interpretations

It is worth emphasizing that our results on political selection should be interpreted as correlational rather than causal, since individuals with different plagiarism rates may also differ along various other dimensions. Moreover, while the survey evidence discussed in Section 3.1.2 demonstrates that plagiarism is a strong predictor of long-run general probity, it also reveals modest correlations between plagiarism and other personality traits or background characteristics. We therefore take a conservative approach by interpreting our findings strictly as patterns associated with *academic* dishonesty. Nevertheless, we address several potential alternative interpretations of these correlational patterns below.

Sophisticated Misconduct A natural concern remains as to whether the dissertation plagiarism rate (as detected by CNKI) is in fact an accurate measure of academic dishonesty. Some students may engage in more “sophisticated” forms of misconduct — for example, hiring others to write their dissertations, or translating directly from foreign sources not covered in the CNKI corpus. If such sophisticated cheaters are systematically less likely to enter the public service for some reason, then our findings could in principle reflect positive, rather than negative, selection on academic honesty (i.e., sophisticated cheaters avoid the public service, while naïve ones enter).

We argue that this interpretation is unlikely to drive our results for two reasons. First, as documented in Section 3.1.2, plagiarism rates are strongly and positively correlated with long-run honesty levels measured in an independent survey — evidence inconsistent with the idea that a large pool of sophisticated cheaters is hidden among non-plagiarizers. Second, the rollout of plagiarism-detection tools offers a direct test of the sophisticated-cheating explanation. By making basic plagiarism easier to detect, the rollout should have pushed dishonest students toward more sophisticated, harder-to-detect methods. As a result, after the rollout, the group with low detected plagiarism should increasingly include undetected cheaters. If such sophisticated cheaters are less likely to enter public service, the positive association between detected plagiarism and public-service entry should therefore strengthen

over time. We do not observe this pattern: the relationship does not intensify after the rollout (Section 6.2), suggesting that unobserved sophisticated cheating is unlikely to drive our results.

Students’ Pre-Screening of Dissertations Using the CNKI Algorithm The arguments above also alleviate concerns that our results are driven by students repeatedly pre-screening plagiarized dissertations against the CNKI algorithm until passing—another form of sophisticated misconduct. Such behavior would generate patterns similar to undetected cheating, which are inconsistent with the evidence discussed above and, as noted in Section 2.1, is widely understood to be rare due to prohibitively high costs. Consistent with this interpretation, Appendix Table A.3 shows that our political-selection results are robust to the pre-2016 period (before plagiarism detection became widely used). As shown in Appendix Figure A.4, this earlier period is characterized by substantially lower awareness of plagiarism-detection tools, as measured by search-engine indices. Together, these results indicate that strategic pre-screening behavior does not materially affect our findings.

Sorting vs. Screening in Political Selection Another question is whether the adverse political-selection pattern we document reflects students with a history of plagiarism disproportionately selecting into civil-service careers (i.e., sorting), or the merit-based exam system disproportionately selecting individuals who previously plagiarized (i.e., screening). Both mechanisms are consistent with the patterns we observe, and we refrain from taking a strong stance on the exact underlying channel, as our data do not allow us to fully disentangle them. That said, the evidence suggests that an ability-based screening explanation alone is unlikely to account for the main results. In particular, the adverse selection persists even after controlling for strong proxies of academic ability — such as attending an elite college or receiving a national scholarship — indicating that plagiarizing students are not simply “stronger” students who are more capable of excelling on competitive civil-service exams.

Taken together, the evidence in Sections 4.1 and 4.2 indicates that academically dishonest individuals are significantly more likely to enter public service, and that this adverse selection is further compounded by their higher likelihood of advancing to leadership positions within the system. To the extent that the probity of public officials shapes the quality of governance — and given that the consequences of dishonest behavior may be especially pronounced among those with greater authority — these patterns raise important concerns for social welfare. We examine this possibility more directly in Section 5.

5 Performance of Plagiarizing Public Servants

Given the adverse political selection based on probity, academically dishonest individuals are prevalent in the public service system and disproportionately concentrated at higher levels. It is therefore important to examine the implications of the prevalence of dishonest individuals in positions of authority. While our plagiarism measure provides a rare window into previously hidden dishonest behavior, two empirical challenges remain. First, for most public servants, the multi-dimensional and vaguely defined nature of their jobs makes it notoriously difficult to measure performance objectively (Baker et al., 1994; de Janvry et al., 2023). Second, even when performance is observable, the endogenous sorting of public servants into different tasks based on personal characteristics — such as probity — implies that comparing the outcomes of plagiarizing and non-plagiarizing officials does not, by itself, identify the causal impact of having dishonest individuals in the public service.

To address these two challenges, our subsequent analysis zooms in on the judicial system rather than the broader public service, where we can observe detailed and objective performance indicators derived from the universe of China’s court judgment files over the past decade. We further mitigate concerns about endogeneity by exploiting quasi-random variation in the assignment of cases to judges. In Section 5.1, we estimate the causal effect of a lawsuit being handled by a judge with a plagiarism record relative to one whose dissertation was not plagiarized. In Section 5.2, we exploit detailed data on collegial collaboration networks and judge–lawyer matchups extracted from court rulings to estimate the spillover effects of academically dishonest judges on their peers and on lawyers.

Since the judicial system involves tasks that are more transparent, observable, and objectively measurable compared to most other public service sectors, the scope for dishonest individuals to exercise private influence is arguably constrained. As a result, the empirical patterns we document among judges may be interpreted as a lower bound on the influence of dishonest individuals in public service. In sectors where performance is less transparent, evaluations are more subjective, and discretion is greater, dishonest individuals may exert an even more pronounced influence.

5.1 Effects of Dishonest Judges on Case Outcomes

To identify the causal effect of being assigned to an academically dishonest judge (as opposed to an honest one) on court rulings, a key challenge is that dishonest and honest judges may systematically preside over different types of lawsuits, thereby confounding observed differences in outcomes. To address this concern, we adopt an instrumental variable (IV) strategy that exploits quasi-random variation in case assignments generated by fluctuations in

judges' caseloads relative to the timing of new case arrivals.

In contrast to U.S. federal courts, where judges typically sit on mixed dockets, Chinese courts use clear subject-matter divisions. Within the same court, judges are assigned to separate divisions and groups that handle different domains of cases, such as contract, corporate, intellectual property, administrative litigation. Using the full universe of court judgment files, we first identify each judge's legal domain and construct a comprehensive measure of weekly caseload, defined as the number of active cases on that judge's docket in a given week. We then instrument for whether a case is handled by a judge with a plagiarism record using the contemporaneous caseload of plagiarizing judges in the same court and legal domain at the time of case arrival. This approach isolates variation in assignment driven purely by the availability of plagiarizing judges, rather than by endogenous matching between judges and cases.

Specifically, we estimate the following two-stage least squares (2SLS) model:

$$DishonestJudge_{icdt} = \alpha \cdot CaseLoad_{cdt} + \lambda_{cd} + \gamma_t + \epsilon_{icdt}, \quad (3)$$

$$Ruling_{icdt} = \widehat{DishonestJudge}_{icdt} + \lambda_{cd} + \gamma_t + \epsilon_{icdt}, \quad (4)$$

where $DishonestJudge_{icdt}$ is a binary indicator that equals one if case i in court c , domain d , and week t is adjudicated by a judge with a plagiarism history.²⁴ $CaseLoad_{cdt}$ is the instrument, defined as the *lowest* ongoing caseload among plagiarizing judges in court c , domain d , and week t . $Ruling_{icdt}$ denotes the case outcome of interest. In both stages, we include court-by-domain fixed effects λ_{cd} and week fixed effects γ_t . Standard errors are clustered at the court level. As a placebo test, Appendix Table A.4 shows that instrumented judge assignment is orthogonal to a range of pre-determined case characteristics — such as monetary stakes, litigant identity, and lawyer background — supporting the validity of the IV.

As shown in Table 4 Panel A, the IV strongly predicts case assignment to dishonest judges (first-stage F-stat ranges between 105 and 225). Exploiting this variation, the second-stage results, as reported in Columns 1, 3 and 5, indicate that cases handled by dishonest judges, relative to otherwise comparable cases, are: (i) 10% more likely to favor the government over citizens in administrative lawsuits; (ii) 15% more likely to favor SOEs over private firms in commercial disputes; and (iii) 12% more likely to favor larger firm litigants over smaller counterparts in civil cases. These findings are consistent with the interpretation that dishonest judges are more susceptible to influence from powerful litigants — either by proactively favoring them in anticipation of future benefits or by being passively captured through external

²⁴Our baseline definition classifies a judge as having a “plagiarism history” if their raw plagiarism score is above the judge sample median. The IV results are robust to a variety of alternative definitions.

pressure — thereby undermining the fairness and quality of judicial decisions.

Same as before, and as reported in Appendix Table A.3, these patterns are robust when restricting the sample to pre-2016 cohorts, confirming that the findings are not driven by strategic plagiarists who pre-screened their dissertations against the CNKI algorithm to achieve compliance.

Livestreamed Trials Interestingly, as reported in Columns 2 and 4, these differential rulings are almost entirely driven by trials that were *not* livestreamed to the public; for livestreamed cases, the same IV-2SLS specification yields no meaningful treatment effect on ruling outcomes.²⁵ As shown in Appendix Table A.5, livestreaming is uncorrelated with case features or judge characteristics. One interpretation of this heterogeneity is that the more preferential rulings of plagiarizing judges are unlikely to stem from lower ability *per se*. Instead, dishonest judges may knowingly issue preferential rulings but moderate such behavior when their decisions are subject to greater public scrutiny.

It is worth noting, however, that judges retain some de facto discretion over which cases are livestreamed. Thus, an alternative interpretation is that, even though observable case characteristics are orthogonal to livestreaming status, judges may selectively steer certain trials away from livestreaming based on unobservable case features.

Regardless of the preferred interpretation, a common takeaway emerges: the differential ruling patterns associated with livestreaming are indicative of strategic bias among plagiarizing judges rather than innocent incompetence, reflecting conscious trade-offs between the expected costs and benefits of issuing questionable rulings.

Quality of Judicial Decisions An alternative interpretation, however, is that pre-existing biases in China’s judicial system systematically disadvantaged SOEs, governments, and the wealthy, and that dishonest judges improve judicial quality by offsetting such biases. To evaluate this possibility, we examine the impacts of dishonest judges on judicial quality directly. Following Liu et al. (2023a), we construct three proxies based on court rulings: (i) appeal rates, which generally signal lower decision quality; (ii) applications of discretionary legal provisions, which have been shown to correlate with favoritism (Liu and Li, 2019); and (iii) the length of the judicial reasoning section in the verdict, which positively correlates with decision soundness (Liu, 2018).

As shown in Table 4, Panel B, Column 1, instrumented assignment to a judge with a plagiarism history increases the likelihood of appeal by 3.3 percentage points — an 18%

²⁵The 2016 *People’s Courts Regulations on Open Trials* mandate livestreaming by default, except for cases involving state or business secrets, privacy, or social stability. In practice, coverage depends largely on courts’ technological capacity and scheduling constraints, as many have limited equipment and staff.

increase relative to the baseline average. Column 3 show that judges with plagiarism histories are 19% more likely to rely on discretionary provisions. For the length of judicial reasoning, in Column 5, we find a significant reduction of 37 words (7%). Again, as shown in Columns 2, 4, and 6, these effects disappear in cases being livestreamed to the public. Taken together, these results point to systematically lower-quality judicial decisions by judges with plagiarism histories.²⁶

Subsequent corruption investigations The findings in Table 4 paint a consistent picture: judges with plagiarism histories systematically favor more powerful litigants by issuing lower-quality rulings. Consistent with this interpretation, Appendix Table A.6 shows that these judges — while advancing more rapidly in their careers (as reported in Section 4.2) — are also 0.6 percentage points more likely than their peers to face anti-corruption investigations and sanctions in subsequent years, representing a 16.6% increase over the baseline average.²⁷ This result corroborates our preferred interpretation that their preferential rulings were likely linked to bribery or other forms of misconduct.

5.2 Spillover Effects in the Judicial System

In addition to issuing more preferential rulings, the presence of dishonest individuals in the judicial system may generate significant spillover effects on others who interact with them, particularly when such individuals occupy positions of power. In this section, we examine two types of spillover effects: (i) the influence of dishonest judges on the behavior of their fellow judges, and (ii) their influence on the behavior of lawyers.

Spillover on other judges When a new judge is appointed to a court, he is assigned to a “judge panel,” essentially a mentorship group of 2–3 judges led by a senior “judge director.” During the following year, the incoming judge is expected to collaborate with his mentor in trials and to observe and learn from the mentor’s decision-making process.²⁸ After one year of mentorship, the incoming judge is deemed qualified to handle cases independently.

As shown in Table 5, Panel A, junior judges assigned to mentors who plagiarized their dissertations are, after a year of exposure, significantly more likely to issue preferential rulings favoring powerful litigants — holding constant their own plagiarism record — according to estimates obtained from the same IV strategy that exploits quasi-random variation in

²⁶We also observe a marginal reduction in trial duration, consistent with less serious deliberation on the part of the judge.

²⁷The results are robust to logit and hazard models.

²⁸As detailed in Appendix Figure A.5, the average junior judge handles 75% of their caseload with a single, primary senior partner, and a large proportion of junior judges work exclusively with one mentor. This arrangement is highly stable and creates a powerful channel for peer influence.

case assignments. The magnitudes imply that exposure to a dishonest mentor increases bias in rulings by about half as much as the junior judge’s own dishonesty does, indicating a substantial spillover effect. Appendix Table A.7 shows no systematic sorting between mentors and mentees based on probity, suggesting that the observed spillover effects are more likely to reflect assimilation rather than selection. These findings suggest that unethical norms and practices can diffuse through mentorship networks within the judiciary.²⁹

Spillover on lawyers Beyond influencing junior colleagues, a judge’s probity can also affect the effectiveness of the lawyers who appear before them. To investigate this possibility, we compare lawyers’ performance before dishonest versus honest judges, and examine how the difference, if any, is associated with the lawyer’s own honesty.

As reported in Table 5, Panel B, and exploiting our baseline IV design, we find that dishonest lawyers achieve significantly higher win rates for their clients when facing dishonest judges compared to honest ones.³⁰ By contrast, this difference is absent — or if anything, reversed — for honest lawyers. That dishonest lawyers perform better under dishonest judges — holding constant case selection via the IV — suggests the presence of “top-down favoritism” exerted by judges, or “bottom-up capturing” initiated by lawyers, or some combination of both.

While we are unable to credibly disentangle these two mechanisms given data limitations, the existence of such patterns indicates that dishonest judges systematically empower dishonest lawyers. This dynamic implies that, as the prevalence of dishonest judges increases within the judicial system, market competition may in turn raise the prevalence of dishonest lawyers in the legal profession, thereby amplifying the broader manifestation of dishonesty.

6 Anti-Plagiarism Enforcement

For a long time, universities relied on faculty members to manually review dissertations for potential plagiarism. Since the conferral of bachelor’s, master’s, and doctoral degrees legally

²⁹This effect could potentially reflect a genuine change in honesty driven by peer influence. Another possibility is that, as shown in Table A.1, plagiarism has persistent predictive power for long-term honesty, and individuals may simply be “catering to the norm” by conforming to their work environment.

³⁰We estimate the following specification: $\widehat{Y}_{ilcdt} = \beta_1 \widehat{\text{DishonestJudge}}_{cdt} + \beta_2 \widehat{\text{DishonestLawyer}}_{il} + \beta_3 (\widehat{\text{DishonestJudge}}_{cdt} \times \widehat{\text{DishonestLawyer}}_{il}) + \widehat{X}'_{ilcdt} \theta + \lambda_{cd} + \gamma_t + \varepsilon_{ilcdt}$, where \widehat{Y}_{ilcdt} is the case outcome (i.e. the lawyer’s client win rate), $\widehat{\text{DishonestJudge}}_{cdt}$ is the instrumented dishonesty measure of the presiding judge, and $\widehat{\text{DishonestLawyer}}_{il}$ indicates whether the lawyer has above-median dishonesty (e.g., plagiarism history). λ_{cd} and γ_t denote court-by-domain and time fixed effects, respectively, and \widehat{X}_{ilcdt} includes standard controls. $\widehat{\text{DishonestJudge}}_{cdt}$ is instrumented using $\widehat{\text{CaseloadDishonest}}_{cdt}$ from the first stage $\widehat{\text{DishonestJudge}}_{cdt} = \pi_1 \widehat{\text{CaseloadDishonest}}_{cdt} + \lambda_{cd} + \gamma_t + \nu_{cdt}$. The coefficient of interest is β_3 , which captures whether dishonest lawyers perform better when matched with dishonest judges.

requires the submission of a dissertation, and given the high student-to-faculty ratio in most Chinese universities, it was logically impossible to subject every dissertation to close scrutiny. Moreover, some instances of plagiarism that draw on obscure sources are inherently difficult to detect, even for experts. These factors help explain the prevalence of dissertation plagiarism among graduates prior to the 2010s.

