Credit Allocation under Economic Stimulus: Evidence from China

Lin William Cong Chicago Booth Jacopo Ponticelli Northwestern Kellogg & CEPR

Xiaoguang Yang

Haoyu Gao CUFE

Chinese Academy of Sciences

January 2018

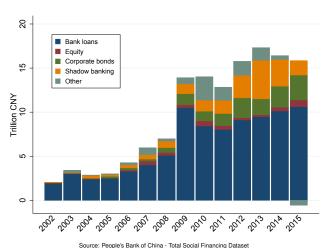
Allocation of resources across firms in China

• 2000-2008: Boom years

- 2000-2008: Boom years
 - Large "static" misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]

- 2000-2008: Boom years
 - Large "static" misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]
- 2009-2010: Major stimulus program by Chinese government

- 2000-2008: Boom years
 - Large "static" misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]
- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)


- 2000-2008: Boom years
 - Large "static" misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]
- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)
 - Bank credit expansion policies

- 2000-2008: Boom years
 - Large "static" misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]
- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)
 - Bank credit expansion policies
 Often praised for avoiding hard landing, unintended consequences

- 2000-2008: Boom years
 - Large "static" misallocation [Hsieh and Klenow, 2009]
 - but movement of capital towards high-productivity firms [Song et. al. 2011]
- 2009-2010: Major stimulus program by Chinese government
 - 4 Tr CNY government spending (12.6% GDP)
 - Bank credit expansion policies
 Often praised for avoiding hard landing, unintended consequences
 - → Scarce direct empirical evidence

Credit Growth During Stimulus

Figure: Capital Flows from Financial System to Real Economy

Source. Feople's Bank of China - Total Social Financing Dataset

- Data
 - Loan-level data from CBRC (19 largest Chinese banks)
 - Firm-level data from Manufacturing Survey

- Data
 - Loan-level data from CBRC (19 largest Chinese banks)
 - Firm-level data from Manufacturing Survey
- Identification
 - Firm-level exposure to credit supply (Bartik instrument)

- Data
 - Loan-level data from CBRC (19 largest Chinese banks)
 - Firm-level data from Manufacturing Survey
- Identification
 - Firm-level exposure to credit supply (Bartik instrument)
 - Credit allocation
 - by firm characteristics: state-connectedness, productivity
 - by period: pre-stimulus, stimulus

- Data
 - Loan-level data from CBRC (19 largest Chinese banks)
 - Firm-level data from Manufacturing Survey
- Identification
 - Firm-level exposure to credit supply (Bartik instrument)
 - Credit allocation
 - by firm characteristics: state-connectedness, productivity
 - by period: pre-stimulus, stimulus
- Discussion
 - Discuss/test potential channels driving credit allocation dynamics

- Average effects
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (\approx 1), investment (0.22), employment (0.32)

- Average effects
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (\approx 1), investment (0.22), employment (0.32)
- Heterogeneous Effects
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms

- Average effects
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (\approx 1), investment (0.22), employment (0.32)
- Heterogeneous Effects
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms

- Average effects
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (\approx 1), investment (0.22), employment (0.32)
- Heterogeneous Effects
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms
 - \rightarrow Reversal of previous reallocation process

- Average effects
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (\approx 1), investment (0.22), employment (0.32)
- Heterogeneous Effects
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms
 - → Reversal of previous reallocation process
- Channels
 - State-ownership connection (banks-firms)

- Average effects
 - Firms with larger increase in credit supply during stimulus
 - \rightarrow larger borrowing (\approx 1), investment (0.22), employment (0.32)
- Heterogeneous Effects
 - Effect of credit supply on firm borrowing:
 - stimulus (2009-10): 38% larger for state-owned firms
 - pre-stimulus (pre 2009): 49% larger for private firms
 - \rightarrow Reversal of previous reallocation process
- Channels
 - State-ownership connection (banks-firms)
 - Implicit bail-out of SOEs

Literature

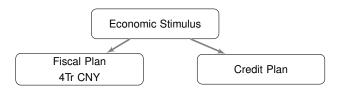
Macroeconomics

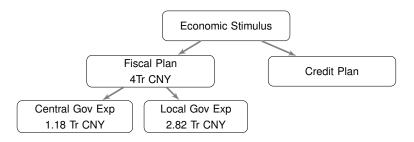
- Business cycles and resource allocation: Caballero et al (1994); Cooper et al (1993); Mortensen and Pissarides (1994)
- Financial frictions: Kiyotaki and Moore (1997); Ramey and Watson (1997); Barlevy (2003).

