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Overview

PART 1. Some Challenges

• Nonlinear Model Solution

• Multiple Equilibria

• Extracting Latent States / Approximating the Likelihood Function

PART 2. Potential Compromises – An Example
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This Talk is Based on

ACS B. Aruoba, P. Cuba-Borda, and F. Schorfheide (2017): “Macroeconomic Dynamics Near
the ZLB: A Tale of Two Countries,” REStud, forthcoming.

HS E. Herbst and F. Schorfheide (2016): “Tempered Particle Filtering,” PIER Working Paper,
16-017.

SSY F. Schorfheide, D. Song, and A. Yaron (2017): “Identifying Long-Run Risks: A Bayesian
Mixed-Frequency Approach,” Manuscript, University of Pennsylvania.

These and other related papers are available on my webpage.
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Solving a Model with Occasionally-Binding Constraint (ACS)

• Nonlinearities are important for macro-financial modeling.

• Occasionally binding constraints, e.g., ZLB

• ZLB/ELB for nominal interest rates

Rt = max {1, R∗t eεR,t}

where

R∗t =

[
rπ∗

(
πt
π∗

)ψ1
(

Yt

γYt−1

)ψ2
]1−ρR

RρRt−1.

• Projection methods: ACS, Fernandez-Villaverde et al. (2015), Gust, Lopez-Salido and
Smith (2012), Judd, Maliar, and Maliar (2010), Maliar and Maliar (2015)
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Sample Decision Rules - Small-Scale NK Model for U.S. (ACS)
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Sketch of Solution Method (ACS)

• Consider decision rule π(St), states St = (Rt−1, y
∗
t−1, dt , gt , zt , εR,t , st)

• “Stitch” two functions for each decision rule (endogenous “seam”):

π(St ; Θ) =

 f 1π (St ; Θ) if R(St) > 1

f 2π (St ; Θ) if R(St) = 1

• f ij are linear combinations of a complete set Chebyshev polynomials up to 4th order, with
weights Θ.

• Choose Θ to minimize sum squared residuals from the Euler Equations over a grid of
points: Iterative process (ergodic-set method of Judd, Maliar and Maliar, 2010) the
combines states from ergodic simulation and filtering.
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Solution Grid - U.S. Data (ACS)
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Multiple Equilibria (ACS)

• Local indeterminacy in linearized rational expectations systems, e.g.,

yt =
1

θ
Et [yt+1] + εt , εt ∼ iid(0, 1), θ ∈ (0, 2].

• Multiple steady states:
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• Other non-unique nonlinear dynamics, e.g., work of Benhabib, Schmitt-Grohe, and Uribe.
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Multiple Equilibria (ACS)

How should one deal with multiplicity?

• Use theoretical arguments, e.g. learning, to eliminate some.

• Pick an interesting one and fit to data.

• Try to parameterize many/all of them and estimate.

• In macro we often introduce sunspot shocks:

• Markov switching vs. AR(p);

• exogenous vs. correlated with fundamentals
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Example: Two-Equation Model (ACS)

• Euler equation / Fisher equation:

R̂t = Et

[
−M̂t+1 + π̂t+1

]
.

• Monetary policy rule:

R̂t = max {− log (rπ∗) , ψπ̂t} .

• Exogenous real rate / discount factor:

M̂t+1 = ρM̂t + σεt+1.

• Combine to single inflation equation:

Et [π̂t+1] = max
{
− log (rπ∗) + ρM̂t , ψπ̂t + ρM̂t

}
.
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Various Equilibria in Simple Model (ACS)

Et [π̂t+1] = max
{
− log (rπ∗) + ρM̂t , ψπ̂t + ρM̂t

}
.

• Targeted-Inflation Eq. and Deflation Eq. solutions: π̂t = θ0 − θ1M̂t .

• Sunspot/Regime-switching solution: π̂
(s)
t = θ0(st)− θ1(st)M̂t ,

where st ∈ {0, 1} is a Markov process.

• Numerical example: π∗ = 1.005, ψ = 1.5, r = 1.005, σ = 0.0007, ρ = 0.9, p11 = 0.99 and
p00 = 0.95.

Table: Decision Rule Coefficients

Targeted-Inflation Equilibrium θ∗0 = 0 θ∗1 = 1.5

Deflation Equilibrium θD0 = −0.01 θD1 = −1

Sunspot Equilibrium θ0(1) = −0.0002 θ1(1) = 1.4611
θ0(0) = −0.0105 θ1(0) = −1.1295

Frank Schorfheide DSGE Model Estimation Challenges and (Some) Progress



A Sunspot Equilibrium in Simple Model (ACS)

Sunspot Equilibrium
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Filtering

• Occasionally binding constraint causes strong nonlinearity.