As explained in Section 2.1, beginning in the early 2010s, plagiarism-detection algorithms — most notably the one developed by CNKI — became increasingly sophisticated. Following the Ministry of Education’s (MOE) push for stronger efforts to curb dissertation plagiarism, universities nationwide rapidly adopted explicit anti-plagiarism rules that relied on these algorithms to automate detection. Because the MOE did not mandate a uniform enforcement timeline, adoption varied substantially across universities. We compile detailed rollout information for 120 elite universities and, as shown in Appendix Figure A.6, most adopted systematic anti-plagiarism tools between 2013 and 2020.

Exploiting this staggered rollout, we address three questions in this section. First, as a proof of concept, does anti-plagiarism enforcement actually reduce plagiarism (Section 6.1)? Second, how does it affect selection into the public service (Section 6.2)? Third, does it influence behavior within the public service (Section 6.3)?

It is worth noting that, although the vast majority of students ultimately obtain their degrees, the enforcement of anti-plagiarism policies does not mechanically ensure that all dissertations in our post-enforcement sample fall below the relevant degree-conferral cutoffs for at least two reasons. First, because plagiarism-detection algorithms were costly — especially in the early years — many universities conducted only spot checks rather than universal screening, allowing some students with high plagiarism rates to graduate if they were not selected for review. Second, even among universities that implemented universal checks, the specific detection algorithms and versions used varied. Our plagiarism measures are based on the most recent CNKI algorithm, which is highly correlated with — but may not perfectly replicate — the earlier CNKI versions or other systems previously used by universities.

6.1 Impacts on Plagiarism

As long as the adoption of anti-plagiarism rules is not merely performative, one would expect a subsequent reduction in plagiarism levels. To test this hypothesis, we estimate the following equation:

$$Y_{icmt} = \alpha \cdot Treat_{ct} + \lambda_c + \gamma_m + \eta_t + \epsilon_{icmt}, \quad (5)$$

where Y_{icmt} denotes the outcome of interest — such as the plagiarism level of individual i from university c , major m , graduating in year t . $Treat_{ct}$ is a binary indicator for whether college c

had adopted plagiarism-detection algorithms by year t . We include university fixed effects (λ_c), major fixed effects (γ_m), and year fixed effects (η_t). Standard errors are clustered at the university level.

Table 6 Panel A reports the results. Consistent with effective enforcement of anti-plagiarism policies, we observe a 0.9 percentage-point decline in plagiarism rates for dissertations submitted after adoption — equivalent to roughly 12% of the pre-reform average. The effect is evident across both core and non-core sections and holds for students from elite as well as non-elite universities. In Column 4, we restrict the sample to cohorts who enrolled before the rules were implemented but graduated afterward. For these students, the rules represented an unanticipated shock. The results remain highly consistent, confirming that the rules led to a significant reduction in plagiarism. Panel (a) of Figure 4 plots the dynamic effects, showing no pre-trends before adoption and a sharp decline immediately thereafter.

Figure 4 Panel (b) plots the distribution of plagiarism rates in the post-enforcement sample, as measured by the CNKI algorithm. Vertical lines mark the typical degree-conferral cutoffs used by universities. The figure shows clear bunching just below these thresholds — consistent with CNKI’s status as the dominant plagiarism-detection tool nationwide and with some students strategically adjusting their work to meet formal requirements.

As discussed in previous sections, our findings on political selection and public-service behavior remain unchanged when we restrict the sample to periods in which students had no access to plagiarism-detection algorithms, indicating that these results are not driven by strategic responses to anti-plagiarism rules. Nevertheless, the presence of such strategic behavior raises a separate concern about the policies themselves: increased compliance with formal thresholds may not reflect substantive improvements in honesty. Accordingly, in the remainder of this section, we examine how these policies affect both political selection and judicial performance.

6.2 Impacts on Political Selection

To gauge the impacts of anti-plagiarism rules on political selection, we compare dissertation plagiarism rates of public officials and their classmates, both before and after the introduction of plagiarism-detection rules at the time of graduation.³¹

As reported in Table 6 Panel B, while anti-plagiarism rules significantly reduce the overall level of plagiarism, they do not generate systematic differential effects between students who enter public service and their classmates — i.e., adverse political selection persists even after the enforcement of anti-plagiarism rules. Put differently, although the enforcement of anti-plagiarism rules led more dissertations to fall below the university-specific thresholds required

³¹Specifically, we estimate: $Y_{icmt} = \alpha \cdot \overline{Treat}_{ct} + \beta \cdot Civil_i + \delta \cdot (Treat_{ct} \cdot Civil_i) + \lambda_c + \gamma_m + \eta_t + \epsilon_{icmt}$.

for degree conferral, individuals whose plagiarism rates still exceeded their institution’s cutoff — or who bunched just below it — remain significantly more likely to enter public service than peers with substantially lower rates. Column 4 confirms this pattern using the more restrictive design focusing on the “surprised cohorts.”

6.3 Impacts on Public Service Behavior

The limited impact of anti-plagiarism enforcement on political selection is consistent with the possibility that compliance is largely symbolic: while measured plagiarism rates decline, the underlying level of dishonesty among treated students remains unchanged, and it is this inherent dishonesty that drives political selection.

An alternative explanation is that compliance does cultivate more honest habits. In this case, although plagiarism continues to predict political selection even after anti-plagiarism enforcement, the overall reduction in plagiarism rates would still imply improved public service performance by fostering more honest behavior once individuals are in office.

To examine which case it is, in Table 6 Panel C we exploit the staggered rollout of anti-plagiarism rules to compare judges who were subject to anti-plagiarism enforcement in college with those who were not, within the same court and the same cohort.³² The results indicate that anti-plagiarism enforcement had a lasting effect on professional conduct: judges exposed to such policies display marginally lower favoritism toward powerful litigants and substantially higher ruling quality. Quantitatively, the magnitudes correspond to roughly 15-17% of the baseline effects of plagiarizing judges documented earlier, suggesting that academic integrity enforcement meaningfully — but only partially — mitigates unethical behavior in public service. These results remain robust for the “surprised cohorts” (Panel D), and Figure 4 Panels (c) and (d) show no pre-trends.

Taken together, these results suggest that although some compliance with anti-plagiarism policies may involve strategic gaming of the system, enforcement is not merely performative. Instead, it induces enduring changes in ethical behavior — effects more consistent with genuine treatment than with selection. We interpret this as evidence that strict enforcement of academic honesty standards can foster habits that carry over into long-term professional conduct.

It is worth noting that the modest behavioral change aligns with evidence from psychology research indicating that dishonesty is somewhat malleable in early life (Roberts and DelVecchio, 2000) and can shape one’s tolerance for future unethical behavior (Garrett et al., 2016). This corresponds to the modest reductions in later unethical conduct observed among individuals

³²Specifically, we estimate $Y_{icmut} = \alpha \cdot Treat_{ct} + \lambda_c + \gamma_m + \phi_u + \eta_t + \epsilon_{icmut}$, where u denotes courts. Standard errors are clustered at the court level.

exposed to academic honor codes in college. At the same time, prior evidence suggests that dishonesty is generally a highly stable trait over time (Ashton and Lee, 2007), consistent with the finding that only a limited share of judicial bias associated with plagiarism can be mitigated through anti-plagiarism enforcement.

7 Conclusion

In this paper, we construct a novel measure of dishonesty by applying newly available, advanced plagiarism-detection algorithms to more than half a million publicly available graduate dissertations in China. Linking this measure to responses from a survey of experienced professionals — where we elicit personality traits and ideological beliefs — we find a strong and robust correlation between plagiarism and cheating in incentivized tasks (Hanna and Wang, 2017; Barfort et al., 2019).

Utilizing this plagiarism measure, we document four sets of empirical results. First, we uncover significant adverse political selection. On the extensive margin, individuals who plagiarize are more likely than their classmates to enter public service; on the intensive margin, public officials with a plagiarism record are more likely to be promoted than their colleagues without such misconduct.

Second, we show that the presence of academically dishonest individuals in positions of power has important consequences for societal functioning. Focusing on the judiciary and exploiting quasi-random case assignments, we find that judges with plagiarism records issue more preferential rulings and face more appeals — patterns that disappear when trials are livestreamed. These results are consistent with dishonest judges being captured by powerful litigants when public scrutiny is low, a conjecture corroborated by subsequent corruption investigations.

Third, dishonesty further propagates through spillover effects. Among judges, junior judges mentored by senior colleagues who plagiarized their dissertations tend to converge toward their mentors' ruling patterns. Between judges and lawyers, plagiarizing lawyers become more effective when appearing before plagiarizing judges. Both patterns suggest that the impact of dishonesty in the public service extends beyond individual performance.

Fourth, examining the staggered rollout of anti-plagiarism rules across universities that adopted advanced detection tools, we find significant reductions in plagiarism rates, confirming that these rules were genuinely enforced. We find no effect on political selection, but modest reductions in judicial biases, suggesting potential habit-formation effects from the strict enforcement of academic honesty.

Taken together, this paper documents the prevalence of previously hidden academic

dishonesty in China and its far-reaching implications for the functioning of the public service. The exact mechanisms through which dishonesty influences political selection, public service performance, and spillover effects are beyond the scope of this paper but represent important questions for future research. Moreover, the approach of proxying academic honesty through systematic detection of dissertation plagiarism can be extended to other contexts — particularly those in which individuals are highly educated and honesty is expected to be paramount, such as accounting, medicine, or academia. We view these as promising directions for future inquiry.

References

Abeler, Johannes, Anke Becker, and Armin Falk, “Representative evidence on lying costs,” *Journal of Public Economics*, 2014, 113, 96–104.

Ahl, Björn, Lidong Cai, and Chao Xi, “Data-Driven Approaches to Studying Chinese Judicial Practice,” *China Review*, 2019, 19 (2), 1–14.

Ang, Geer, Yu Qin, Ya Tan, and Fan Zhang, “From Connections to Merit: Anti-Corruption Reform and Occupational Mobility in China’s Civil Service,” *The Economic Journal*, 2025, p. ueaf011.

Ashton, Michael C and Kibeom Lee, “Empirical, theoretical, and practical advantages of the HEXACO model of personality structure,” *Personality and social psychology review*, 2007, 11 (2), 150–166.

Avis, Eric, Claudio Ferraz, and Frederico Finan, “Do Government Audits Reduce Corruption? Estimating the Impacts of Exposing Corrupt Politicians,” *Journal of Political Economy*, 2018, 126 (5), 1912–1964.

Baker, George, Robert Gibbons, and Kevin J Murphy, “Subjective performance measures in optimal incentive contracts,” *The quarterly journal of economics*, 1994, 109 (4), 1125–1156.

Banuri, Sheheryar and Philip Keefer, “Pro-social motivation, effort and the call to public service,” *European Economic Review*, 2016, 83, 139–164.

Barfort, Sebastian, Nikolaj A Harmon, Frederik Hjorth, and Asmus Leth Olsen, “Sustaining honesty in public service: The role of selection,” *American Economic Journal: Economic Policy*, 2019, 11 (4), 96–123.

Bertrand, Marianne and Antoinette Schoar, “Managing with style: The effect of managers on firm policies,” *The Quarterly journal of economics*, 2003, 118 (4), 1169–1208.

—, **Simeon Djankov, Rema Hanna, and Sendhil Mullainathan**, “Obtaining a driver’s license in India: an experimental approach to studying corruption,” *The Quarterly Journal of Economics*, 2007, 122 (4), 1639–1676.

Besley, Timothy, “Political selection,” *Journal of Economic perspectives*, 2005, 19 (3), 43–60.

— and **Robin Burgess**, “The Political Economy of Government Responsiveness: Theory and Evidence from India,” *The Quarterly Journal of Economics*, 2002, 117 (4), 1415–1451.

—, **José G. Montalvo, and Marta Reynal-Querol**, “Do Educated Leaders Matter?,” *The Economic Journal*, 2011, 121 (554), F205–F227.

Bó, Ernesto Dal, Frederico Finan, and Martín A. Rossi, “Strengthening State Capabilities: The Role of Financial Incentives in the Call to Public Service,” *The Quarterly Journal of Economics*, 2013, 128 (3), 1169–1218.

—, **Pedro Dal Bó, and Jason Snyder**, “Political Dynasties,” *The Review of Economic Studies*, 2009, 76 (1), 115–142.

Brollo, Fernanda, Tommaso Nannicini, Roberto Perotti, and Guido Tabellini, “The Political Resource Curse,” *American Economic Review*, 2013, 103 (5), 1759–1796.

Buurman, Margaretha, Josse Delfgaauw, Robert Dur, and Seth Van den Bossche, “Public sector employees: Risk averse and altruistic?,” *Journal of Economic Behavior & Organization*, 2012, 83 (3), 279–291.

Caselli, Francesco and Massimo Morelli, “Bad politicians,” *Journal of public economics*, 2004, 88 (3-4), 759–782.

Casey, Katherine, Abdullah Kamara, and Niccolò Meriggi, “Titles vs. Names: How to Win Votes in Sierra Leone,” *The Quarterly Journal of Economics*, 2021.

Chen, Ting and James Kung, “Busting the ‘Princelings’: The Campaign against Corruption in China,” *The Quarterly Journal of Economics*, 2019, 134 (1), 185–226.

Colonnelli, Emanuele and Mounu Prem, “Corruption and Firms,” *The Review of Economic Studies*, 2022, 89 (2), 695–732.

—, —, and **Edoardo Teso**, “Patronage and selection in public sector organizations,” *American Economic Review*, 2020, 110 (10), 3071–3099.

de Janvry, Alain, Guojun He, Elisabeth Sadoulet, Shaoda Wang, and Qiong Zhang, “Subjective performance evaluation, influence activities, and bureaucratic work behavior: Evidence from China,” *American Economic Review*, 2023, 113 (3), 766–799.

Ferraz, Claudio and Frederico Finan, “Exposing Corrupt Politicians: The Effect of Brazil’s Publicly Released Audits on Electoral Outcomes,” *The Quarterly Journal of Economics*, 2008, 123 (2), 703–745.

— and —, “Electoral Accountability and Corruption: Evidence from the Audits of Local Governments,” *American Economic Review*, 2011, 101 (4), 1274–1311.

Fischbacher, Urs and Franziska Föllmi-Heusi, “Lies in disguise—an experimental study on cheating,” *Journal of the European Economic Association*, 2013, 11 (3), 525–547.

Fisman, Raymond and Jakob Svensson, “Are corruption and taxation really harmful to growth? Firm level evidence,” *Journal of development economics*, 2007, 83 (1), 63–75.

— and Roberta Gatti, “Decentralization and corruption: evidence across countries,” *Journal of public economics*, 2002, 83 (3), 325–345.

— , Zhi Li, Vito Mollica, Yongxiang Wang, and Nianhang Xu, “Personal Probity and Corporate Malfeasance: Evidence from China’s “Doctor-Leaders”,” 2025. Working Paper.

Gagliarducci, Stefano and Tommaso Nannicini, “Do Better Paid Politicians Perform Better? Disentangling Incentives from Selection,” *Journal of the European Economic Association*, 2013, 11 (2), 369–398.

Garrett, Neil, Stephanie C Lazzaro, Dan Ariely, and Tali Sharot, “The brain adapts to dishonesty,” *Nature neuroscience*, 2016, 19 (12), 1727–1732.

Gneezy, Uri, “Deception: The role of consequences,” *American Economic Review*, 2005, 95 (1), 384–394.

Hanna, Rema and Shing-Yi Wang, “Dishonesty and selection into public service: Evidence from India,” *American Economic Journal: Economic Policy*, 2017, 9 (3), 262–290.

Jacob, Brian A and Steven D Levitt, “Rotten apples: An investigation of the prevalence and predictors of teacher cheating,” *The Quarterly Journal of Economics*, 2003, 118 (3), 843–877.

Jones, Benjamin F and Benjamin A Olken, “Do leaders matter? National leadership and growth since World War II,” *The Quarterly Journal of Economics*, 2005, 120 (3), 835–864.

Knack, Stephen and Philip Keefer, “Does social capital have an economic payoff? A cross-country investigation,” *The Quarterly journal of economics*, 1997, 112 (4), 1251–1288.