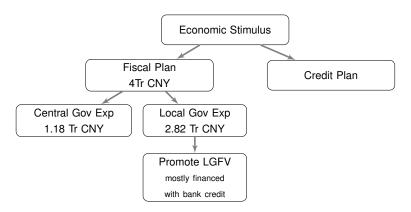
Misallocation and Growth

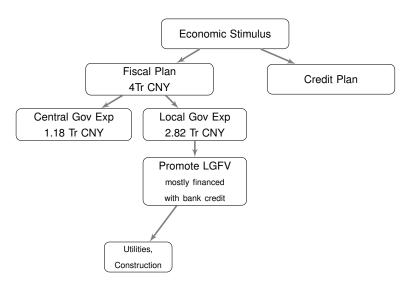
Dynamic: Song et al. (2011); Buera and Shin (2013); Gopinath et al (2016)

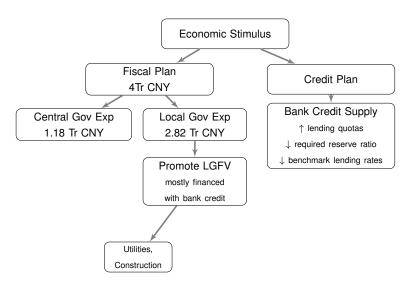
Ohina Economy and Credit Boom

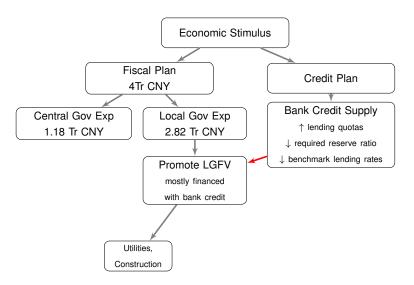

- Local government debt: Huang, Pagano, and Panizza (2016); Bai, Hsieh, and Song (2016); Ambrose, Deng, and Wu (2015); Chen, He, and Liu (2016)
- Unintended Consequences of Stimulus: Brunnermeier, Sockin, and Xiong (2017),
 Deng, Morck, and Yeung (2015); Ouyang and Peng (2015).
- Shadow banking: Hachem and Song (2015); Chen, He, and Liu (2016), Chen, Ren and Zha (2016)

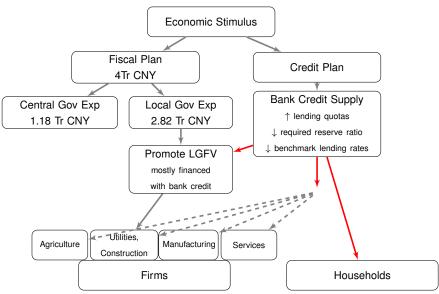

State-Owned Enterprises

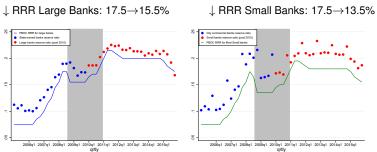

- Social view Stiglitz and Weiss (1981), Greenwald and Stiglitz (1986), Stiglitz (1993)
- Agency view Tirole, (1994); Banerjee, (1997)
- Political view: Stigler (); Shleifer and Vishny (1998); Sapienza (2002)


Structure of the Talk


- Background and Stylized Facts
- Identification
- Empirical Results
- Discussion

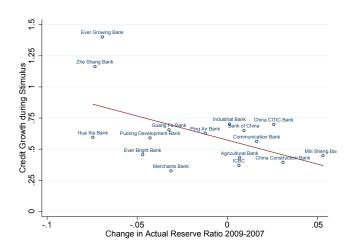






Changes in Banking Regulation

• Reduction in Required Reserve Ratios (RRR = reserves/deposits)


Changes in Banking Regulation

Reduction in Required Reserve Ratios (RRR = reserves/deposits)

Notes: Shaded areas indicate stimulus years (2008:Q4 to 2010:Q4). Data on actual reserve ratios is from WIND and comes aggregated by bank category.

Change in Reserves and Credit Growth

Data Description

- 1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission

Data Description

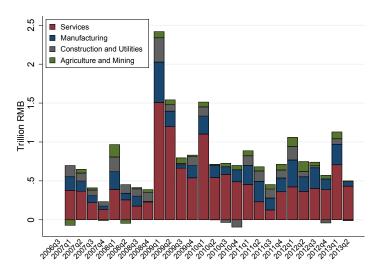
- 1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
 - 19 largest banks (80% bank loans)

Data Description

- 1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
 - 19 largest banks (80% bank loans)
 - Universe of loans to firms with annual outstanding balance ≥ 50m CNY

Data Description

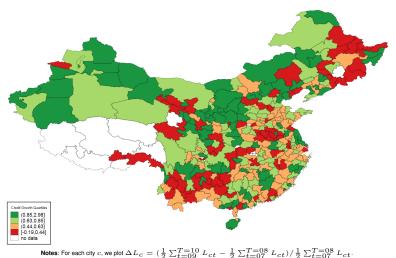
- 1. CBRC loan-level database (2006-2013)
 - Source: China Banking Regulatory Commission
 - 19 largest banks (80% bank loans)
 - Universe of loans to firms with annual outstanding balance ≥ 50m CNY
 - Variables: loan balance, maturity, repayment, bank and firm identifiers