• Nonlinear state-space representation of DSGE model requires nonlinear filter:

yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).

• Filtering:
• Start with p(st−1|Y1:t−1)
• Forecast st : p(st |Y1:t−1) =

∫
p(st |st−1)p(st−1|Y1:t−1)dst−1

• Forecast yt : p(yt |Y1:t−1) =
∫
p(yt |st)p(st |Y1:t−1)dst

• Updating p(st |yt ,Y1:t−1) ∝ p(yt |st)p(st |Y1:t−1)

• Particle Filtering: represent p(st−1|Y1:t−1) by {s jt−1,W j
t−1} such that

1

M

M∑
j=1

h(s jt−1)W j
t−1 ≈

∫
h(st−1)p(st−1|Y1:t−1)dst−1.
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Particle Filtering (HS)

• Algorithm involves

• Mutation/Forecasting: turn s jt−1 into s̃ jt . Bootstrap PF: sample s̃ jt ∼ p(st |s jt−1).

• Correction/Updating: change particle weights to (Bootstrap PF): W̃ j
t ∝ p(yt |s̃ jt )W j

t−1.

• Selection (Optional): Resample to turn {s̃ jt , W̃ j
t } into {s jt ,W j

t = 1}.

• Problem: naive forward simulation of Bootstrap PF leads to uneven particle weights.

• (Mostly) Infeasible Solution (Conditionally Optimal): mutate based on p(st |yt , s jt−1).

• Feasible Solution: introduce a sequence of tempering steps.

Frank Schorfheide DSGE Model Estimation Challenges and (Some) Progress



Exhibit 1: Smets-Wouters Model (HS)

BS (M = 400, 000) versus CO (M = 4, 000)
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Density estimates of ∆̂1 = ln p̂(Y |θ)− ln p(Y |θ) based on Nrun = 100.
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Exhibit 2: Small-Scale NK DSGE Model (HS)

Log Standard Dev of Log-Likelihood Increments
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Bootstrap PF (M = 40, 000) is dashed; Cond-opt. PF (M = 400) is dotted.
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Use Tempered Particle Filter (HS)

• Construct a sequence “bridge distributions” with inflated measurement errors. Define

pn(yt |st , θ) ∝ φd/2n |Σu(θ)|−1/2 exp

{
− 1

2
(yt −Ψ(st , t; θ))′

×φnΣ−1u (θ)(yt −Ψ(st , t; θ))

}
, φ1 < φ2 < . . . < φNφ = 1.

• Bridge posteriors given st−1:

pn(st |yt , st−1, θ) ∝ pn(yt |st , θ)p(st |st−1, θ).

• Bridge posteriors given Y1:t−1:

pn(st |Y1:t) =

∫
pn(st |yt , st−1, θ)p(st−1|Y1:t−1)dst−1.

• Traverse these bridge distributions with “static” Sequential Monte Carlo method (Chopin,
2002). References in stats lit: Godsill and Clapp (2001), Johansen (2016)
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Bridge Posteriors: pn(st |Y1:t), n = 1, . . . ,Nφ (HS)

−4
−3

−2
−1 0 1

φn

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Frank Schorfheide DSGE Model Estimation Challenges and (Some) Progress



The Tempering Steps (HS)
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• C is Correction; S is Selection; and M is Mutation.
• pn(st |Y1:t) is represented by a swarm of particles {s j,nt ,W j,n

t }Mj=1:

1

M

M∑
j=1

W j,n
t h(s j,nt )

a.s.−→
∫

h(st)pn(st |Y1:t)dst .
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Small-Scale Model, Pre Great Recession: Performance Statistics (HS)

BSPF TPF
Number of Particles M 40k 4k 4k 40k 40k
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Bias -1.4 -0.9 -1.5 -0.3 -.05
StdD 1.9 1.4 1.7 0.4 0.6

T−1
∑T

t=1 Nφ,t 1.0 4.3 3.2 4.3 3.2
Average Run Time (s) 0.8 0.4 0.3 4.0 3.3

Low Posterior Density: θ = θl

Bias -6.5 -2.1 -3.1 -0.3 -0.6
StdD 5.3 2.1 2.6 0.8 1.0

T−1
∑T

t=1 Nφ,t 1.0 4.4 3.3 4.4 3.3
Average Run Time (s) 1.6 0.4 0.3 3.7 2.9
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Great Recession: Distribution of Log-lh Approx Error (HS)
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So far...

• We’ve solved the model (maybe multiple solutions).

• Conditional on parameters, we’ve extracted latent states and approximated likelihood
function.