Li, Hongbin, Lingsheng Meng, Yanyan Xiong, and Sinclair L. Cook, “Job Preferences and Outcomes for China’s College Graduates,” *The China Quarterly*, June 2024, 258, 529–547.

Liebman, Benjamin L, Margaret E Roberts, Rachel E Stern, and Alice Z Wang, “Mass digitization of Chinese court decisions: How to use text as data in the field of Chinese law,” *Journal of Law and Courts*, 2020, 8 (2), 177–201.

Liu, Ernest, Yi Lu, Wenwei Peng, and Shaoda Wang, “Court Capture, Local Protectionism, and Economic Integration: Evidence from China,” *NBER Working Paper*, 2023, 30432.

—, —, —, and —, “Court Capture, Local Protectionism, and Economic Integration: Evidence from China,” Technical Report, National Bureau of Economic Research 2023.

Liu, John Zhuang and Xueyao Li, “Legal techniques for rationalizing biased judicial decisions: Evidence from experiments with real judges,” *Journal of Empirical Legal Studies*, 2019, 16 (3), 630–670.

—, **Wenwei Peng, Shaoda Wang, and Daniel Xu**, “The law and economics of lawyers: Evidence from the revolving door in China’s judicial system,” Technical Report, National Bureau of Economic Research 2025.

Liu, Zhuang, “Does reason writing reduce decision bias? Experimental evidence from judges in China,” *The Journal of Legal Studies*, 2018, 47 (1), 83–118.

Mauro, Paolo, “Corruption and growth,” *The quarterly journal of economics*, 1995, 110 (3), 681–712.

Ng, Kwai Hang and Xin He, *Embedded courts: Judicial decision-making in China*, Cambridge University Press, 2017.

Olken, Benjamin A, “Monitoring corruption: evidence from a field experiment in Indonesia,” *Journal of political Economy*, 2007, 115 (2), 200–249.

Olsen, Asmus Leth, Frederik Hjorth, Nikolaj Harmon, and Sebastian Barfort, “Behavioral dishonesty in the public sector,” *Journal of Public Administration Research and Theory*, 2019, 29 (4), 572–590.

Qin, Bei, David Strömberg, and Yanhui Wu, “Why Does China Allow Free Social Media? Protests Versus Surveillance and Propaganda,” *Journal of Economic Perspectives*, 2017, 31 (1), 117–140.

Roberts, Brent W and Wendy F DelVecchio, “The rank-order consistency of personality traits from childhood to old age: a quantitative review of longitudinal studies,” *Psychological bulletin*, 2000, 126 (1), 3.

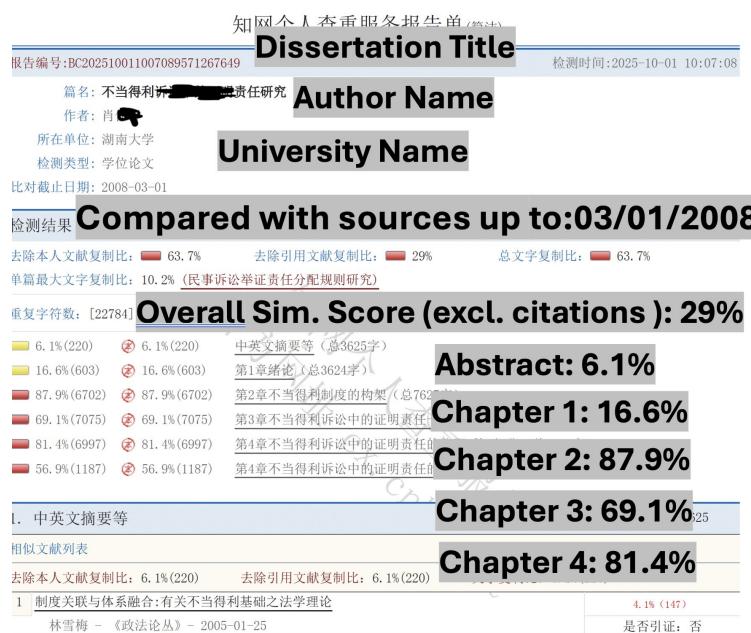
Sen, Amartya, “Democracy as a Universal Value,” *Journal of Democracy*, 1999, 10 (3), 3–17.

Shleifer, Andrei and Robert W Vishny, “Corruption,” *The quarterly journal of economics*, 1993, 108 (3), 599–617.

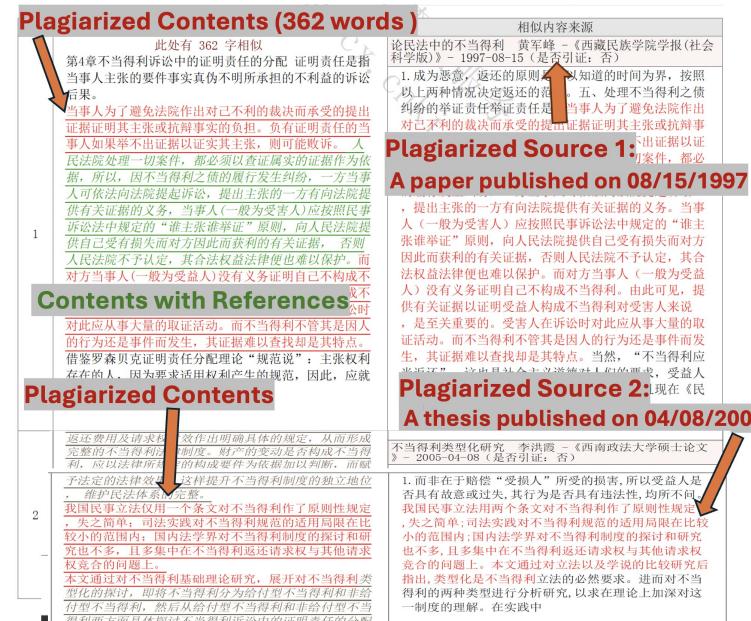
— and Robert Ward Vishny, *The grabbing hand: Government pathologies and their cures*, Harvard University Press, 1998.

Strömberg, David, “Radio’s Impact on Public Spending,” *The Quarterly Journal of Economics*, 2004, 119 (1), 189–221.

Sun, Liyang and Sarah Abraham, “Estimating dynamic treatment effects in event studies with heterogeneous treatment effects,” *Journal of Econometrics*, 2021, 225 (2), 175–199.

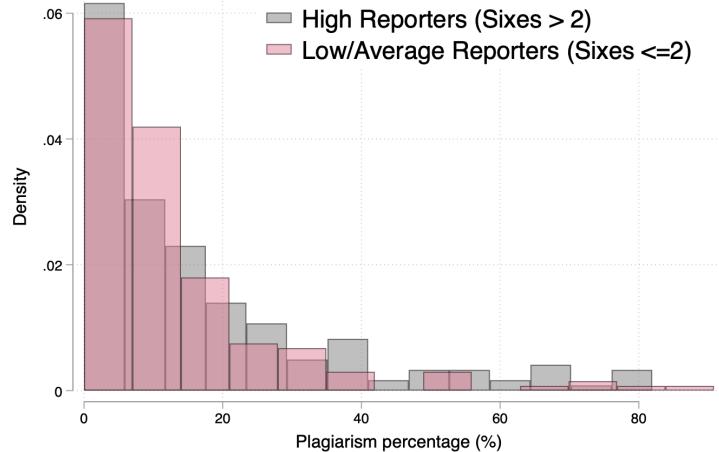

Svensson, Jakob, “Who must pay bribes and how much? Evidence from a cross section of firms,” *The quarterly journal of economics*, 2003, 118 (1), 207–230.

Weaver, Jeffrey, “Jobs for sale: Corruption and misallocation in hiring,” *American Economic Review*, 2021, 111 (10), 3093–3122.


Xu, Guo, “The costs of patronage: Evidence from the british empire,” *American Economic Review*, 2018, 108 (11), 3170–3198.

Zhang, Yuxia and John Zhuang Liu, “The rise of the Chinese judiciary and its limits: administrative litigation in the reform period,” *The China Quarterly*, 2025, 262, 330–351.

Figures and Tables


(a) Overall Plagiarism Indicators

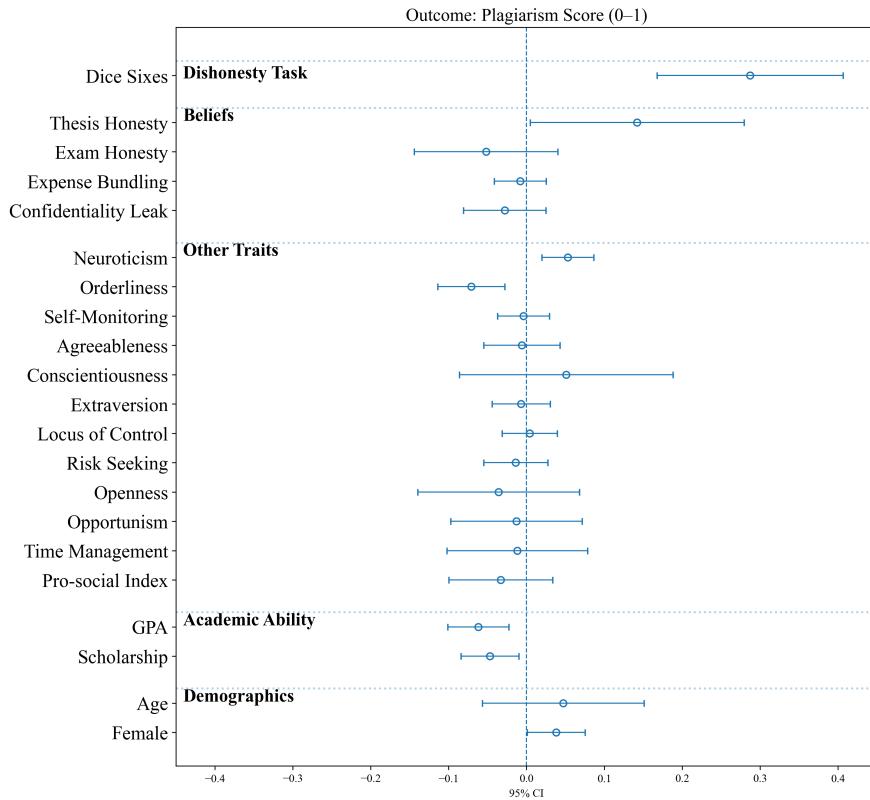
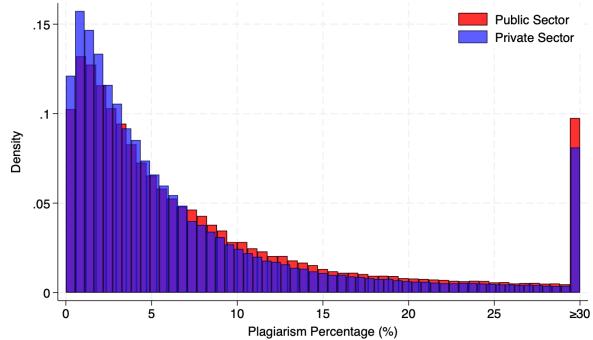

(b) Paragraph-level Plagiarism Breakdown

Figure 1: Sample Plagiarism Reports

Notes: This figure provides examples of plagiarism reports generated by CNKI AMLC. Panel (a) shows the overall summary, including the total plagiarism rate, the maximum single-source overlap, and overlap rates that exclude references or the author's own prior work. Panel (b) presents the paragraph-level analysis, where overlapping text is color-coded (red for suspected plagiarism, green for cited material) and linked to the original sources. This paragraph-level comparison allows us to distinguish minor overlap in background material from serious misconduct in core analytical sections.


(a) Distribution of Plagiarism by Dice Outcome

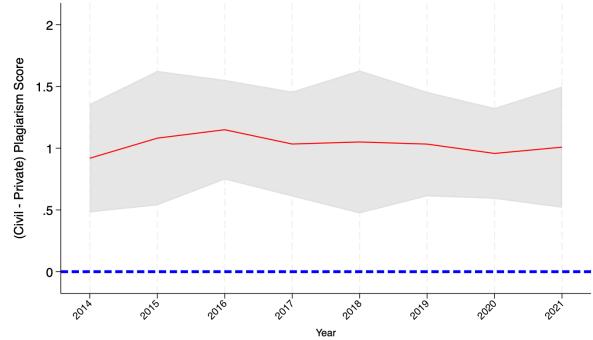

(b) Correlates of Dissertation Plagiarism

Figure 2: Survey Validation: Plagiarism Correlates with Dishonest Behavior and Personality

Notes: This figure shows the correlations between dissertation plagiarism rates and individual traits elicited from our survey of 387 experienced legal professionals. Panel (a) displays histograms of the dissertation plagiarism score for two groups in the survey: “High Reporters” (those who reported more than two sixes in an incentivized dice-rolling task) and “Low/Average Reporters” (those who reported two or fewer). The distribution for High Reporters is noticeably shifted to the right, indicating that individuals who plagiarized their dissertations years earlier continue to exhibit higher levels of dishonest behavior today. Panel (b) plots the estimated coefficients and 95% confidence intervals from regressions where the dependent variable is the normalized dissertation plagiarism score (0–1) and the independent variables are the individual traits elicited in our survey. Each point represents the estimated association between the listed trait and the plagiarism score. Appendix Table A.1 provides the corresponding regression results in greater detail.

(a) Overall Plagiarism Distribution

(b) Plagiarism Gap Over Time

Figure 3: Adverse Selection into the Public Sector on Plagiarism

Notes: This figure presents descriptive evidence of adverse selection on academic dishonesty in the public sector. Panel (a) shows the full distribution of plagiarism scores, illustrating that individuals who enter the public service have a distribution that is shifted to the right compared to their private sector peers. Panel (b) plots the difference in mean plagiarism scores between the two groups by graduation year, demonstrating that the gap has persisted over the last decade.

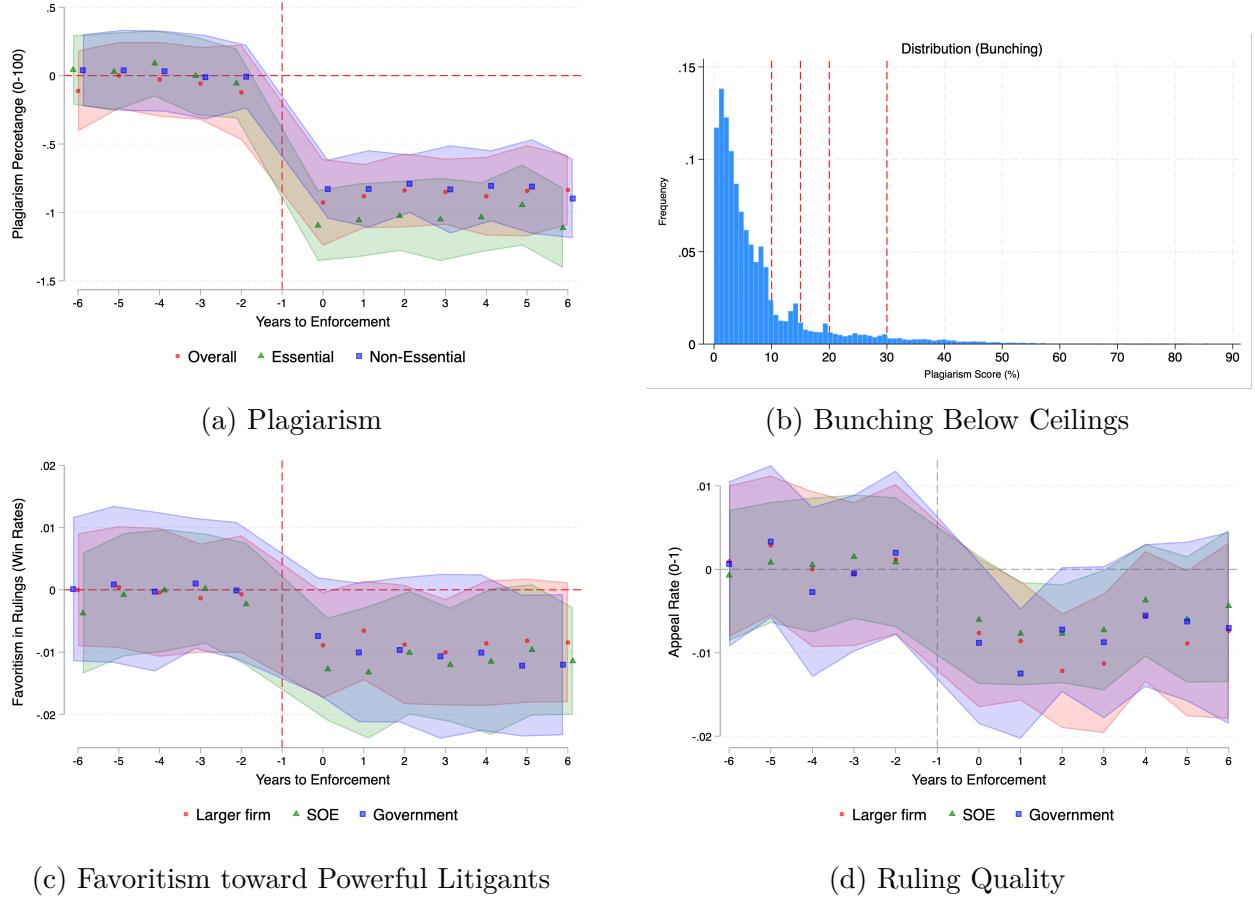


Figure 4: Event Study: Anti-Plagiarism Enforcement, Plagiarism and Judicial Behavior

Notes: This figure presents event-study estimates of the impacts of university-level anti-plagiarism enforcement. Panel (a) shows a sharp and sustained reduction in measured plagiarism following the adoption of plagiarism-detection systems, using the year prior to enforcement ($t = -1$) as the baseline. Panel (b) shows bunching below the official plagiarism ceilings. Panels (c) and (d) track the long-run effects of exposure to these policies on the professional behavior of judges who graduated before and after enforcement. Shaded areas denote 95% confidence intervals. All event studies are estimated following the approach suggested by [Sun and Abraham \(2021\)](#).