Banks in the CBRC Loan-level Dataset

Bank Name	Bank Type	Lending Share in 2008
ICBC	State-Owned Commercial Bank	18.19%
China Development Bank	Policy Bank	16.38%
China Construction Bank	State-Owned Commercial Bank	15.82%
Agricultural Bank	State-Owned Commercial Bank	13.03%
Bank of China	State-Owned Commercial Bank	10.44%
Communication Bank	State-Owned Commercial Bank	5.52%
Min Sheng Bank	National Joint-Equity Commercial Bank	2.95%
Merchants Bank	National Joint-Equity Commercial Bank	2.95%
China CITIC Bank	National Joint-Equity Commercial Bank	2.72%
Pudong Development Bank	National Joint-Equity Commercial Bank	2.62%
Export Import Bank	Policy Bank	2.08%
Ever Bright Bank	National Joint-Equity Commercial Bank	2.05%
Industrial Bank	National Joint-Equity Commercial Bank	1.68%
Hua Xia Bank	National Joint-Equity Commercial Bank	1.45%
Guang Fa Bank	National Joint-Equity Commercial Bank	0.81%
Ping An Bank	National Joint-Equity Commercial Bank	0.81%
Bo Hai Bank	National Joint-Equity Commercial Bank	0.18%
Ever Growing Bank	National Joint-Equity Commercial Bank	0.16%
Zhe Shang Bank	National Joint-Equity Commercial Bank	0.15%

Source: CBRC, Bankscope. All banks are currently publicly traded except: Guang fa Bank, Ever Growing Bank, Bohai Bank and the two policy banks.

Credit Growth across Sectors


Figure: Change in Bank Lending to Firms - by Sector, Quarterly Data

Notes: Source: China Banking Regulatory Commission. To produce this graph we first sum across firms the monetary value of their outstanding loan balance at the end of each quarter. Then we take a quarter to quarter difference of the sum.

Credit Growth across Regions

Figure: Change in Bank Lending to Firms during Stimulus - by City/Prefecture-city

Notes. For each diff c, we plot $\Delta L_c = (\frac{1}{2} \sum_{t=0}^{2} 2^{t} - \frac{1}{2} \sum_{t=$

Data Description

- 2. Annual Industrial Survey (1998-2013)
 - Source: China's National Bureau of Statistics
 - Manufacturing firms with revenues: ≥ 5m CNY (20m after 2010)
 - Variables: employment, investment, assets, value added, book value of K
 - Share of government ownership (following Hsieh and Song, 2015)

Data Description

- 2. Annual Industrial Survey (1998-2013)
 - Source: China's National Bureau of Statistics
 - Manufacturing firms with revenues: ≥ 5m CNY (20m after 2010)
 - Variables: employment, investment, assets, value added, book value of K
 - Share of government ownership (following Hsieh and Song, 2015)
- 1. + 2. Matched sample:
 - 67% of Manufacturing Firms with credit relationship with top-19 bank
 - Lending to manufacturing represents 22% total bank lending (2006-2013)

Summary Statistics

Variable Name	Mean	Median	St.Dev.	N
Panel A: CBRC loan-level data:				
$loan_{ibt}$ (million RMB)	163	63	452	177,087
stimulus years	179	68	474	39,005
stimulus years, firm-level	554	156	1791	11,067
$\Delta \log loan_{ibt}$	0.039	0.000	0.433	177,087
stimulus years	0.033	0.000	0.461	39,005
stimulus years, firm-level ($\Delta \log loan_{it}$)	0.094	0.048	0.442	11,067
Panel B: Annual Survey of Industrial firms:				
number of employees	2,144	702	7,405	11,067
fixed assets (million RMB)	731	121	3,699	11,067
sales (million RMB)	1,621	421	6,255	11,067
StateShare	0.113	0.000	0.290	11,067
age (year)	15	11	14	11,067
exporter dummy	0.449	0.000	0.497	11,067
public	0.052	0.000	0.222	11,067
$\Delta \log$ employment	0.027	0.045	0.598	11,067
$\Delta \log$ fixed assets	-0.272	-0.073	0.669	11,067
Panel C: independent variables:				
$\Delta \log L_{b-cj,t}$	0.131	0.118	0.113	177,087
stimulus years	0.231	0.187	0.127	39,005
$\Delta \widetilde{L_{icjt}}$	0.219	0.198	0.115	11,067

Structure of the Talk

- Background and Stylized Facts
- Identification
- Empirical Results
- Discussion

Identification

- Empirical questions:
 - → Effect of bank credit supply on firm borrowing, investment and size
 - → Allocation across firms with different ownership, initial productivity
- Main challenge:
 - ightarrow Isolate changes in firm borrowing that are solely driven by **credit** supply forces and not by changes in demand/investment opportunities

