Technological Transitions with Skill Heterogeneity Across Generations

Rodrigo Adão, Martin Beraja, and Nitya Pandalai-Nayar

DECEMBER 2019
Technological Transitions with Skill Heterogeneity Across Generations*

Rodrigo Adão†
University of Chicago
Booth School of Business

Martin Beraja‡
Massachusetts Institute of Technology

Nitya Pandalai-Nayar§
University of Texas at Austin

December 31, 2019

Abstract

Why are some technological transitions particularly unequal and slow to play out? We develop a theory to study transitions after technological innovations driven by worker reallocation within a generation and changes in the skill distribution across generations. The economy’s transitional dynamics have a representation as a \( q \)-theory of skill investment. We exploit this in two ways. First, to show that technology-skill specificity and the cost of skill investment determine how unequal and slow transitions are by affecting the two adjustment margins in the theory. Second, to connect these determinants to measurable, short-horizon changes in labor market outcomes within and between generations. We then empirically analyze the adjustment to recent cognitive-biased innovations in developed economies. Strong responses of cognitive-intensive employment for young but not old generations suggest that cognitive-skill specificity is high and that the supply of cognitive skills is more elastic for younger generations. This evidence indicates that cognitive-biased transitions slowly unfold over many generations. As such, naively extrapolating from observed changes at short horizons leads to overly pessimistic views about their welfare and distributional implications.

*First version: May 2018. We are grateful to Masao Fukui, Agustin Gutierrez and Michelle Lam for excellent research assistance. We thank Christopher Tonetti for his superb discussion as well as all other participants at the NBER’s EF&G Fall meeting. For their valuable suggestions, we thank Daron Acemoglu, David Autor, Fernando Alvarez, Arnaud Costinot, Ariel Burstein, V.V. Chari, Oded Galor, Erik Hurst, Greg Kaplan, Pablo Kurlat, Frank Levy, Simon Mongey, Fabrizio Perri, Venky Venkateswaran, Gianluca Violante, and Fabrizio Zilibotti. We also thank seminar participants at Dartmouth, Duke, MIT, Northwestern, NYU, Notre-Dame, Philly Fed, Stockholm (IIES), UCLA, UCSD, U of Munich, USC Marshall, UT Austin, WashU/St. Louis Fed, the Barcelona GSE Summer Forum, and the NBER SI Income Distribution and Macroeconomics, and Micro Data for Macro Models groups for helpful comments. Data access was provided by the Research Data Centre (FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB). We thank Peter Brown and Clare Dingwell of the Harvard Economics Department, for facilitating access to IAB data. All results based on IAB microdata have been cleared for disclosure to protect confidentiality. This paper previously circulated under the title “Skill-Biased Technological Transitions.”

†Email: rodrigo.adao@chicagobooth.edu. Web: sites.google.com/site/rradao
‡Email: maberaja@mit.edu. Web: economics.mit.edu/faculty/maberaja
§Email: npnayar@utexas.edu. Web: www.nityapandalainayar.com
1 Introduction

New technologies are the key drivers of increases in living standards over long horizons. Yet, more recently, a literature has shown that they may have strong distributional consequences at shorter horizons. If an economy’s adjustment margins vary as horizons lengthen, then focusing on short or long horizons alone risks missing the overall impact of technological innovations on labor markets as well as their average and distributional welfare consequences. Such concerns are particularly important when the adjustment is slow and takes many generations. How then do economies adjust to technological innovations over different horizons? Why are some technological transitions particularly unequal and slow to play out?

In this paper, we develop a theory to study technological transitions driven by both worker reallocation within a generation and changes in the distribution of skills across generations. We show that the transitional dynamics of this economy can be represented as a $q$-theory of skill investment. We then use this representation in two ways. First, to characterize how the nature of the technological innovation and associated skills determine the importance of the two adjustment margins in the theory and, as a result, how slow and unequal technological transitions are. Second, to connect these determinants to changes in labor market outcomes within and between generations that can be measured at short horizons. We conclude by empirically studying the adjustment of developed economies to recent cognitive-biased technological innovations. Our results indicate that, due to the high specificity of cognitive skills, such innovations triggered a particularly unequal and slow transition unfolding over many generations. In such cases, by missing most of the adjustment, naive extrapolations from observed changes at short horizons overestimate the distributional consequences and underestimate the average welfare gains of cognitive-biased innovations.

The theory has four distinct features. First, there are overlapping generations of workers with stochastic lifetimes, as in Yaari (1965) and Blanchard (1985). Second, within each generation, workers are heterogeneous over a continuum of skill types. A type determines the worker’s productivity in the two technologies of the economy, as in Roy (1951). Given the relative technology-specific wage at a point in time, there is a threshold determining which skill types self-select into each of the two technologies. Technology-skill specificity —i.e., how different skill types are in terms of their relative technology-specific productivity—then determines how sensitive the assignment threshold is to changes in relative technology-specific wages. Third, the output of the two technologies is combined to produce a final consumption good, as in Katz and Murphy (1992), Ngai and Pissarides (2007), and Buera, Kaboski, and Shin (2011). Fourth, given future relative technology-specific wages, workers make a costly investment upon entering the labor market that determines their skill type for their lifetime, similar to Chari and Hopenhayn (1991), Caselli (1999) and Galor and Moav (2002). The cost