Table 1: Summary Statistics for Dissertation Plagiarism and Individual Characteristics

Variable	Obs	Mean	Std. Dev.	Min	Max
Panel A. Plagiarism Rates					
All dissertations	512,366	7.68	9.57	0	86.36
Public-sector authors	127,784	8.48	10.06	0	85.82
Private-sector authors	384,582	7.41	9.38	0	86.36
Elite university graduate	149,255	7.20	9.37	0	86.36
Non-elite university graduate	363,111	7.87	9.64	0	85.82
Female	274,440	7.76	9.59	0	85.52
Male	237,926	7.57	9.54	0	86.36
Essential sections	512,366	7.47	9.32	0	85.13
Non-essential sections	512,366	7.74	9.66	0	88.61
Panel B. Individual Characteristics					
Han ethnicity	512,366	0.967	0.178	0	1
National scholarship	512,366	0.0033	0.057	0	1
Elite university	512,366	0.291	0.454	0	1
Female	512,366	0.536	0.499	0	1
Public-sector officials	512,366	0.249	0.433	0	1

Notes: This table summarizes the key variables used in the analysis. Panel A reports statistics on plagiarism rates in graduate dissertations processed through CNKI's plagiarism-detection system. The outcome variable is the overall duplication rate against the pre-existing corpus — excluding proper citations and the author's own prior publications — measured on a 0–100 scale. “Public-sector authors” are individuals who later entered civil service, judicial positions, or other government employment; “private-sector authors” include all others. “Elite university” refers to institutions classified under the national “Double First-Class” initiative or the historical 985/211 programs at the time of graduation. “Essential sections” correspond to a dissertation’s core analytical sections (main argument, methods, and results), while “non-essential sections” include background and literature review. All rates are expressed as percentages. Panel B reports descriptive statistics for individual-level covariates used in subsequent regressions. All indicators are binary variables equal to one for individuals satisfying the stated condition (e.g., female, Han ethnicity, national-scholarship recipient, or employed in the public sector) and zero otherwise.

Table 2: Plagiarism and Selection into the Public Sector

<i>Panel A Plagiarism and Selection into the Public Sector</i>					
	(1)	(2)	(3)	(4)	(5)
	Overall Plagiarism Score	Non-Essential Sections	Essential Sections	Elite Universities	Non-Elite Universities
Public Sector	1.201*** (0.0601)	1.141*** (0.112)	1.261*** (0.125)	1.046*** (0.101)	1.387*** (0.134)
% to mean	15.60%	14.82%	16.38%	14.93%	17.23%
Observations	511,021	511,021	511,021	120,881	390,103
R-squared	0.234	0.207	0.245	0.233	0.196
<i>Panel B Heterogeneity by Positions</i>					
	Judges	Tax Officials	Law Enforcement	Custom Officials	Other Admin
Public Sector	1.234*** (0.147)	2.005*** (0.125)	1.120*** (0.125)	1.981*** (0.140)	0.945*** (0.136)
% to mean	16.03%	25.96%	14.52%	24.65%	12.27%
Observations	190,141	305,451	279,551	341,567	401,515
R-squared	0.195	0.207	0.266	0.208	0.214
Degree FE	Y	Y	Y	Y	Y
Major FE	Y	Y	Y	Y	Y
Cohort FE	Y	Y	Y	Y	Y
University FE	Y	Y	Y	Y	Y
Individual characteristics	Y	Y	Y	Y	Y

Notes: This table examines the relationship between academic dishonesty and selection into public-sector employment. Panel A estimates the association between plagiarism scores and the likelihood of entering the public sector. Column (1) uses the overall plagiarism score; Columns (2)–(3) separately consider plagiarism detected in non-essential (literature review and background) versus essential (main argument, methods, and results) sections of the thesis; Columns (4)–(5) split the sample by graduates from elite and non-elite universities, respectively. Panel B explores heterogeneity across public-sector positions, including judges, tax officials, law enforcement officers, customs officials, and other administrative personnel. For each column, we define the control group as other students from the same set of majors eligible for positions in the corresponding public service domain. All regressions control for individual characteristics (gender, ethnicity, and scholarship status) and include fixed effects for degree type, major, graduation cohort, and university. Standard errors clustered at the university level are reported below the coefficients. * significant at 10% ** significant at 5% *** significant at 1%.

Table 3: Plagiarism and Career Advancement in the Public Sector

	(1)	(2)	(3)	(4)	(5)
	Civil Servants (All)	Tax Officials	Customs Officials	Judges	
	Rank (1-27, 27 = highest)			Rank (1-5, 5 = highest)	
Plagiarizing Officials	0.213*** (0.020)	0.401*** (0.034)	0.369*** (0.036)	0.271*** (0.026)	0.223*** (0.025)
% to control mean	9%	15%	12%	9%	7%
Unit-Entry-Year FE	Y	Y	Y	Y	Y
Individual Characteristics	Y	Y	Y	Y	Y
Performance Controls	N	N	N	N	Y
Observations	60,113	10,104	8,925	61,024	61,024
R-squared	0.081	0.084	0.091	0.096	0.105

Notes: This table reports regressions of officials' career advancement—measured by their rank after the first five years in office—on the plagiarism indicator and covariates across different public-sector samples. Columns (1)–(3) correspond to civil servants (all, tax, and customs officials). Column (4) reports analogous results for judges with comprehensive performance controls, including caseload handled, share of major cases (proxied by the monetary size of claims), number of junior judges mentored, and appeal rates. Standard errors clustered at the unit or court level are in parentheses. Significant at 10%; ** significant at 5%; *** significant at 1%.

Table 4: Judges' Academic Honesty and Judicial Decisions - Favoritism and Quality

	(1)	(2)	(3)	(4)	(5)	(6)
<i>Panel A Favoritism in Rulings</i>						
	Larger Firm's Win Rate			SOE's Win Rate		Gov's Win Rate
	Full Sample	Livestreamed	Full Sample	Livestreamed	Full Sample	Livestreamed
Plagiarizing Judge	0.041*** (0.011)	0.006 (0.012)	0.056*** (0.015)	0.005 (0.004)	0.045*** (0.017)	— —
	First Stage					
Caseload	-0.061*** (0.004)	-0.071*** (0.006)	-0.076*** (0.006)	-0.056*** (0.005)	-0.041*** (0.004)	— —
F-statistics	225	139	144	125	105	—
% in mean	12%	1%	15%	1%	10%	—
Observations	1,759,415	227,415	150,251	33,147	251,356	—
R-squared	0.197	0.179	0.291	0.240	0.157	—
<i>Panel B Quality of Rulings</i>						
	Appeal Rate		Discretionary Provisions		Length of Judicial Reasoning	
	Full Sample	Livestreamed	Full Sample	Livestreamed	Full Sample	Livestreamed
Plagiarizing Judge	0.024*** (0.006)	0.003 (0.014)	0.068*** (0.011)	0.001 (0.006)	-36.985*** (9.475)	6.035 (10.414)
F-statistics	201	120	201	120	201	120
% in mean	18%	0%	19%	0%	7%	1%
Observations	1,735,195	230,714	1,735,195	230,714	1,735,195	230,714
R-squared	0.161	0.152	0.131	0.095	0.271	0.295
Year-Week FE	Y	Y	Y	Y	Y	Y
Dispute Type	Y	Y	Y	Y	Y	Y
Judges' Cohort FE	Y	Y	Y	Y	Y	Y
Judges' University FE	Y	Y	Y	Y	Y	Y
Court-Domain FE	Y	Y	Y	Y	Y	Y

Notes: This table reports two-stage least squares (2SLS) estimates of the effects of being assigned to a plagiarizing judge. Panel A examines favoritism in rulings, where the dependent variables capture the win rate of (i) a larger firm, (ii) a state-owned enterprise (SOE), or (iii) a government litigant. Columns (1), (3), and (5) report estimates using the full sample, while Columns (2), (4), and (6) restrict the analysis to livestreamed trials. Column (6) in Panel A is omitted because no administrative lawsuits against government defendants were livestreamed. Panel B assesses the quality of rulings, using three outcome measures: (i) Appeal Rate (Columns 1–2), (ii) Discretionary Legal Provisions Usage (Columns 3–4), and (iii) Length of Judicial Reasoning (Columns 5–6). All regressions control for court-by-domain fixed effects, year–week fixed effects, dispute type, judges' cohort, and university fixed effects. Standard errors clustered at the court-year level are reported in parentheses below the coefficients. Significant at 10%; ** significant at 5%; *** significant at 1%.

Table 5: Judges' Academic Honesty and Spillover Effects in the Judicial System

	(1)	(2)	(3)
<i>Panel A Spillover to Junior Judges</i>			
	Larger Firm's Win Rate	SOE's Win Rate	Gov's Win Rate
Mentored by Plagiarizing Judges	0.015** (0.009)	0.021** (0.011)	0.019* (0.010)
Junior Judges' Plagiarism	0.026*** (0.008)	0.024*** (0.007)	0.030*** (0.008)
First Stage F-statistics	85	81	130
Observations	370,457	60,9845	102,067
R-squared	0.156	0.145	0.156
Year-Week FE	Y	Y	Y
Dispute Type	Y	Y	Y
Court-Domain FE	Y	Y	Y
<i>Panel B Spillover to Plagiarizing Lawyers</i>			
	Client's Win Rate		
	Contract Dispute	Non-Contract Dispute	Administrative Disputes
Plagiarizing Judge × Plagiarizing Lawyer	0.023** (0.009)	0.021** (0.011)	0.016* (0.010)
Plagiarizing Judge	-0.013* (0.008)	-0.009 (0.011)	-0.010 (0.008)
Plagiarizing Lawyer	0.007 (0.009)	0.009 (0.014)	-0.006 (0.010)
% to Outcome mean	8%	6%	5%
First Stage F-statistics	106	96	88
Observations	111,546	61,667	74,081
R-squared	0.147	0.101	0.106
Year-Week FE	Y	Y	Y
Litigant Type	Y	Y	Y
Court-Domain FE	Y	Y	Y

Notes: This table examines the spillover effects in the judicial system. Panel A investigates whether exposure to dishonest mentors affects the behavior of junior judges. The dependent variable is an indicator for whether powerful litigants — large firms, state owned enterprises (SOEs), or government — win the case. Panel B examines whether dishonest judges differentially affect the performance of dishonest lawyers. The dependent variable is the client's win rate. "Dishonest Judge" denotes the instrumented dishonesty indicator of the presiding judge, and "Dishonest Lawyer" indicates whether the lawyer's dishonesty score exceeds the sample median. "Litigant Type" controls for each party's identity — whether it is a connected firm, SOE, or government. Standard errors clustered at the court-year level are reported below the coefficients. * significant at 10% ** significant at 5% *** significant at 1%.

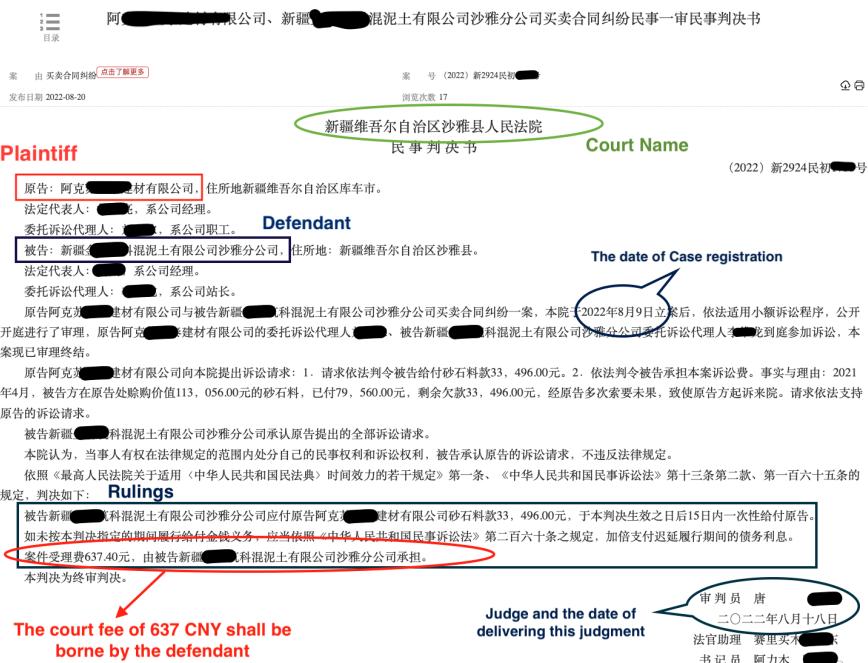
Table 6: Anti-Plagiarism Enforcement, Plagiarism, Political Selection, and Public Service Behavior

<i>Panel A Anti-Plagiarism Policy and Plagiarism Behaviors</i>				
	(1)	(2)	(3)	(4)
	Overall Plagiarism Score	Non-Essential Sections	Essential Sections	"Surprised" Cohort
Treated Graduates	-0.881*** (0.144)	-0.842*** (0.145)	-1.041*** (0.135)	-0.973*** (0.160)
Fixed Effects	Degree, Major, Cohort, University FEs			
Observations	307,981	307,981	307,981	230,815
R-squared	0.201	0.191	0.202	0.173
<i>Panel B Anti-Plagiarism Policy and Selection into the Public Sector</i>				
	Overall Plagiarism Score	Non-Essential Sections	Essential Sections	"Surprised" Cohort
Public Sector x Treated	0.041 (0.093)	0.031 (0.104)	0.047 (0.105)	0.006 (0.855)
Treated Graduates	-0.906*** (0.131)	-0.811*** (0.097)	-1.026*** (0.103)	-1.201*** (0.133)
Public Sector	1.077*** (0.110)	1.062*** (0.104)	1.128*** (0.096)	1.108*** (0.104)
Fixed Effects	Degree, Major, Cohort, University FEs			
Observations	307,981	307,981	307,981	230,815
R-squared	0.193	0.206	0.215	0.167
<i>Panel C Anti-Plagiarism Policy, Favoritism, and Quality in Rulings</i>				
	Larger Firm's Win Rate	SOE's Win Rate	Gov's Win Rate	Appeal Rate
Treated Judges	-0.007* (0.004)	-0.010** (0.005)	-0.007 (0.005)	-0.008** (0.004)
Fixed Effects	Year-Week, Court-Domain, Dispute Type, Cohort, University FEs			
Observations	590,415	74,465	120,567	689,130
R-squared	0.192	0.151	0.145	0.156
<i>Panel D Favoritism and Quality in Rulings - Surprised Cohort</i>				
	Larger Firm's Win Rate	SOE's Win Rate	Gov's Win Rate	Appeal Rate
Treated Judges	-0.008** (0.004)	-0.013** (0.006)	-0.012* (0.007)	-0.007 (0.006)
Fixed Effects	Year-Week, Court-Domain, Dispute Type, Cohort, University FEs			
Observations	376,155	43,140	81,285	341,091
R-squared	0.146	0.139	0.157	0.104

Notes: This table examines the effects of university-level anti-plagiarism policies on plagiarism rates, selection into the public sector, and subsequent public service behavior. Panel A analyzes how enforcement influences plagiarism rates. Panel B tests whether the policy affects adverse selection into public service. Panels C and D evaluate longer-run effects on judicial behavior. Standard errors clustered at the university or court level are reported in parentheses. * significant at 10% ** significant at 5% *** significant at 1%.