Empirics Identification Strategy

- Measure of firm exposure to credit supply changes exploits:
 - Heterogeneous increases in lending across banks
 - Pre-existing bank-firm relationships

Empirics Identification Strategy

- Measure of firm exposure to credit supply changes exploits:
 - Heterogeneous increases in lending across banks
 - Pre-existing bank-firm relationships
- Firm *i* exposure [as in Chodorow-Reich (QJE, 2014)]

$$\widetilde{\Delta L_{icjt}} = \sum_{b \in O_i} \omega_{bi,t=0} \times \Delta Loans_{b-cj,t}$$
 (1)

- $\omega_{bi,t=0}$ = initial share of borrowing of firm i from bank b
- $\Delta Loans_{b-cj,t}$ = change in total loan balance of bank b
 - ightarrow excluding any lending to sector j and city c where firm i operates

Identification Assumptions:

A1) Bank-firm relationships persistent over time

Identification Assumptions:

- A1) Bank-firm relationships persistent over time
- A2) Cross-sectional variation in bank lending during stimulus:
 - reflects supply forces
- e.g. exposure to changes in bank regulation

Identification Assumptions:

- A1) Bank-firm relationships persistent over time
- A2) Cross-sectional variation in bank lending during stimulus:
 - reflects supply forces
- e.g. exposure to changes in bank regulation
- or observable firm characteristics
 - e.g. sector, export, location, size, age

Identification Assumptions:

- A1) Bank-firm relationships persistent over time
- A2) Cross-sectional variation in bank lending during stimulus:
 - reflects supply forces
- e.g. exposure to changes in bank regulation
- or observable firm characteristics
 - e.g. sector, export, location, size, age
- but $\perp unobservable$ firm characteristics affecting their credit demand

Diagnostics of Identification Assumptions

- (A1) Estimate probability of new loan from pre-existing lender
- (A2) Estimate loan-level equation with firm \times year FE (Khwaja and Mian 2009)

$$\Delta \log loan_{ibcjt} = \alpha + \alpha_{it} + \beta \Delta \log L_{b-cj,t} + \varepsilon_{ibcjt}$$
 (2)

where: i firm, b bank, c city, j sector, t year

(A1) Persistence of Bank-Firm Relationship

outcome:	$I(\operatorname{New}\operatorname{loan}\operatorname{of}\operatorname{firm}i\operatorname{from}\operatorname{bank}b)_t$
$I({\it Lending relationship firm }i{\it -bank }b)_{t-1}$	0.949 [0.001]***
Year, Bank, Industry, City fe R-squared Observations	y 0.807 882,580

Notes: The outcome variable is a dummy equal to 1 if firm i takes a new loan from bank b at time t. Each observation in the dataset is a potential bank-firm relationship, i.e. for each firm and year, there is an observation for each potential lender. The independent variable is a dummy equal to 1 if firm i had a pre-existing credit relationship with bank b at time t-1. Standard errors clustered by firm. Significance levels: "** p < 0.01, "** p < 0.05, " p < 0.01."

95% probability new loan from bank with pre-existing relationship

(A2) Bank Lending and Borrowers' Characteristics

$$\Delta \log loan_{ibt} = \alpha + \alpha_{it} + \beta \Delta \log L_{b-i,t} + \varepsilon_{ibt}$$

		$\Delta \log loan_{ibt}$			
	all	firms	multi-	lender	
	(1)	(2)	(3)	(4)	
A.1. 7					
$\Delta \log Loans_{b-i,t}$	0.173 [0.045]***	0.174 [0.045]***	0.161 [0.048]***	0.189	
	[0.045]	[0.045]	[0.046]	[0.056]	
Year fe	у	у	у	у	
Industry fe	у	у	у		
City fe	у	у	у		
Firm characteristics		у	у		
$\operatorname{Firm} \times \operatorname{Yearfe}$				у	
R-squared	0.012	0.012	0.012	0.341	
Observations .	177,087	177,087	143,525	143,525	

Notes: The unit of observation is a loan. Standard errors clustered at the main lender level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Similar point estimates when using within-firm variation

Structure of the Talk

- Background and Stylized Facts
- Identification
- Empirical Results
- Discussion

Effect of Credit Supply on Firm Borrowing Average effects

$$\Delta \log y_{icjt} = \alpha_c + \alpha_j + \alpha_t + \beta \Delta \widetilde{L_{icjt}} + \gamma X_{i,t-1} + \varepsilon_{icjt}$$

- *i* firm, *j* sector, *c* city, *t* year.
- ullet $\Delta \widetilde{L_{it}}$: firm-level exposure to credit supply increases

$$\Delta \widetilde{L_{icjt}} = \sum_{b \in O_i} \omega_{bi,t=0} \times \Delta \log Loans_{b-cj,t}$$

 \bullet $X_{i,t-1}$: firm characteristics: size, export status, age, publicly traded status