• We still need to

• parameterize the model;

• assess its fit;

• conduct substantive economic analysis;

• compare to other models / aggregate conclusions across models & data sets etc.
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A Plug for Bayesian Inference...

p(θ|Y ) =
p(Y |θ)p(θ)∫
p(Y |θ)p(θ)dθ

• Treat uncertainty with respect to shocks, latent states, parameters, and model
specifications uncertainty symmetrically.

• Condition inference on what you know (the data Y ) instead of what you don’t know (the
parameter θ).

• Make optimal decision conditional on observed data.
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Compromises

• The Full Monty is a real pain: see Gust, C., E. Herbst, D. Lopez-Salido, and M. E. Smith
(2017): “The Empirical Implications of the Interest-Rate Lower Bound,” American
Economic Review, forthcoming.

• Potential shortcuts:

• less accurate model solution;

• cruder state extraction / likelihood approximation;

• non-likelihood-based parameterization of model.
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Estimation of a Long-Run-Risks Model (SSY)

• Exogenous cash flow processes:

gc,t+1 = µc + xt + σc,tηc,t+1

gd,t+1 = µd + φxt + πσc,tηc,t+1 + σd,tηd,t+1

• Common predictable component:

xt+1 = ρxt +
√

1− ρ2σx,tηx,t+1

• Three volatility processes: i ∈ {c , x , d}
hi,t+1 = ρhihi,t + σhiwhi ,t+1, σi,t = ϕiσ exp(hi,t)

• Agents maximize life-time utility, which is defined recursively:

Vt =

[
(1− δ)λtC

1−γ
θ

t + δ
(
Et [V

1−γ
t+1 ]

) 1
θ

] θ
1−γ

• Budget constraint:

Wt+1 = (Wt − Ct)Rc,t+1

where Wt is the wealth of the agent, Rc,t is the return on all invested wealth.
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Solution Short Cuts (SSY)

• Log normal approximation of Euler equation:

Et [mt+1 + ri,t+1] +
1

2
Vt [mt+1 + ri,t+1] ≈ 0.

• Campbell-Shiller (1988) approximation:

rc,t+1 ≈ κ0 + κ1pct+1 − pct + gc,t+1

rm,t+1 ≈ κ0,m + κ1,mpdt+1 − pdt + gd,t+1.

• Approximate volatility process:

σ2
i,t − (ϕiσ)2 ≈ (ϕiσ)2(1− νi ) + νiσ

2
i,t + σwiwi,t+1, i = {c , x , d}

• Approximate solution can be computed very fast... looks like:

pct = A0 + A1xt + A2,cσ
2
c,t + A2,xσ

2
x,t

rf ,t = B0 + B1xt + B1,λxλ,t + B2,cσ
2
c,t + B2,xσ

2
x,t

· · ·
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Empirical (State-Space) Model (SSY)

• Relating model to data:

observables = model variables + measurement errors

• Observables:
• Consumption growth (annual or monthly)
• Dividend growth (monthly)
• Real returns of the CRSP value-weighted portfolio of all stocks traded on NYSE, AMEX,

NASDAQ.
• Ex ante real risk-free rate

• Measurement errors

Frank Schorfheide DSGE Model Estimation Challenges and (Some) Progress



Conditionally Linear State-Space Representation (SSY)

• Collecting the bits and pieces:
• Observables: yt
• Model variables: st
• Volatilities: sVt

• LRR model delivers state-transition equation:

st+1 = Φst + vt+1(ht), ht+1 = Ψht + Σhwt+1, wt+1 ∼ iidN(0, I ),

• Measurement equation can be written as

yt+1 = At+1

(
D + Zst+1 + Z v svt+1(ht+1, ht) + Σuut+1

)
, ut+1 ∼ iidN(0, I ).

where At+1 is a selection matrix that accounts for the deterministic changes in the data
availability.
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Bayesian Estimation (SSY)

• Replace likelihood p(Y |θ) in Bayes Theorem by particle-filter approximation p̂(Y |θ).

• Conditional on the volatility states our state-space model is linear, which allows for
efficient implementation of the filter.
(see Chen and Liu, 2000 and Shephard, 2013)

• Draws from posterior p(θ|Y ) are generated using a Metropolis-Hastings algorithm.

• Despite use of approximate likelihood p̂(Y |θ) the Markov chain converges to “exact”
posterior p(θ|Y ) (see Andrieu, Doucet, and Holenstein, 2010).

• BOTTOM LINE: linearizations speed up solution and likelihood approximation while
retaining accuracy of model solution for reasonable parameter values.
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To Recap...

PART 1. Some Challenges

• Nonlinear Model Solution

• Multiple Equilibria

• Extracting Latent States / Approximating the Likelihood Function

PART 2. Potential Compromises – An Example
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