ONLINE APPENDIX

Appendix Contents


A Appendix Figures and Tables	A.2
A.1 Appendix Figures	A.2
A.2 Appendix Tables	A.8
B CNKI Plagiarism-Detection Algorithm	A.15
C Matching Dissertation to Public Officials	A.18
C.1 Matching to civil servants	A.18
C.2 Matching to judges	A.19
D Survey Design and Questionnaire	A.21
D.1 Survey Design	A.21
D.2 Questionnaire	A.21
D.3 Dice Game for Measuring Honesty	A.28
D.4 Mapping Survey Questions to Personality Traits and Honesty Beliefs	A.29
E CJO Data	A.32
F Promotion and Corruption of Public Officials	A.34
F.1 Promotion	A.34
F.1.1 Sources of Data	A.34
F.1.2 Mapping Official Titles to Rankings	A.34
F.2 Corruption	A.37

A Appendix Figures and Tables

A.1 Appendix Figures

(a) Frontpage of the China Judgements Online Website

(b) Sample Court Judgement

Figure A.1: China Judgements Online Website and An Example of Court Judgement

Notes: Panel (a) shows the homepage of China Judgements Online, the official national database for court judgments in China. Panel (b) presents an annotated example of a civil judgment from the database. The annotations identify key structural elements of the document, including the plaintiff, the defendant, the judge(s), the court's name, the final rulings, the court fee allocation, and the date the judgment was delivered.

深圳海关2021年考录公务员拟录用人员公示

来源: 国家公务员局 [2021年05月31日]

分享到:

(原标题: 深圳海关2021年度拟录用公务员公示公告)

根据2021年度中央机关及其直属机构考试录用公务员工作有关要求, 经过笔试、面试、体检和考察等程序, 确定谭尚等222人为深圳海关拟录用公务员, 现予以公示。公示期间如有问题, 请向深圳海关反映。

公示时间: 2021年5月31日至6月4日 (5个工作日)

监督电话: 0755-84398368

联系地址: 广东省深圳市福田区深南大道2006号深圳

附件

深圳海关2021年度拟录用公务员名单								
序号	拟录用职位及代码	姓名	性别	准考证号	学历	毕业院校	工作单位	备注
23	监管四级主办及以下(四) (300110001004)	叶■■■	男	125■■■■■03	研究生 (硕士)	中国医科大学	无	应届毕业生
24	监管四级主办及以下(四) (300110001004)	冯■■■	男	125■■■■■22	研究生 (硕士)	南京医科大学	无	应届毕业生
25	监管四级主办及以下(四) (300110001004)	黄■■■	男	125■■■■■25	研究生 (硕士)	南昌大学	无	应届毕业生
26	监管四级主办及以下(四) (300110001004)	熊■■■	男	125■■■■■29	大学本科	井冈山大学	无	应届毕业生
27	监管四级主办及以下(四) (300110001004)	王■■■	女	125■■■■■30	大学本科	南方医科大学	无	应届毕业生
28	监管四级主办及以下(四) (300110001004)	苏■■■	女	125■■■■■11	大学本科	中山大学	无	应届毕业生
29	监管四级主办及以下(四) (300110001004)	杜■■■	男	125■■■■■11	大学本科	南方医科大学	无	应届毕业生

Figure A.2: Example of a Roster of Admitted Civil Servants

Notes: This figure provides an example of a roster for the Shenzhen Customs office, posted in 2021. As shown, these announcements contain rich individual-level information, including the recruit's name, gender, university, degree, and the specific work position they were admitted into.

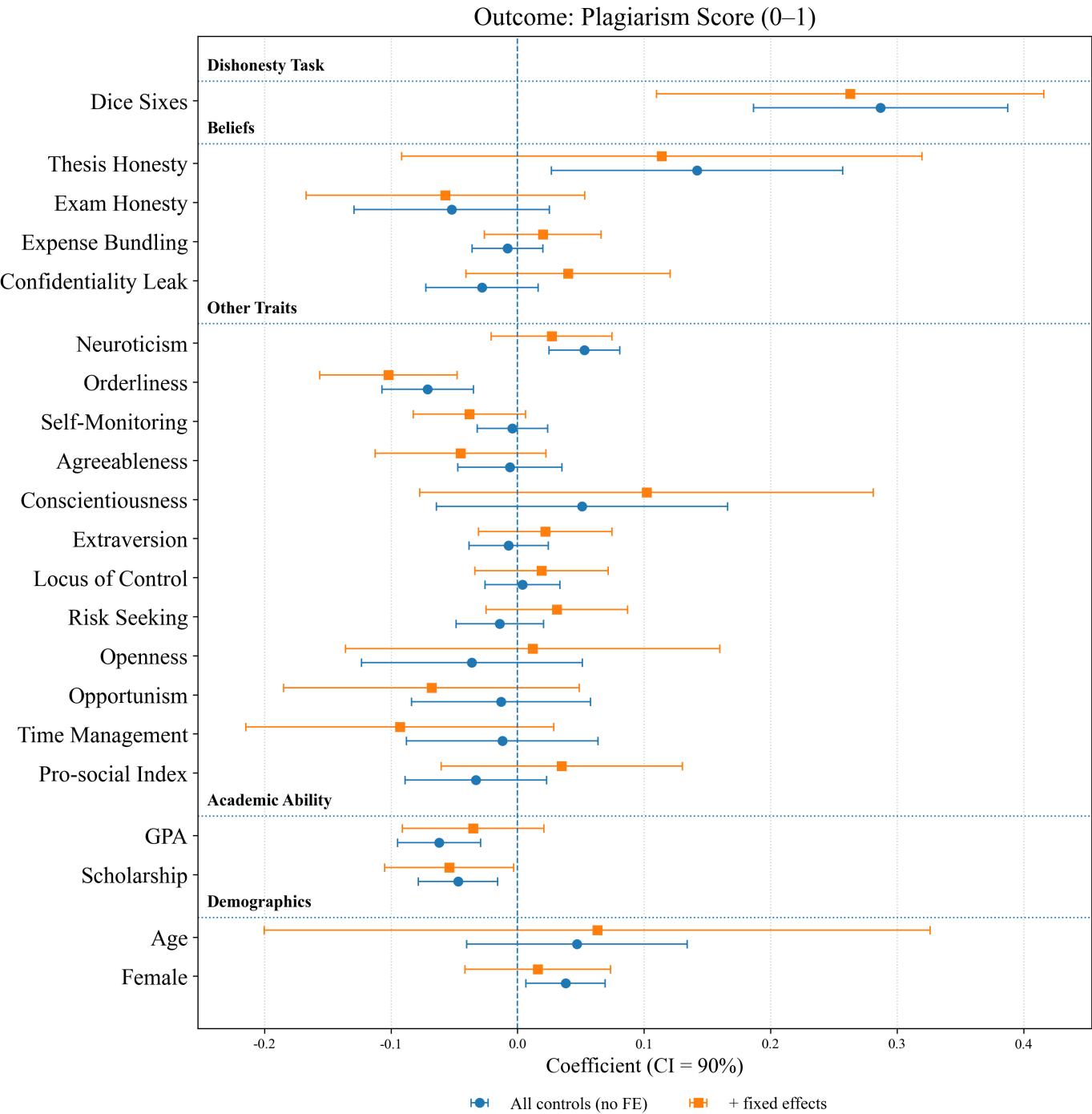


Figure A.3: Survey Validation: Predicting Dishonest Behavior with Plagiarism and Personality

Notes: This figure plots the estimated coefficients and 90% confidence intervals from the survey validation regressions reported in Table A.1. The dependent variable is the normalized dissertation plagiarism score (0-1), which measures academic dishonesty. Each point represents the estimated association between the listed variable and reported sixes. Circles denote estimates from Column (5), which includes controls for personality traits, honesty beliefs, demographics, and academic ability measures (GPA, scholarship awards), but no fixed effects. Squares denote estimates from Column (6), which further adds fixed effects for graduation cohort, degree, major, university, and current city.

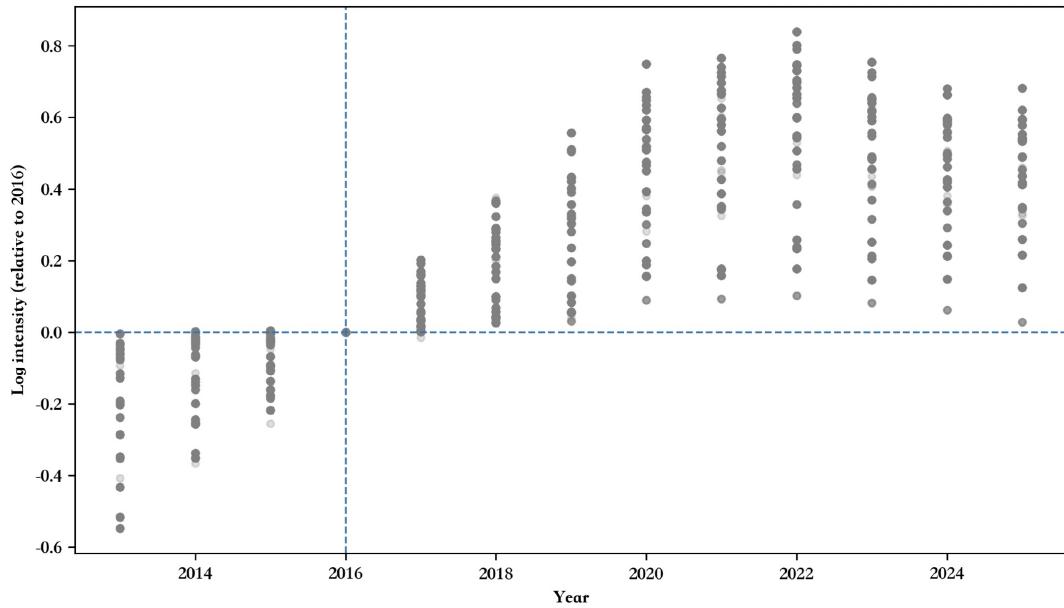


Figure A.4: Trends in Public Awareness: Baidu Search Index for “Plagiarism Detection”

Notes: This figure plots the evolution of public interest in academic integrity using Baidu Search Index data. The dependent variable is the log search intensity for keywords associated with “plagiarism detection” (e.g., *lunwen chachong*), normalized relative to the 2016 level (denoted by the horizontal dashed line at zero). The vertical dashed line marks 2016, the year the Ministry of Education issued the *Measures for Preventing and Handling Academic Misconduct in Higher Education Institutions*. The trend indicates a structural break: search activity was consistently low prior to 2016, but the regulation triggered an immediate and sustained increase in awareness regarding academic misconduct.

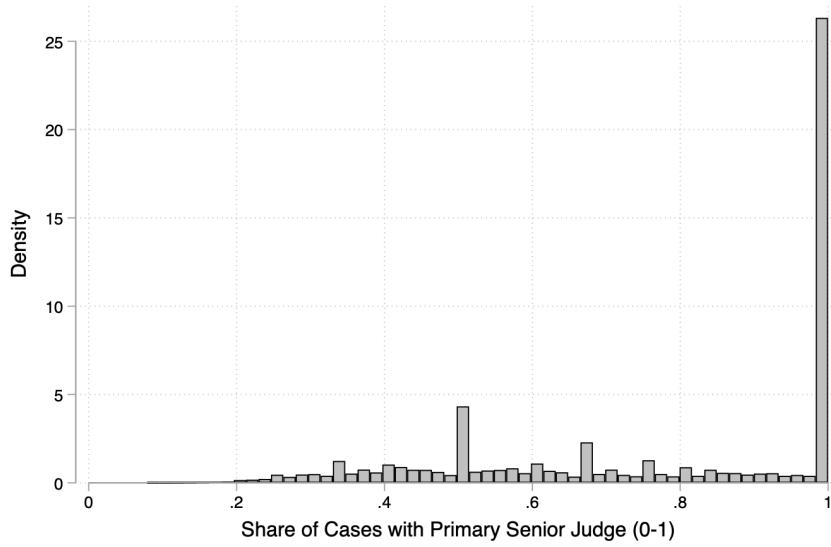
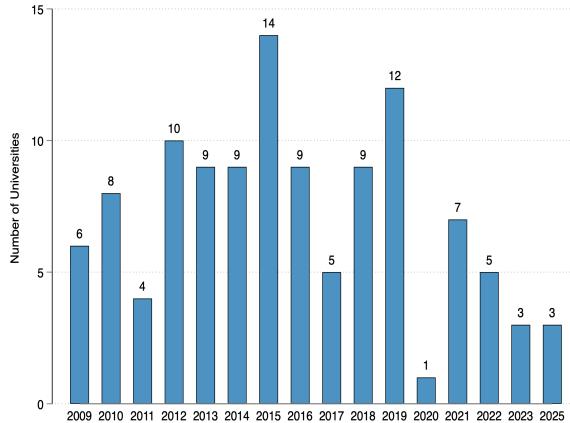
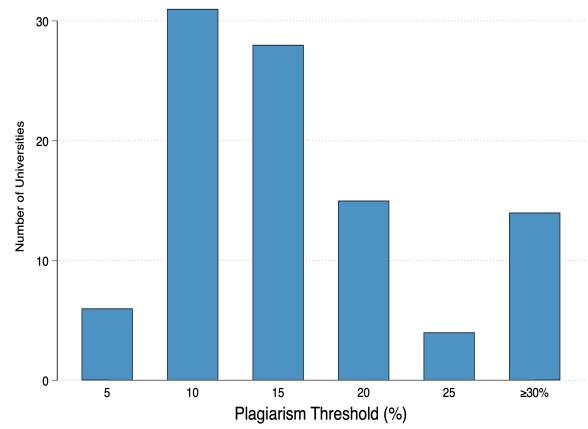
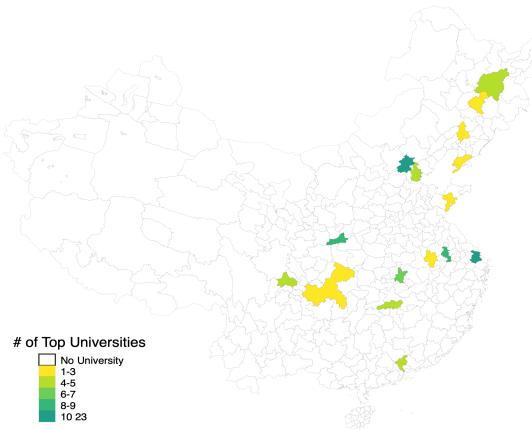




Figure A.5: Distribution of Junior-Senior Mentorship Pairing Stability


Notes: This histogram plots the distribution of pairing stability for junior judges. The variable on the x-axis, share of cases with primary senior judge, measures the share of a junior judge's total cases presided over by their single most frequent senior judge partner within the same court. A value of 1.0 indicates that a junior judge worked exclusively with one senior judge for all cases in the sample. The mean of this measure is 0.75, a high value that points to a very fixed arrangement, indicating that an average junior judge handles three-quarters of their caseload with their primary senior partner. This conclusion is reinforced by the pronounced mass at 1.0, which shows that a large proportion of junior judges work exclusively with one senior judge.

(a) Staggered Rollout of Policies Over Time

(b) Variation in Policy Intensity (Thresholds)

(c) Geographic Distribution of Universities

Figure A.6: Variation in Anti-Plagiarism Policy Enforcement Across Elite Universities

Notes: This figure provides details on the sample of 120 elite Chinese universities used in our difference-in-differences analysis, illustrating the variation we exploit in treatment timing. Panel (a) plots a histogram of the year in which each university in our sample first implemented a formal, algorithm-based anti-plagiarism policy for graduate dissertations. The figure clearly shows the staggered nature of the policy adoption. While a few universities began implementing these rules as early as 2009, the majority adopted them between 2011 and 2019. This staggered rollout provides the quasi-random variation in treatment timing that is essential for our difference-in-differences design. Panel (b) shows the distribution of the official plagiarism similarity score thresholds that universities set as the maximum allowable for degree conferral. There is significant **variation in the policy's intensity**. The most common thresholds are 10% and 15%, but some universities have much stricter (e.g., 5%) or more lenient ($\geq 30\%$) standards. Panel (c) maps the geographic distribution of these 120 elite universities at the prefecture level across China. The universities are concentrated in major economic and political centers, such as Beijing, Shanghai, and provincial capitals, but there is still broad geographic variation.