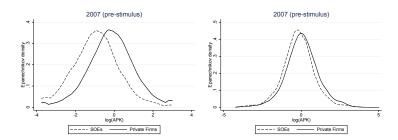
Average Effects

outcome:	$\Delta \log loan_{it}$ (1)	$\Delta \log K_{it}$ (2)	$\Delta \log L_{it}$ (3)
$\Delta \widetilde{L_{icjt}}$	1.005	0.218	0.318
	[0.088]***	[0.107]**	[0.100]***
Year FE	у	y	y
Industry FE	у	y	y
City FE	у	y	y
Firm characteristics	у	y	y
R-squared	0.094	0.438	0.232
Observations	11,067	11,067	11,067

Notes: Standard errors clustered at city level. *** p<0.01, ** p<0.05, * p<0.1.

- 1 percent increase in credit supply from pre-existing lenders:
 - $\bullet \approx$ 1 percent increase in firm borrowing
 - 0.22 percent increase in fixed capital
 - 0.32 percent increase in employment

Effect of Credit Supply on Firm Borrowing


Heterogeneous effects

$$\Delta \log y_{icjt} = \alpha_c + \alpha_j + \alpha_t + \beta_1 \Delta \widetilde{L_{icjt}} \times C_{i,t=0} + \beta_2 \Delta \widetilde{L_{icjt}} + \beta_3 C_{i,t=0} + \gamma X_{i,t-1} + \varepsilon_{ijct}$$

- ullet i firms, j sector, c city, t year.
- ullet $\Delta \widetilde{L_{icjt}}$: firm-level exposure to credit supply increases
- \bullet $C_{i,t=0}$:
 - StateShare share of government ownership
 - $\log APK = \log \frac{VA}{K}$

State Ownership and Average Product of Capital

• unconditional (left) and conditional on city and industry (right)

outcome:		$\Delta \log loan_{it}$		
sample:	all firms	$\log AI$	$PK_{i,t=0}$	
		= low	= high	
$\widetilde{\Delta L_{icjt}} \times StateShare_{i,t=0}$	0.367 [0.119]***			
$\Delta \widetilde{L_{icjt}}$	0.972 [0.086]***			
$StateShare_{i,t=0}$	-0.080 [0.027]***			
R-squared	0.095			
Observations	11,067			
sample:	all firms	$StateShare_{i,t=0}$		
		= 0	> 0	

$$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0}$$

$$\Delta \widetilde{L_{icjt}}$$

 $\log APK_{i,t=0}$

R-squared Observations

outcome:		$\Delta \log loan_{it}$		
sample:	all firms	$\log APK_{i,t=0}$		
		= low	= high	
$\widetilde{\Delta L_{icjt}} \times StateShare_{i,t=0}$	0.367 [0.119]***	0.354 [0.132]***	0.252 [0.247]	
$\Delta \widetilde{L_{icjt}}$ $StateShare_{i,t=0}$	0.972 [0.086]*** -0.080 [0.027]***	0.872 [0.106]*** -0.051 [0.033]	1.043 [0.123]*** -0.097 [0.056]*	
R-squared Observations	0.095 11,067	0.139 5,531	0.107 5,510	
sample:	all firms	$StateShare_{i,t=0}$		
		= 0	> 0	

$$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0}$$

 $\Delta \widetilde{L_{icjt}}$

 $\log APK_{i,t=0}$

R-squared Observations

outcome:	$\Delta \log loan_{it}$		
sample:	all firms	$\log AF$	$YK_{i,t=0}$
		= low	= high
$\widetilde{\Delta L_{icjt}} \times StateShare_{i,t=0}$	0.367 [0.119]***	0.354 [0.132]***	0.252 [0.247]
$\Delta \widetilde{L_{icjt}}$	0.972 [0.086]***	0.872 [0.106]***	1.043 [0.123]***
$StateShare_{i,t=0}$	-0.080 [0.027]***	-0.051 [0.033]	-0.097 [0.056]*
R-squared Observations	0.095 11,067	0.139 5,531	0.107 5,510
sample:	all firms StateShare		$are_{i,t=0}$
		= 0	> 0
$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0}$	-0.060 [0.027]**		
$\Delta \widetilde{L_{icjt}}$	0.984 [0.090]***		
$\log APK_{i,t=0}$	0.047 [0.008]***		
R-squared Observations	0.099 11,067		

All columns include Year, Industry and City fixed effects as well as firm characteristics. Standard errors clustered at city level. *** p < 0.01, ** p < 0.05, *

n < 0.1.

outcome:	$\Delta \log loan_{it}$			
sample:	all firms	$\log APK_{i,t=0}$		
		= low	= high	
$\Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0}$	0.367	0.354	0.252	
	[0.119]***	[0.132]***	[0.247]	
$\Delta \widetilde{L_{icjt}}$	0.972	0.872	1.043	
	[0.086]***	[0.106]***	[0.123]***	
$StateShare_{i,t=0}$	-0.080	-0.051	-0.097	
	[0.027]***	[0.033]	[0.056]*	
R-squared	0.095	0.139	0.107	
Observations	11,067	5,531	5,510	
sample:	all firms	$StateShare_{i,t=0}$		
		= 0	> 0	
$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0}$ $\Delta \widetilde{L_{icjt}}$	-0.060	-0.058	0.040	
	[0.027]**	[0.029]**	[0.079]	
	0.984	0.960	1.204	
$\log APK_{i,t=0}$	[0.090]***	[0.094]***	[0.251]***	
	0.047	0.052	0.002	
	[0.008]***	[0.008]***	[0.021]	
R-squared	0.099	0.101	0.223	
Observations	11,067	9,251	1,789	

- Effect of credit supply increase on firm borrowing during stimulus
 - 38% larger for fully state-owned than for fully private firms
 - \rightarrow Result holds both within low and high capital productivity firms
 - ullet 8% larger for firms with 1 st.dev. lower initial APK
 - $\rightarrow between$ (private to SOEs) and within effect (among private firms)
- Robustness
 - Exclude input-suppliers to construction and utilities

outcome:		$\Delta \log loan_{it}$		
sample:	all firms	all firms $\log APK_{i,t=0}$		
		= low	= high	

$$\begin{split} \Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} \times I(stimulus) & 0.874 \\ [0.240]^{***} \\ \Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} \times I(post-stimulus) & 0.664 \\ [0.291]^{**} \\ \Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} & -0.493 \\ [0.209]^{**} \\ \text{R-squared} & 0.065 \\ \text{Observations} & 46.568 \end{split}$$

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** p < 0.01, *** p < 0.05, * p < 0.1.

- Effect of credit supply increase on firm borrowing:
 - pre-stimulus: 49% larger for private firms than SOEs
 - Reversal starting from 2009, extends in post-stimulus period

outcome:		$\Delta \log loan_{it}$		
sample:	all firms	$\log APK_{i,t=0}$		
		=low	= high	

$\Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} \times I(stimulus)$	0.874	0.650	1.152
	[0.240]***	[0.273]**	[0.503]**
$\Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} \times I(post-stimulus)$	0.664	0.438	1.244
	[0.291]**	[0.348]	[0.687]*
$\Delta \widehat{L}_{icjt} \times StateShare_{i,t=0}$	-0.493	-0.246	-0.859
	[0.209]**	[0.244]	[0.430]**
R-squared	0.065	0.076	0.062
Observations	46,568	23,280	23,279

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** p < 0.01, *** p < 0.05, * p < 0.1.

- Effect of credit supply increase on firm borrowing:
 - pre-stimulus: 49% larger for private firms than SOEs
 - Reversal starting from 2009, extends in post-stimulus period
 - effect holds when conditioning on capital productivity

outcome: $\frac{\Delta \log loan_{it}}{\text{sample:}}$ sample: $\frac{\text{all firms}}{= 0} \frac{StateShare_{i,t=0}}{= 0}$

$$\begin{split} \widetilde{\Delta L_{icjt}} \times \log APK_{i,t=0} \times I(stimulus) & \text{-0.149} \\ [0.048]^{****} \\ \Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0} \times I(post-stimulus) & \text{-0.054} \\ [0.061] \\ \Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0} & \text{0.093} \\ [0.044]^{***} \end{split}$$
 R-squared 0.069 Observations

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. *** p < 0.01, *** p < 0.05, * p < 0.1.

- Effect of credit supply increase on firm borrowing:
 - pre-stimulus: larger for high capital productivity firms
 - Reversal starting from 2009

outcome:		$\Delta \log loan_{it}$		
sample:		all firms	$StateShare_{i,t=0}$	
			= 0	> 0
A T y lam A D V	v I(ationalasa)	0.140	0.160	0.001

$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0} \times I(stimulus)$	-0.149	-0.162	0.031
	[0.048]***	[0.057]***	[0.143]
$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0} \times I(post-stimulus)$	-0.054	-0.055	0.203
	[0.061]	[0.069]	[0.177]
$\Delta \widetilde{L_{icjt}} \times \log APK_{i,t=0}$	0.093	0.107	-0.013
,	[0.044]**	[0.053]**	[0.119]
R-squared	0.069	0.070	0.120
Observations	46,568	39,131	7,428

Notes: All regressions include main effects of the triple interaction; year, industry and city fixed effects; firm characteristics. Standard errors clustered at city level. **** p < 0.01, **** p < 0.05, *** p < 0.1.

- Effect of credit supply increase on firm borrowing:
 - pre-stimulus: larger for high capital productivity firms
 - Reversal starting from 2009
 - capital productivity not a driver of credit allocation within SOEs

Structure of the Talk

- Background and Stylized Facts
- Identification
- Empirical Results
- Discussion

Discussion of Allocation Dynamics

- Pre-stimulus years:
 - Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)

Discussion of Allocation Dynamics

- Pre-stimulus years:
 - Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)
- Stimulus years:
 what can explain reversal of previous reallocation process?