A.2 Appendix Tables

Table A.2: Balance Test for Survey Attrition

Characteristic	Respondents (N=387)	Non-Respondents (N=56)	Difference	P-value
Age	29.195	29.341	-0.146	0.691
Female	0.767	0.762	0.005	0.886
Top-tier University (Dummy)	0.214	0.207	0.007	0.835
Major City (Dummy)	0.651	0.661	-0.010	0.798
Scholarship (Dummy)	0.214	0.176	0.038	0.252
GPA (1= High GPA)	0.209	0.181	0.028	0.396
Master Degree (and above)	0.735	0.757	-0.022	0.554
Employment Status (0 = Unemployed)	0.521	0.535	-0.014	0.743

Notes: This table compares the means of observable characteristics between survey respondents and non-respondents to test for attrition bias. The “Difference” column reports the difference in means (Respondents - Non-Respondents). The “P-value” column reports the p-value from a two-sided t-test of the null hypothesis that this difference is zero. No differences are statistically significant at conventional levels.

Table A.1: Survey Validation: Predicting Dissertation Plagiarism with Honesty and Personality

	(1)	(2)	(3)	(4)	(5)	(6)
Dependent Variable: Dissertation Plagiarism Score (0-1)						
<i>A. Dishonesty measure</i>						
Dice Game “sixes”	0.270*** (0.063)	0.264*** (0.064)	0.303*** (0.062)	0.261*** (0.062)	0.287*** (0.061)	0.263*** (0.093)
<i>B. Honesty beliefs</i>						
Belief: Thesis Ghostwriter	0.141** (0.070)			0.142** (0.070)		0.114 (0.125)
Belief: Exam Cheating	-0.038 (0.048)			-0.052 (0.047)		-0.057 (0.067)
Situational: Expense	-0.001 (0.017)			-0.008 (0.017)		0.020 (0.028)
Situational: Info Leak	-0.016 (0.027)			-0.028 (0.027)		0.040 (0.049)
<i>C. Personality traits</i>						
Conscientiousness Index	0.094 (0.071)			0.051 (0.070)		0.102 (0.109)
Extraversion	-0.010 (0.020)			-0.007 (0.019)		0.022 (0.032)
Agreeableness	0.000 (0.025)			-0.006 (0.025)		-0.045 (0.041)
Neuroticism	0.049*** (0.017)			0.053*** (0.017)		0.027 (0.029)
Openness	-0.016 (0.054)			-0.036 (0.053)		0.012 (0.090)
Locus of Control (External)	-0.003 (0.018)			0.004 (0.018)		0.019 (0.032)
Self-Monitoring	-0.006 (0.017)			-0.004 (0.017)		-0.038 (0.027)
Risk Seeking	-0.008 (0.021)			-0.014 (0.021)		0.031 (0.034)
Orderliness	-0.093*** (0.022)			-0.071*** (0.022)		-0.102*** (0.033)
Opportunism Index	-0.005 (0.043)			-0.013 (0.043)		-0.068 (0.071)
Time Management Index	-0.038 (0.047)			-0.012 (0.046)		-0.093 (0.074)
Pro-social Index	-0.041 (0.034)			-0.033 (0.034)		0.035 (0.058)
<i>D. Academic ability</i>						
Scholarship (=1)		-0.050** (0.019)		-0.047** (0.019)		-0.054* (0.031)
GPA (Normalized)		-0.068*** (0.020)		-0.062*** (0.020)		-0.035 (0.034)
<i>E. Demographics</i>						
Age (Normalized)		0.033 (0.052)		0.047 (0.053)		0.063 (0.160)
Female (=1)		0.031 (0.019)		0.038* (0.019)		0.016 (0.035)
Fixed effects	No	No	No	No	No	Yes
Observations	387	387	387	387	387	258

Notes: All covariates are normalized to range between 0 and 1, making coefficients directly comparable in magnitude. The dependent variable is the dissertation plagiarism score between 0 and 1. Group labels reflect conceptual categories: (A) dishonesty measure; (B) honesty beliefs (hypothetical questions); (C) personality traits; (D) academic ability; and (E) demographics. Column (6) includes fixed effects for graduation cohort, degree, major, employment status, university, and city. Standard errors are reported in parentheses. * significant at 10%, ** significant at 5%, *** significant at 1%.

Table A.3: Robustness Check of Low-Awareness of Plagiarism Periods

	(1)	(2)	(3)
<i>Panel A Selection into Public Sectors</i>			
Public Sector	Overall Plagiarism Score	Non-Essential Sections	Essential Sections
	1.325*** (0.084)	1.204*** (0.121)	1.314*** (0.145)
Fixed Effects/Controls		University, Major, Cohort, Student characteristics	
Observations	131,567	131,567	131,567
R-squared	0.157	0.172	0.146
<i>Panel B Favoritism in Rulings</i>			
High-plagiarism Judge	Larger Firms	SOEs	Gov's
	0.036*** (0.012)	0.052* (0.032)	0.041** (0.017)
F-statistics	85	68	75
Fixed Effects		Court-domain, Week, Cohort, University	
Observations	828,404	80,561	310,677
R-squared	0.175	0.146	0.209
<i>Panel C Low Quality of Rulings</i>			
High-plagiarism Judge	Appeal Rate	Discretionary Provisions	Judicial Reasoning Length
	0.023*** (0.009)	0.054*** (0.015)	-30.985*** (10.056)
F-statistics	83	83	83
Fixed Effects		Court-domain, Week, Cohort, University	
Observations	891,072	891,072	891,072
R-squared	0.156	0.104	0.069

Notes: This table replicates the main results using the “early period” subsample (defined as years prior to 2016), during which public awareness of plagiarism and regulatory enforcement were low. Panel A reports OLS estimates of plagiarism scores on public sector selection. Panels B and C report 2SLS estimates of the effect of judge plagiarism on ruling outcomes (favoritism) and ruling quality (appeals, discretion, reasoning length). Controls include fixed effects for university, major, and cohort (Panel A), and court-domain, week, cohort, and university (Panels B and C). Standard errors clustered at the court level are in parentheses.
 * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table A.4: Balance Test of Case Characteristics Across Instrumented Judge Assignments

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Economic Stake (log)	Big Firm PLTF	Big Firm DFDT	SOE PLTF	SOE DFDT	Top Lawyer PLTF	Top Lawyer DFDT
Less-honest Judge	-0.064 (0.213)	0.013 (0.030)	-0.031 (0.056)	0.002 (0.041)	-0.014 (0.032)	0.015 (0.062)	0.026 (0.052)
First Stage F-statistics				195			
Year-Week FE	Y	Y	Y	Y	Y	Y	Y
Judges' Cohort FE	Y	Y	Y	Y	Y	Y	Y
Judges' University FE	Y	Y	Y	Y	Y	Y	Y
Court-Dispute FE	Y	Y	Y	Y	Y	Y	Y
Observations	1,709,415	1,691,502	1,698,134	1,704,145	1,702,167	1,700,240	1,696,228
R-squared	0.241	0.211	0.168	0.193	0.152	0.168	0.193

Notes: This table reports the results of placebo regressions testing whether the instrumented assignment to a less-honest (i.e., plagiarizing) judge is correlated with observable case characteristics determined prior to adjudication. Each column corresponds to a separate 2SLS regression in which the dependent variable is one pre-determined feature of the case: the logarithm of the economic stake of the dispute (column 1), indicator variables for whether the plaintiff or defendant is a large firm (columns 2-3), whether the plaintiff or defendant is a state-owned enterprise (columns 4-5), and whether the plaintiff or defendant is represented by a top-ranked lawyer (columns 6-7). Standard errors clustered at the court-dispute level are reported below the coefficients. * significant at 10% ** significant at 5% *** significant at 1%.

Table A.5: Livestreaming Assignment, Case and Judge Characteristics

	(1)	(2)	(3)	(4)	(5)
	Dishonest Judges	Economic Stake (log)	Contract Dispute (=1)	Involving SOEs (=1)	Involving Large Firms (=1)
Livestreaming	-0.027 (0.105)	-0.008 (0.243)	0.035 (0.026)	-0.013 (0.010)	0.019 (0.024)
Year-Week FE	Y	Y	Y	Y	Y
Court FE	Y	Y	Y	Y	Y
Observations	1,709,415	1,709,415	1,709,415	1,709,415	1,709,415
R-squared	0.104	0.091	0.126	0.141	0.172

Notes: This table examines whether cases selected for livestreaming differ systematically from other cases. Across columns, we regress the livestreaming indicator on observable case and judge characteristics. Dependent variables include: (1) an indicator for whether the assigned judge is identified as dishonest (based on dissertation plagiarism); (2) the logarithm of the case's economic stake; (3) an indicator for whether the dispute is a contract case; and (4)-(5) indicators for whether the case involves a state-owned enterprise (SOE) or a large firm. All specifications control for week and court fixed effects. Standard errors, clustered at the court level, are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A.6: Dishonest Judges and Corruption Investigations

	(1)	(2)
	Corruption Investigation (=1)	
Dishonest Judge	0.007*** (0.002)	0.006*** (0.002)
Outcome mean		0.036
Judges' Characteristics	N	Y
Entry Year FE	Y	Y
University FE	Y	Y
Court FE	Y	Y
Year FE	Y	Y
Observations	109,405	109,405
R-squared	0.179	0.184

Notes: This table examines the relationship between judges' dishonesty and corruption investigations. The dependent variable is a binary indicator equal to one if Judge i is being investigated for corruption in year t . All regressions include comprehensive performance controls: caseload handled, share of major cases (proxied by the monetary size of claims), number of junior judges mentored, and appeal rates. Each regression also includes entry year, university, court, and calendar year fixed effects, ensuring comparisons occur within similar institutional and temporal contexts. Across all specifications, standard errors are clustered at the court level and reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A.7: No Sorting on Honesty between Junior and Senior Judges

(1)	
Junior Judge's Honesty	
Senior Judge's Honesty	0.018 (0.012)
Outcome mean	12.21%
Senior Judge Expertise Type	Y
Junior Judges' Cohort FE	Y
Junior Judges' University FE	Y
Court FE	Y
Observations	46,368
R-squared	0.213

Notes: Standard errors clustered at the court level are reported below the coefficients. * significant at 10% ** significant at 5% *** significant at 1%.

B CNKI Plagiarism-Detection Algorithm

Our primary measure of academic dishonesty is derived from the *Academic Misconduct Literature Check System* (AMLC, version 5.3), developed by CNKI. AMLC is the dominant tool used by Chinese universities for detecting plagiarism in master’s and doctoral dissertations. This appendix details its corpus, detection technologies, diagnostic indicators, and limitations.

Table A.8 summarizes the system’s technical features. The corpus provides comprehensive coverage of both academic literature and other materials — such as government reports, dissertations, conference proceedings, and datasets — produced outside traditional publishing channels, thereby reducing opportunities to plagiarize from non-academic sources. The system’s layered detection technologies extend beyond verbatim matching to identify paraphrased or translated passages, as well as content embedded in non-traditional formats such as tables, figures, and code.

Table A.8: Key Features of CNKI’s AMLC (v5.3) Plagiarism-Detection System

Dimension	Description
Reference Corpus	Comprehensive coverage including: China Academic Journals, Books, Master’s and Doctoral Dissertations, Conference Papers, Newspapers, Patents, Standards, Encyclopedias, Web Content, Institutional Repositories, Work Reports, Political Reports, and Project Proposals.
Detection Technologies	(i) String matching for verbatim copying; (ii) N-gram fingerprinting to capture paraphrasing and synonym substitution; (iii) Vector-space models (TF-IDF and semantic similarity) to detect structural resemblance; (iv) Cross-language recognition (Chinese–English translations); (v) Knowledge-unit recognition for tables, figures, equations, and code fragments.

The AMLC plagiarism-detection report provides a standardized set of diagnostic indicators. Appendix Figure 1 illustrates a sample report. The main indicators are:

1. **Overall Similarity Index (总文字复制比):** the share of repeated characters in the total character count of the submitted document.
2. **Similarity Excluding References (去除引用文献复制比):** recalculated ratio after excluding content identified as formal citations.

3. **Similarity Excluding References and Author’s Own Work (去除本人文献复制比):** on top of excluding content identified as formal citations, recalculated ratio after excluding overlap with the author’s other publications or dissertations.
4. **Maximum Single-Source Similarity (单篇最大文字复制比):** the highest proportion of overlap with any single source in the corpus.
5. **Rounding Rule:** similarity ratios are reported to one decimal place. A reported 0.0% indicates either no detected overlap or overlap too minor to be meaningful.

In our analysis, we use the Similarity Excluding References and Author’s Own Work as our baseline measure since it provides the most accurate assessment.

The reports are highly granular and interpretable. At the paragraph level, the system pinpoints each overlapping segment and links it to the original source, allowing evaluators to see not only *what* was copied but also *from where*. This granularity is crucial: it enables evaluators to distinguish relatively minor overlaps in background or literature review sections from serious misconduct in core analytical sections. To further enhance accuracy, the system employs a clear color-coded scheme: **red text** highlights overlapping passages classified as potential plagiarism; **green text** marks properly cited quotations; and **brown-gray text** identifies overlap with the author’s own prior work, automatically detected through metadata and name matching. This design minimizes false positives by separating legitimate citation practices and self-referencing from actual plagiarism. Reports are also generated conditional on the *detection type* (e.g., master’s vs. doctoral thesis), the *corpus cut-off date*, and other user-selected parameters, ensuring comparability across institutions and cohorts.

Despite its comprehensiveness, AMLC is not infallible. Detection remains constrained by the coverage of its corpus and cannot capture ghostwriting or material outside CNKI’s databases. Some evasion strategies remain effective, though increasingly limited.

A new frontier of challenge arises from large language models (LLMs). Since the release of GPT-3.0 in 2020 – and especially following the surge of adoption in 2022, students can generate semantically novel, plagiarism-free text that evades similarity-based detection algorithms. Current countermeasures adopted by universities — stylometric analysis, watermarking, and adversarial AI detection — remain in their infancy, and the “arms race” between generative models and detection tools is likely to intensify. These LLM-related challenges do not affect the interpretation of our findings in this paper, however, since our study period predates the widespread adoption of LLMs.

In sum, AMLC v5.3 represents one of the most advanced plagiarism-detection systems globally, combining wide corpus coverage with layered detection technologies. For the purposes of this study, it provides a valid and scalable measure of academic dishonesty at the dissertation

level.

C Matching Dissertation to Public Officials

C.1 Matching to civil servants

Our analysis of political selection relies on two types of publicly available administrative records mandated by Chinese law: rosters of newly admitted public servants and announcements of official promotions.

Recruitment Rosters The public disclosure of recruitment information is mandated by China's 《中华人民共和国公务员法》(Civil Servant Law) and the 《公务员录用规定(试行)》(Civil Servant Recruitment Regulations). These regulations require that all proposed hires (拟录用人员) for government positions be publicly announced to ensure fairness, transparency, and to allow for public supervision.

Figure A.2 provides an example of such a roster for the Shenzhen Customs office, posted in 2021. As shown, these announcements contain rich individual-level information, including the recruit's name (姓名), gender (性别), college (毕业院校), degree (学历), and the specific work position (录用职位) they were admitted into.

We systematically collected these publicly available rosters for all government positions included in the National Civil Service Examination from 2014 to 2022. The detailed information on these rosters, particularly the full name and college, allows us to execute a high-quality match with the CNKI dissertation database, which contains each author's name, college, major, and graduation year. This matching process, described in Section 4, enables us to link an individual's pre-career academic record to their entry into the public sector, forming the basis of our analysis on the extensive margin of political selection.

Matching Flowchart and Procedure Figure A.7 illustrates the step-by-step procedure for matching the rosters of 347,531 successful NCSE candidates to the universe of 6 million graduate dissertations in the CNKI database. The process is as follows:

1. Initial Match: We perform an initial match based on an individual's full Chinese name and their listed college from the recruitment roster.
2. Disambiguation and Filtering: We apply a series of filters to ensure high-quality, one-to-one matches:
 - Temporal Consistency: The matched dissertation's graduation year must precede the year of the civil service exam.

- Common Name Exclusion: To mitigate false positives, our baseline specification excludes matches involving names within the top 5% of frequency.
- Uniqueness Requirement: If a single candidate could be matched to multiple plausible dissertations, the observation is conservatively excluded.

3. Final Sample: This procedure results in our final matched sample of 60,201 civil servants.

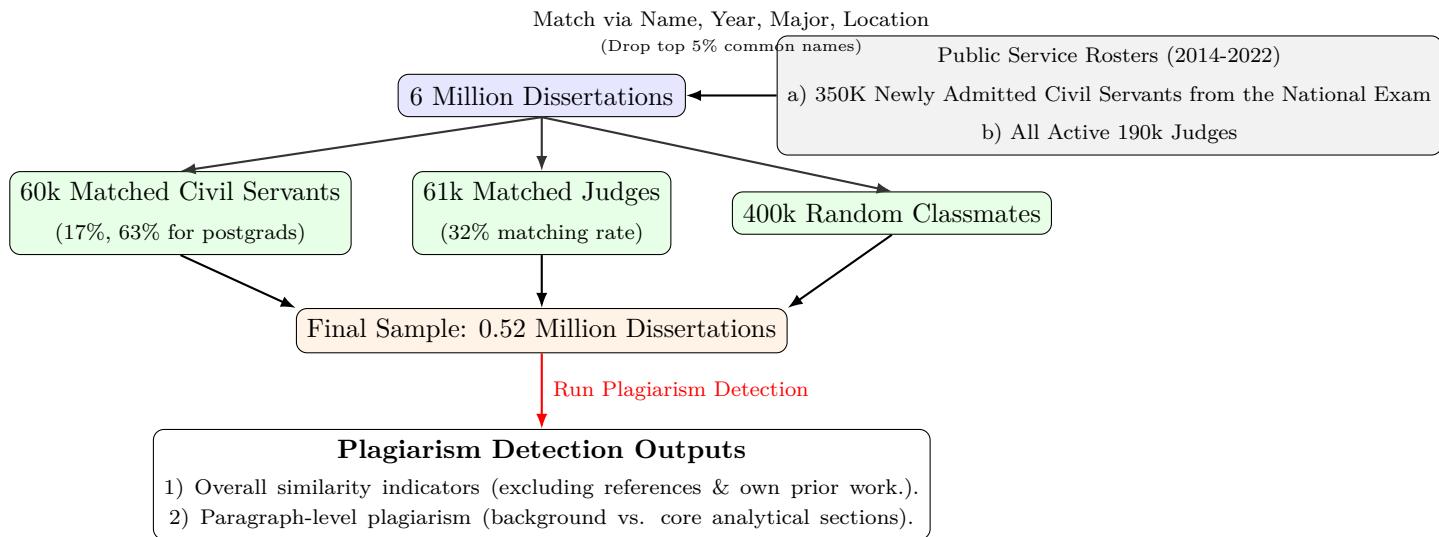


Figure A.7: Data Linking and Sample Construction Flowchart

To ensure our results are not sensitive to the specific cutoff for common names, we conduct a sensitivity analysis. We re-run the entire matching process and our main regressions using different exclusion thresholds (e.g., top 1%, 10%). As shown in Appendix Table A.9, our main findings remain robust across these specifications.

Table A.9: Sensitivity of Matched Sample Size and Key Estimates to Common Name Exclusion Thresholds

C.2 Matching to judges

We apply the same general matching procedure described above to link the roster of 190,871 judges (constructed from court verdicts) to their dissertations.

Validation Checks To validate the accuracy of our automated matching algorithm for this sample, we perform a check using a hand-collected set of “notable” judges with publicly

available biographies (e.g., court presidents, senior judges with profiles on Baidu Encyclopedia). For this “ground truth” sample, we can manually verify their educational background. We find a very high match rate (over 95%) and accuracy for this validation set, which increases our confidence in the quality of the matches for the broader sample of judges used in our analysis.

D Survey Design and Questionnaire

D.1 Survey Design

To examine whether past instances of plagiarism are associated with long-term personality traits — including current levels of integrity — we conducted an incentivized survey in collaboration with a research institute in China during its recruitment process. The institute was hiring legal professionals for a senior product manager role focused on developing large language models for legal applications. The primary responsibilities of these positions included participating in or leading legal research teams and collaborating with technical teams on the development of legal artificial intelligence systems.

Applicants were required to hold a master’s degree or higher and were recommended to have at least 3–5 years of relevant work experience. Preference was given to candidates with experience in judicial organs, government agencies, law firms, corporate legal departments, legal technology companies, or academic research institutes. As part of the application process, candidates were asked to upload their master’s or doctoral dissertations for evaluation of their research abilities, which we later used to detect instances of pre-graduation plagiarism.

After completing their basic information online, applicants were invited to participate in a questionnaire designed to measure their personality traits. They were informed that participation was entirely voluntary and that their responses would remain strictly confidential, used solely for academic research, and would neither be shared with the hiring firm nor affect their application outcomes.

In the survey, we elicited applicants’ honesty levels along with other personality traits, such as openness, conscientiousness, extraversion, agreeableness, and neuroticism. Below, we reproduce the full survey module with English translations.

D.2 Questionnaire

This section details the questions asked to respondents to elicit their personal traits. For each question, the original Chinese text is provided, followed by its English translation.

1. **原始问题:** 在与他人交流时, 您认为哪种做法更能促进有效沟通?

English: When communicating with others, which approach do you think better promotes effective communication?

label= A. 根据对方的反馈调整自己的表达方式.

A. Adjusting my expression based on the other person’s feedback.

label= B. 坚持信息的清晰与完整性.

B. Adhering to the clarity and completeness of the information.

2. **原始问题:** 在物品管理上, 您认为哪种做法更有助于日常运作?

English: In terms of managing items, which practice do you find more helpful for daily operations?

label= A. 将工作用品与个人物品分别存放.

A. Storing work supplies and personal items separately.

label= B. 将常用物品集中存放以提高取用便捷性.

B. Storing frequently used items together to improve accessibility.

3. **原始问题:** 关于报销出差期间的零散交通费, 您更认同哪种做法?

English: Regarding reimbursement for small transport costs during business trips, which approach do you agree with more?

label= A. 严格按照实际发生的金额进行报销, 确保每一笔都有据可循。

A. Strictly reimburse according to actual spending, ensuring documentation for every item.

label= B. 在公司规定的额度内, 将一些不易获取票据的零星花费 (如地铁、公交) 进行合理的合并申报, 是一种可接受的便捷方式。

B. Within policy limits, reasonably bundling small expenses (e.g., subway, bus) for reimbursement is acceptable.

4. **原始问题:** 在给予同事反馈时, 您认为哪种方式更重要?

English: When giving feedback to a colleague, which approach do you think is more important?

label= A. 优先考虑对方的感受, 以鼓励和肯定的方式提出建议.

A. Prioritize the other's feelings; offer encouraging, affirmative suggestions.

label= B. 优先考虑问题的清晰度, 直接客观地指出需要改进之处.

B. Prioritize clarity; directly and objectively point out needed improvements.

5. **原始问题:** 对于长远的职业发展, 您认为哪个是更根本的基础?

English: For long-term career development, which do you consider the more fundamental basis?

label= A. 个人的持续投入与能力提升.

A. Personal continuous effort and skill improvement.

label= B. 所处行业环境的机遇与趋势.

B. Opportunities and trends in the industry environment.

6. 原始问题: 遇到意见分歧时, 您觉得哪种方式更有助于问题解决?

English: When encountering a disagreement, which method do you think helps resolve it best?

label= A. 通过平和讨论寻找共同点.

A. Seek common ground through calm discussion.

label= B. 通过观点碰撞激发新思路.

B. Spark new ideas through clashes of viewpoints.

7. 原始问题: 为了确保任务按时完成, 您更倾向于哪种做法?

English: To ensure tasks are finished on time, which approach do you prefer?

label= A. 提前设定固定的内部截止日期并严格遵守.

A. Set internal deadlines in advance and follow them strictly.

label= B. 在执行中灵活调整时间安排以应对实际进展.

B. Flexibly adjust scheduling during execution.

8. 原始问题: 关于与不同类型的人打交道, 您更认同哪种方式?

English: Regarding dealing with different people, which approach do you agree with more?

label= A. 保持一贯沟通风格, 以真诚和一致性建立信任.

A. Maintain a consistent communication style to build trust.

label= B. 灵活调整互动方式以适应对方习惯.

B. Flexibly adjust interaction style to the other's habits.

9. 原始问题: 在团队会议中, 您通常的角色是?

English: In team meetings, what is your usual role?

label= A. 积极分享观点, 通过讨论激发和澄清想法.

A. Actively share views to stimulate and clarify ideas.

label= B. 先聆听观察, 再在成熟后表达观点.

B. Listen and observe first; speak after forming mature views.

10. 原始问题: 当需要评估一个前景不明但有潜力的新方案时, 您更倾向于?

English: When evaluating a promising but uncertain proposal, which do you prefer?

label= A. 识别并评估所有潜在风险，确保方案稳健.

A. Identify and assess all risks to ensure robustness.

label= B. 抓住核心价值和机会，推进中完善细节.

B. Seize core opportunities and refine details as you go.

11. **原始问题:** 如果您无意中得知一些尚未公开的公司正面信息（例如，一位同事可能被提拔），当该同事向您打探时，您会？

English: If you learn of positive but non-public company information (e.g., a colleague may be promoted) and that colleague asks, what do you do?

label= A. 表示不便评论，严格遵守保密原则.

A. Say you don't know or cannot comment; adhere to confidentiality.

label= B. 在不透露来源前提下给予积极暗示.

B. Give some positive hints without revealing sources.

12. **原始问题:** 在重复或流程化任务中，您更倾向于哪种做法？

English: For repetitive tasks, which approach do you prefer?

label= A. 严格按既定流程执行，不自行修改.

A. Follow established procedures strictly.

label= B. 识别改进点并适当优化流程.

B. Identify improvements and optimize processes.

13. **原始问题:** 当一个重要项目遇到突发阻碍时，您的第一反应通常是？

English: When an important project faces an obstacle, what is your first reaction?

label= A. 评估最坏情况，做好心理准备.

A. Assess worst-case scenario to be prepared.

label= B. 迅速聚焦“下一步”并找出第一个可行步骤.

B. Quickly focus on the next step and find a feasible action.

14. **原始问题:** 开始一天工作前，您更倾向于哪种准备方式？

English: Before starting the day, which prep do you prefer?

label= A. 制定详细当日计划（时间与步骤）.

A. Make a detailed plan with times and steps.

label= B. 列出最重要任务并留缓冲时间.

B. List key tasks and leave buffer time.

15. **原始问题:** 关于团队合作, 您更认同哪种观点?

English: Regarding teamwork, which do you agree with?

label= A. 团队成功是集体努力的结果.

A. Team success results from collective effort.

label= B. 明确个人贡献有助于激励与评估.

B. Clear individual contributions help motivate and evaluate.

16. **原始问题:** 关于意外机会, 您更倾向于?

English: Regarding unexpected opportunities, which is your preference?

label= A. 考量是否合乎规范.

A. Carefully consider if the opportunity complies with norms.

label= B. 倾向抓住能推进项目的机会.

B. Tend to seize opportunities that advance the project.

17. **原始问题:** 关于规则和原则, 您更认同哪种看法?

English: Regarding rules and principles, which view do you agree with?

label= A. 规则是公平与效率的基础, 应严格遵守.

A. Rules underpin fairness and efficiency and should be strictly followed.

label= B. 在特定情境下可灵活变通以达更高目标.

B. In some situations, rules can be flexibly adapted to achieve higher goals.

18. **原始问题:** 合作撰写的专业报告遗漏了您的署名, 您会如何处理?

English: If a jointly authored report omits your name, how would you respond?

label= A. 私下与负责人沟通并寻求补救.

A. Privately communicate with the lead and seek remedy.

label= B. 通过正式渠道 (如邮件抄送有关方) 确保问题得到解决.

B. Use formal channels (e.g., cc relevant parties) to resolve the issue.

19. **原始问题:** 团队准备提交的项目结果不理想, 您会如何呈现?

English: If your team's output is subpar, how would you present it?

label= A. 全面呈现所有数据并分析问题.

A. Present all data and an analysis of the issues.

label= B. 强调亮点并简要提及挑战.

B. Highlight strengths and briefly mention challenges.

20. 原始问题: 若知名作家被指大量借用他人内容, 您更倾向哪种观点?

English: If a famous author is accused of heavy borrowing, which view do you hold?

label= A. 若属实应公开说明并承担后果 (严肃抄袭) .

A. If true, this is serious plagiarism and should be publicly addressed.

label= B. 有责任澄清来源并诚恳面对.

B. Responsible to clarify sources and honestly confront oversights.

label= C. 文学有借鉴, 勿轻言抄袭.

C. Literary borrowing exists; avoid rushing to label as plagiarism.

label= D. 若作品受欢迎, 技术性归属问题不用过度聚焦.

D. If the work is impactful and popular, technical attribution is less central.

21. 原始问题: 关于高校学生花钱替考现象, 您更倾向哪种观点?

English: Regarding students paying others to take exams, which view do you hold?

label= A. 明确作弊, 应严肃处理.

A. Clearly cheating; should be dealt with seriously.

label= B. 虽不该, 但常因焦虑或不得已发生.

B. Not acceptable, but sometimes occurs due to anxiety/necessity.

label= C. 替考问题由制度压力导致, 不应惊讶.

C. Not surprising given institutional pressures.

label= D. 反思考试制度更重要.

D. Reflect on the exam system rather than single incidents.

22. 原始问题: 关于代写毕业论文现象, 您更倾向哪种观点?

English: Regarding outsourcing thesis writing, which view do you hold?

label= A. 学术不端, 应坚决抵制.

A. Academic misconduct; must be resisted.

label= B. 不鼓励, 但很多人因压力被诱导.

B. Discouraged, but real pressures push people to it.

label= C. 只是对制度的一种应付 (形式化) .

C. Mostly a coping response to formalities.

label= D. 关键是顺利毕业, 形式感居多.

D. As long as one graduates, technical authorship matters less.

23. 原始问题: 关于设计相似指控, 您更倾向哪种观点?

English: Regarding allegations of design copying, which view do you hold?

label= A. 若大量相似即为抄袭，应承担责任.
A. *Heavy similarity equals plagiarism; responsible.*

label= B. 模仿与原创界线难划，企业应声明。
B. *Imitation vs. originality is fuzzy; firms should clarify.*

label= C. 行业内参考普遍，消费者不太在意。
C. *Industry often references each other; consumers less concerned.*

label= D. 款式与价格更重要，原创性影响小。
D. *Style and price matter more than originality to many consumers.*

24. 原始问题: 关于科研数据造假，您更倾向哪种观点?

English: Regarding data falsification in research, which view do you hold?

label= A. 数据造假严重，应追责.
A. *Data fraud is serious and must be punished.*

label= B. 虽不当，但科研竞争带来压力值得关注。
B. *Wrong, but systemic pressures matter.*

label= C. 某些修饰有灰色地带，不应绝对化。
C. *Some data adjustments occupy a gray zone.*

label= D. 若不影响应用，技术性处理不一定大问题。
D. *If results don't affect applications, technical adjustments may be less problematic.*

25. 原始问题: 获得外部积极评价（如奖项、好评）对我非常重要。

English: Receiving positive external evaluations (awards, praise) is important to me.

Scale: Strongly disagree – Strongly agree (5-point Likert).

26. 原始问题: 与同行比较并取得领先，能给我带来很大成就感。

English: Comparing myself with peers and coming out ahead gives me a strong sense of achievement.

Scale: Strongly disagree – Strongly agree (5-point Likert).

27. 原始问题: 注意到一些同事共用未授权软件账号，若您也需要，您使用的可能性?

English: If colleagues share an unauthorized software account and you need it, how likely would you use it?

Scale: Very unlikely – Very likely (5-point).

28. 原始问题: 主管暗示跳过一份“形式化”合规登记以节省时间，您遵从的可能性?

English: Your supervisor suggests skipping a formal compliance registration to save time.

How likely would you comply?

Scale: No chance – Definitely (5-point).

29. **原始问题:** 假如没有法律或纪律后果, 您会在工作中选择隐瞒一个对自己不利但对客户有利的事实吗?

English: If no legal/disciplinary consequences, would you conceal an unfavorable fact for yourself but beneficial to a client?

Scale: No chance – Definitely (5-point).

30. **原始问题:** 回顾最近两周, 您感受到的工作负荷有多大?

English: Over the past two weeks, how heavy was your perceived workload?

Scale: Not at all – Extremely (5-point stress scale).

31. **原始问题:** 在多数工作日结束时, 您感受到的精力消耗程度如何?

English: At the end of most workdays, how much energy do you feel you have expended?

Scale: Not at all – Extremely (5-point).

32. **原始问题:** “大多数人在确信不会被抓到的情况下, 会为了个人利益说谎。”

English: “Most people would lie for personal gain if they were certain they would not be caught.”