Discussion of Allocation Dynamics

- Pre-stimulus years:
 - Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)
- Stimulus years:
 what can explain reversal of previous reallocation process?
 - State-ownership connection between banks and firms

Discussion of Allocation Dynamics

- Pre-stimulus years:
 - Results consistent with capital reallocation from low to high-productivity firms in China during the 2000s (e.g. Song et al. AER 2011)
- Stimulus years:

what can explain reversal of previous reallocation process?

- State-ownership connection between banks and firms
- Implicit government bail-out of SOEs becoming more important during "recession"

- State-Owned Banks might have a preferred relationship with SOEs
 - Plausible. Although scarce direct empirical evidence for China.

- State-Owned Banks might have a preferred relationship with SOEs
 - Plausible. Although scarce direct empirical evidence for China.
- State-owned banks might respond more to government credit plan
 - Direct government influence
 - Career incentives of top-management

- State-Owned Banks might have a preferred relationship with SOEs
 - Plausible. Although scarce direct empirical evidence for China.
- State-owned banks might respond more to government credit plan
 - Direct government influence
 - Career incentives of top-management
 - → "Mechanically" more of new credit directed to SOEs

State-ownership connection, cont.

• First, re-construct ownership structure of 19 largest Chinese banks

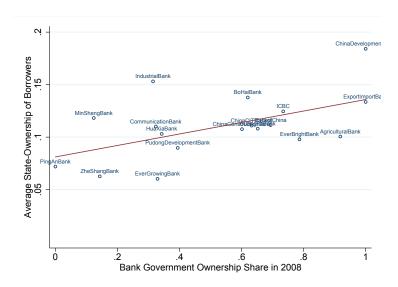
Bank Name	Bank Type	Gov. Ownership in 2008
ICBC	State-Owned Commercial Bank	75.10%
China Construction Bank	State-Owned Commercial Bank	58.56%
Agricultural Bank	State-Owned Commercial Bank	100.00%
Bank of China	State-Owned Commercial Bank	70.82%
China Development Bank	Policy Bank	100.00%
Communication Bank	State-Owned Commercial Bank	32.54%
Merchants Bank	National Joint-Equity Commercial Bank	32.63%
Pudong Development Bank	National Joint-Equity Commercial Bank	39.74%
China CITIC Bank	National Joint-Equity Commercial Bank	63.28%
Min Sheng Bank	National Joint-Equity Commercial Bank	12.38%
Industrial Bank	National Joint-Equity Commercial Bank	29.92%
Ever Bright Bank	National Joint-Equity Commercial Bank	88.30%
Hua Xia Bank	National Joint-Equity Commercial Bank	34.41%
Export Import Bank	Policy Bank	100.00%
Guang Fa Bank	National Joint-Equity Commercial Bank	65.78%
Ping An Bank	National Joint-Equity Commercial Bank	0.00%
Ever Growing Bank	National Joint-Equity Commercial Bank	19.23%
Zhe Shang Bank	National Joint-Equity Commercial Bank	14.92%
Bo Hai Bank	National Joint-Equity Commercial Bank	62.01%

State-ownership connection, cont.

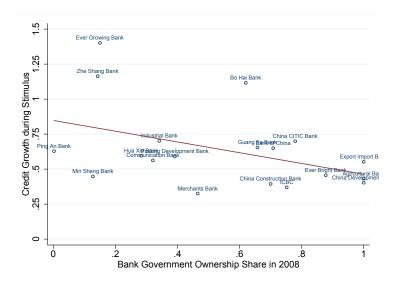
• First, re-construct ownership structure of 19 largest Chinese banks

Bank Name	Bank Type	Gov. Ownership in 2008
ICBC	State-Owned Commercial Bank	75.10%
China Construction Bank	State-Owned Commercial Bank	58.56%
Agricultural Bank	State-Owned Commercial Bank	100.00%
Bank of China	State-Owned Commercial Bank	70.82%
China Development Bank	Policy Bank	100.00%
Communication Bank	State-Owned Commercial Bank	32.54%
Merchants Bank	National Joint-Equity Commercial Bank	32.63%
Pudong Development Bank	National Joint-Equity Commercial Bank	39.74%
China CITIC Bank	National Joint-Equity Commercial Bank	63.28%
Min Sheng Bank	National Joint-Equity Commercial Bank	12.38%
Industrial Bank	National Joint-Equity Commercial Bank	29.92%
Ever Bright Bank	National Joint-Equity Commercial Bank	88.30%
Hua Xia Bank	National Joint-Equity Commercial Bank	34.41%
Export Import Bank	Policy Bank	100.00%
Guang Fa Bank	National Joint-Equity Commercial Bank	65.78%
Ping An Bank	National Joint-Equity Commercial Bank	0.00%
Ever Growing Bank	National Joint-Equity Commercial Bank	19.23%
Zhe Shang Bank	National Joint-Equity Commercial Bank	14.92%
Bo Hai Bank	National Joint-Equity Commercial Bank	62.01%

State-ownership connection, cont.