Scale: Strongly disagree – Strongly agree (5-point).

33. **原始问题:** 在团队项目中, 即使我的贡献不是核心部分, 我仍会接受共同署名。

English: In team projects, even if my contribution isn't core I would accept shared authorship.

Scale: Never – Very frequently (5-point frequency).

D.3 Dice Game for Measuring Honesty

To measure respondents' honesty, we implemented a dice-rolling game with financial incentives. The design ensures that individual reports cannot be verified, thus creating an opportunity for dishonest reporting for personal gain.

The instructions presented to the participants were as follows:

- **引言(Introduction):** 为了感谢您完成本次问卷的填写, 我们将通过您指定的方式向您发放一笔现金奖励。奖励金额将由掷骰子的结果决定。您可以使用本页面提供的虚拟骰子, 或者使用您自己的实体骰子, 亦可通过任意线上掷骰子工具 (如微信表情) 完成此环节。

English Translation: *To thank you for completing this survey, we will issue you a cash reward through a method of your choice. The reward amount will be determined by*

the outcome of dice rolls. You may use the virtual dice provided on this page, your own physical dice, or any online dice-rolling tool (like a WeChat emoji) to complete this part.

- **奖励规则(Reward Rules):**

- **前9次掷骰:** 每掷出一个“6”，您将获得**5元** 现金奖励。

- First 9 rolls: For each "6" you roll, you will receive a **5 RMB** cash reward.*

- **第10次 (最后一次) 掷骰:** 如果掷出“6”，您将获得**20元** 现金奖励。

- The 10th (final) roll: If you roll a "6", you will receive a **20 RMB** cash reward.*

- **匿名性保证(Anonymity Guarantee):** 为确保匿名的有效性，系统绝不会记录或监督您每一次的掷骰结果。最终奖金完全取决于您在下方报告的结果。

- English Translation: To ensure effective anonymity, the system **will never** record or monitor your individual dice roll results. The final bonus depends **entirely** on the results you report below.*

After the rolling phase, participants were asked to self-report their results using the following two questions:

1. 在**前9次**掷骰中，您一共记录到几次“6”？(In the **first 9** rolls, how many "6"s did you record in total?)
2. 在**第10次 (最后一次)**掷骰中，您是否掷出了“6”？(In the **10th (final)** roll, did you roll a "6"?)

The total reward was calculated based on these self-reported answers. The difference between the reported outcomes and the statistically expected outcomes serves as our proxy for potential dishonesty.

D.4 Mapping Survey Questions to Personality Traits and Honesty Beliefs

The following table links each survey question to the psychological or behavioral trait it is designed to measure, using the question numbers from Section D.2.

Question Number(s)	Measured Trait	Description
Dice game	Honesty (Behavioral / Revealed)	Incentivized reporting task; the deviation of reported outcome from statistical expectation measures dishonest reporting.
3	Situational Expense (Honesty Belief)	Tolerance for bundling/over-claiming small expenses; measuring context-dependent financial honesty.
11	Situational Leak (Honesty Belief)	Likelihood to disclose non-public company information when asked; capturing conditional respect for confidentiality.
22	Thesis Ghostwriter (Honesty Belief)	Attitude toward outsourcing thesis writing (academic integrity).
21	Exam Cheating (Honesty Belief)	Attitude toward paying others to take exams (academic integrity).
20, 23, 24, 27,28, 29	Honesty (Attitudinal / Propensity)	Items about using an unauthorized software account, complying with supervisor to skip formality, concealing client-related facts (if no sanction), and accepting joint authorship; measuring willingness to break rules for private gain.
2, 7, 12, 14	Conscientiousness / Time Management / Orderliness	Items about separating work/personal items (2), setting internal deadlines (7), strict prioritization on multiple tasks (12), and daily planning (14) ; measuring conscientiousness (orderliness/time management).
9	Extraversion	Active sharing in meetings vs. quiet reflection; measuring extraversion (sociability/verbality).
4, 15	Agreeableness / Cooperation	Prioritizing others' feelings and teamwork orientation; measuring agreeableness and cooperativeness.

Question Number(s)	Measured Trait	Description
15, 13	Openness to Experience	Preference for seizing opportunities, integrating alternative perspectives, and valuing novel ideas; measuring openness and cognitive flexibility.
14 , 17	Opportunism	Emphasizing positives rather than full disclosure indicates opportunistic presentation (a form of impression management); Frequency of accepting joint authorship when contribution is marginal; measuring willingness to accept credit opportunistically.
7	Rule adherence / Flexibility	Preference for strict execution vs. optimizing processes; measuring captures rule-following vs. pragmatic flexibility. (It also relates to conscientiousness).
13	Neuroticism / Stress Reactivity	Perceived workload and energy depletion; measuring stress and emotional reactivity (neuroticism/emotional stability).
5	Locus of Control	Item on long-term career basis (personal effort vs. industry opportunities); measuring internal vs. external locus of control.
8	Self-Monitoring	Preference to adapt one's communication to others (flexibility); measuring self-monitoring.
10, 13	Risk Preference	Choices about evaluating uncertain proposals and accepting opportunities; measuring risk-seeking vs. cautious orientation.
25, 26	Achievement Motivation	Items about external praise (awards) and peer comparison; measuring achievement motivation / competitiveness.

Table A.10: Mapping Survey Questions to Personality Traits and Honesty Beliefs

E CJO Data

China Judgment Online (CJO) is the official publication platform for court decisions in China. While the publicized documents are widely considered authentic and reliable, a potential concern with the CJO is missing data — some judgment files are excluded without justification. This occurs for two main reasons: (1) in its early years, local courts may not have uploaded all cases (Ahl et al., 2019; Liebman et al., 2020); and (2) in 2021, the CJO reportedly removed a batch of “politically sensitive” criminal cases. However, these omissions are unlikely to affect the analysis in this paper, which focuses on civil and administrative cases.

The deletion issue primarily affects criminal cases, as reported by various media outlets¹. For civil cases, the missing rate is significantly lower. We cross-validated our data with national-level aggregate case numbers from the China Statistical Yearbooks (2015–2021) published by the National Bureau of Statistics. Appendix Figure A.8 shows that, as local courts improved their capacity to digitize case files, the missing rate for civil lawsuits fell below 10% in recent years.² A substantial portion of missing files likely pertains to exempted cases involving privacy or juveniles, leaving limited scope for strategic case omissions.³ Moreover, since 2018, we have been collecting CJO data daily, ensuring that cases deleted after publication, including the batch removed in 2021, remain in our sample.

The CJO is required to disclose the full universe of court verdicts, but disputes settled outside of court are not captured in this data. China’s settlement rate is far lower than that of the U.S., largely because litigation costs are significantly lower.

¹<https://www.rfa.org/mandarin/yataibaodao/renquanfazhi/ql-07162021074351.html>

²Many missing cases documented in earlier studies were backlogs caused by capacity constraints. These files were later digitized and added to the CJO. For example, Liebman et al. (2020) reported 45% of criminal judgment files missing in 2014; as of 2022, 60% of these have been added to the website and are included in our sample. Early digitization efforts became a key performance indicator (KPI) for local judges, incentivizing the resolution of backlogs.

³These missing rates align with alternative calculations based on gaps in case reference IDs, which follow a consecutive numbering system.

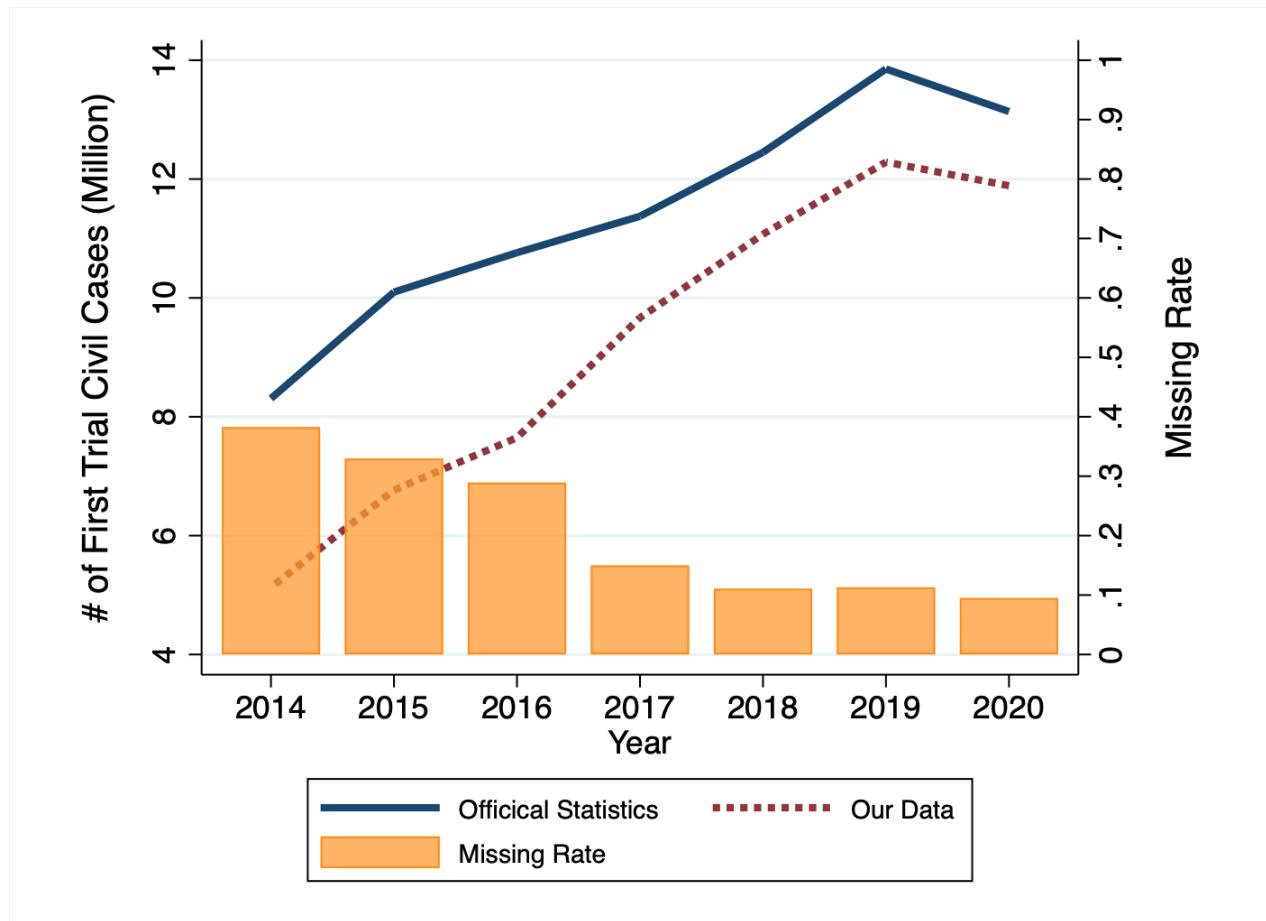


Figure A.8: Missing Rate of First Instance Court Decisions

Notes: This figure shows the missing rate of first-instance court decisions over time. Following the methodology of Liu et al. (2023b), the official number of first-instance civil cases is taken from the China Statistical Yearbook (2015–2021), published by the National Bureau of Statistics. The corresponding figures from our dataset are based on cases tried between 2014 and 2020 and released on China Judgments Online before August 2022.

F Promotion and Corruption of Public Officials

F.1 Promotion

F.1.1 Sources of Data

To study the intensive margin of political selection, we construct a panel dataset on the career trajectories of public officials by tracking promotions using two types of publicly available information, as illustrated in Figure A.9. The first source is formal, legally mandated promotion announcements (晋升公示), an example of which is shown in Panel (a). These notices provide details of personnel appointments (任) and promotions (晋升), such as promoting an official to “First Level Principal Staff Member” (一级主任科员). The second source is news reports published on official government websites and WeChat accounts. As shown in Panel (b), promotions are often revealed by the appearance of an official’s new title in coverage of their work.

We systematically search for officials by name, scrape their data from these sources, and parse text to extract their titles. By combining formal notices with text-based tracking, we build a detailed record of career progression. This allows us to measure promotion status and examine its correlation with an individual’s pre-career plagiarism score.

Figure A.9: Sources for Tracking Career Progression

F.1.2 Mapping Official Titles to Rankings

The core challenge in classifying an official’s rank from text is that a title like “Director” can correspond to different levels depending on the administrative context. To address this challenge, we combine keyword identification with contextual analysis to systematically map titles to the official ranking system.

Step 1: Create a Keyword Dictionary for Titles The civil service system uses two parallel hierarchies: Leadership Positions (职务层次) and non-leadership Ranks (职级). We first identify keywords for both.

A. Leadership Position (职务) Keywords These are traditional titles indicating a managerial role.

Common Title (称谓)	Formal Level (职务层次)	English Equivalent
司长 / 局长	厅局级正职	Director-General / Department Head
副司长 / 副局长	厅局级副职	Deputy Director-General
处长 / 县长 / 区长	县处级正职	Division Chief / County Magistrate
副处长 / 副县长	县处级副职	Deputy Division Chief
科长 / 镇长	乡科级正职	Section Chief / Township Head
副科长 / 副镇长	乡科级副职	Deputy Section Chief

B. Rank (职级) Keywords These non-leadership titles map directly to a level and are less context-dependent.

Rank Title (职级)	English Equivalent
一级/二级巡视员	Inspector (First/Second Class)
一级至四级调研员	Investigator (First to Fourth Class)
一级至四级主任科员	Principal Staff Member (First to Fourth Class)
一级/二级科员	Staff Member (First/Second Class)

Step 2: Identify the Government's Administrative Level The rank of a leadership title is determined by the level of the government unit. An official's work unit must be classified into one of these tiers:

1. National / Central Level
2. Provincial / Ministerial Level

3. Prefectural / Department Level
4. County / Division Level
5. Township / Section Level

Step 3: Apply the Mapping Logic

1. **If a Rank (职级) title is present, use it directly.** For example, a mention of a “二级巡视员” (Inspector Second Class) maps directly to numerical levels 15 to 10.
2. **If only a Leadership Position (职务) title is present, combine it with the administrative level.** For example:
 - A 司长 (Director) in a **National** ministry is a 厅局级正职 (Department Head).
 - A 处长 (Division Chief) in a **Provincial** department is a 县处级正职 (County Head Level).

Step 4: Convert Level Range to a Single Score The official sources provide a numerical range for each rank (Level 27 is lowest, Level 1 is highest). For analysis, we convert this range to a single number, typically the **midpoint** or the **minimum** level (the higher number, which represents the entry-point for that rank).

Example Application

- **Input Text:** “国家发改委基础设施发展司司长...” (Director of the Basic Infrastructure Development Department at the National Development and Reform Commission (NDRC) ...)
- **Step 1 (Keyword):** The title is 司长 (Director).
- **Step 2 (Admin Level):** The unit is 国家发改委 (NDRC), a **National/Central** ministry.
- **Step 3 (Mapping):** A 司长 at the national level corresponds to 厅局级正职 (Department Head Level).
- **Step 4 (Scoring):** This rank corresponds to numerical levels 13 to 8. Using the midpoint, the score is $(13 + 8)/2 = 10.5$.

F.2 Corruption

To provide corroborating evidence that our plagiarism measure captures a propensity for real-world misconduct, we construct a dataset of judges who faced disciplinary actions or corruption investigations. We collect this data from public bulletins on the official websites of China's anti-corruption bodies, namely the Commissions for Discipline Inspection (CDI) and the Supervisory Commissions at the provincial and prefectural levels.

These public announcements come in two primary forms, as illustrated in Figure A.10.

First, as shown in Panel (a), local disciplinary committees issue brief, formal notices announcing that an official is under investigation. This example from the Huangshi City Commission for Discipline Inspection states that a specific court official is "undergoing disciplinary review and supervisory investigation" for "suspected serious violations of discipline and law."

Second, as shown in Panel (b), the Central Commission for Discipline Inspection (CCDI)'s official newspaper often publishes detailed follow-up articles and case profiles after an investigation is concluded. This example profiles a judge who was tried for corruption, explicitly mentioning he was expelled from the party and public office for taking bribes.

By collecting these records and matching the names of the officials to the judges in our main dataset, we create a binary indicator for whether a judge was ever the subject of a formal corruption investigation. We use this as a key outcome variable to validate that a pre-career history of academic dishonesty is a significant predictor of high-stakes professional misconduct.

(a) Example of a Formal Investigation Notice from a Prefectural Disciplinary Committee.

(b) Example of a Detailed Case Profile from the CCDI's Official Newspaper.

Figure A.10: Sources for Data on Judicial Corruption Investigations