Table: Top-10 Shareholders of China Everbright Bank Co., Ltd in 2008

Rank	Shareholder	Shareholder type	Ownership
1	Central Huijin Investment Ltd.	Gov fund	70.88%
2	China Everbright Group	Gov fund	7.59%
3	China Everbright Limited	Gov fund	6.23%
4	Hongta Tobacco Group Company Limited	SOE	1.35%
5	Zhejiang Southeast Electric Power Company Limited	SOE	0.62%
6	Haixin Iron & Steel Group Co., Ltd.	Private Corp.	0.59%
7	China Export & Credit Insurance Corporation	SOE	0.53%
8	Qingdao Guoxin Industry Corporation	Local Gov Fund	0.39%
9	Shanxi International Electricity Group Company Limited	SOE	0.37%
10	Hongyun honghe Tobacco Group Company Limited	SOE	0.34%


Source: Annual Reports.

State-Ownership: Central Gov Funds + Local Gov Funds + SOEs

Do SOBs lend relatively more to SOEs than private firms?

Do SOBs respond more than private banks to credit stimulus?

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs more when probability of financial distress is higher

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs more when probability of financial distress is higher

Anecdotal evidence:

• China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs more when probability of financial distress is higher

Anecdotal evidence:

東方航空

東星航空

- China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009
- Government injected 7 billion CNY into China Eastern through SASAC

- Government might bail out SOEs if close to financial distress
- Lenders favor SOEs more when probability of financial distress is higher

Anecdotal evidence:

東方航空

東星航空

- China Eastern (SOE) and East Star (Private) Airlines at risk of financial distress in 2009
- Government injected 7 billion CNY into China Eastern through SASAC
- East Star Airline liquidated in August 2009

Ex-post Loan Performance

Panel A outcomes:	$\Delta \log K_{it}$	$\Delta \log L_{it}$	NPL_{it}
$\Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} \times I(stimulus)$	-0.282	0.760	-0.110
	[0.256]	[0.310]**	[0.037]***
$\Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0} \times I(post-stimulus)$	-0.264	-0.130	-0.067
	[0.267]	[0.379]	[0.034]*
$\Delta \widetilde{L_{icjt}} \times StateShare_{i,t=0}$	0.156	-0.031	0.086
	[0.182]	[0.151]	[0.031]***
R-squared	0.383	0.044	0.070
Observations	46,568	46,568	42,974

Notes: NPL_{it} : value-weighted share of loans originated in year t to firm i which are eventually non-performing (90 days or more delinquent). Standard errors are clustered at city level. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

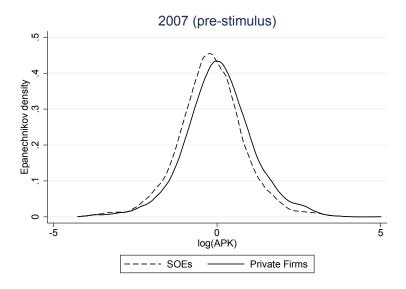
- Effect of credit supply increase on ex-post non-performing loans:
 - pre-stimulus: loans to SOEs had larger probability of default
 - Gap closes from 2009
 - ullet consistent with government intervention to prevent SOE financial distress

Conclusions

- This paper uses loan-level and firm-level data from China to document:
 - SOEs experienced larger bank credit growth than private firms
 - Reversal of trend of reallocation observed during pre-stimulus years
 - Within private firms, less productive (more connected?) ones experience larger credit growth

Conclusions

- This paper uses loan-level and firm-level data from China to document:
 - SOEs experienced larger bank credit growth than private firms
 - Reversal of trend of reallocation observed during pre-stimulus years
 - Within private firms, less productive (more connected?) ones experience larger credit growth
- Discussion and empirical test of potential mechanisms:
 - SOB did not respond more than private banks to stimulus policies
 - Implicit bail out of SOEs might matter more in bad times


Conclusions

- This paper uses loan-level and firm-level data from China to document:
 - SOEs experienced larger bank credit growth than private firms
 - Reversal of trend of reallocation observed during pre-stimulus years
 - Within private firms, less productive (more connected?) ones experience larger credit growth
- Discussion and empirical test of potential mechanisms:
 - SOB did not respond more than private banks to stimulus policies
 - Implicit bail out of SOEs might matter more in bad times
- Informs debate on consequences of China stimulus plan.
 - broader impact on the economy besides facilitating off-balance-sheet borrowing by local governments

Thank you!

APPENDIX SLIDES

Appendix. SOEs and Private Firms: within industry and city