---

1See Durlauf and Aghion (2005) for a review of the literature on the impact of new technologies and innovation on long-run living standards. See Acemoglu and Autor (2011) and Autor and Salomons (2017) for reviews of the literature documenting the impact of new technologies on employment and wages of workers associated with different skills, occupations, industries, and firms.
of skill investment for entering workers then determines how different the skill distribution is across generations following changes in future relative technology-specific wages.\footnote{We incorporate investment on the continuum of skills by allowing ex-ante identical individuals to enter a skill lottery whose utility cost is proportional to the relative entropy between the chosen lottery and a reference distribution of innate ability. This formulation yields a tractable expression for the skill distribution of incoming generations that resembles a multinomial logit function over the continuum of skill types.}

The equilibrium of this economy is a joint path for the skill distribution, the assignment of skill types to technologies, and the relative technology-specific wage and output. It entails a high-dimensional fixed-point problem: forward-looking entrants make skill investment decisions based on the expected future path for the relative technology-specific wage, which determines how the skill distribution evolves over time and, ultimately, the actual equilibrium path of relative technology-specific wage and all other outcomes.

Our first result reduces the dimensionality of this fixed-point problem. It establishes that the approximate equilibrium of this economy can be represented as that from a $q$-theory of skill investment.\footnote{See Tobin (1969) and Hayashi (1982) for the original $q$-theory of capital investment.} The path for the skill distribution is only a function of two variables at each point in time: the present-discounted value of the log-relative technology-specific wage ($q$) and the threshold determining the assignment of skills to technologies (which plays the role of the pre-determined variable). We show that a simple system of linear differential equations characterizes the equilibrium dynamics of these two variables. Thus, we solve for the equilibrium dynamics by keeping track of these variables and not the skill distribution itself. Our approach is reminiscent of those in Perla and Tonetti (2014) and the special case with linear objectives in Lucas and Moll (2014) which characterize the dynamics of a distribution by tracking the evolution of a threshold.

Our second result derives in closed-form the transitional dynamics following a one-time, permanent increase in the productivity of all skill types employed in one of the technologies. We refer to this as a skill-biased technological innovation. The logic of the economy’s adjustment follows immediately from the $q$-theory representation of the equilibrium. The relative productivity increase leads to an increase in the relative labor demand and wages in the improved technology. On impact, marginal skill types within each generation reallocate into that technology. The increase in current and future relative wages leads younger entering generations to invest in those skills that are more complementary to the improved technology. Along the transition, as younger generations replace older ones, $q$ falls and relative output increases because the economy’s skill distribution tilts towards skills more complementary to the improved technology. To evaluate how slow the transition is, we define the discounted cumulative impulse response (DCIR). For old generations born before the innovation, the DCIR measures how different is the adjustment they expect to see during their lifetime compared to the overall (long-run) adjustment. We say that the adjustment is slower whenever they expect to miss more of the overall adjustment (i.e., the DCIR is smaller). Crucially, we also show that the DCIR of $q$ is a central determinant of the average and distributional welfare consequences of new technologies.
This result shows that the impact of new technologies on the economy may significantly change over time due to the endogenous evolution of the skill distribution across generations. It provides a micro-foundation for the idea that supply elasticities tend to be lower at shorter horizons compared to longer horizons, a form of Samuelson’s LeChatelier principle. Our micro-foundation points to two types of risks associated with ignoring dynamics induced by changes in the skill distribution across generations. The first arises when extrapolating from observed responses in the economy that span much less than a generation. Such extrapolations will overestimate inequality changes and underestimate average welfare gains. The second arises when extrapolating from past technological transitions to different contexts: a type of threat to external validity. This leads to biased predictions about the economy’s dynamic adjustment whenever the nature of technology and skills, or the underlying flexibility of skill investment, significantly differs across episodes.

Our third result presents comparative static exercises that speak to why some technological transitions are particularly unequal and slow to play out. As such, these exercises help interpret differences between past or future transitions where the nature of technological innovations and associated skills differ. First, we show that an economy where technology-skill specificity is higher has a slower, more back-loaded adjustment path to the new long-run equilibrium. The $q$-theory analogy again delivers the intuition for this result. When technology-skill specificity is higher, there is less worker reallocation across technologies in the short-run and, therefore, the increase in lifetime inequality $q$ is larger. This strengthens the incentives of young entering generations to invest in those skills that are more complementary to the improved technology. As a result, the adjustment is slower because larger changes in the skill distribution take place along the transition. Second, we show that a lower cost of skill investment for young generations makes the adjustment slower as well, both directly and by amplifying the effects of technology-skill specificity. In both cases, the more relevant margin of adjustment is not the reallocation of workers within a generation but the changes in the skill distribution across generations.

Our fourth result connects the degree of technology-skill specificity and the cost of skill investment to observable changes in labor market outcomes within and between generations. In particular, we focus on short-run implications that can be credibly measured in most datasets. Our measurement insight is that, in the short-run, economies with higher technology-skill specificity are associated with weaker within-generation changes in the relative employment of older workers across occupations (or sectors), but stronger between-generation differences in the relative employment of younger and older workers. In contrast, a lower cost of skill investment for entering generations is also associated with larger between-generation differences in relative employment, but has no effect on the responses for older workers. Such generation-specific changes are common in empirical analysis of how economies adjust to different types of shocks.\footnote{For example, Kim and Topel (1995), Card and Lemieux (2001), Autor and Dorn (2009), Autor, Dorn, and Hanson (2013), Guvenen et al. (2017), McCaig and Pavcnik (2018), Greenland, Lopresti, and McHenry (2019), Porzio and Santangelo (2019).} By connecting them to structural parameters, our theory shows how
these measurable moments in the short-run are informative about the economy’s transitional dynamics and, consequently, how unequal and slow the adjustment will be.

In the second part of the paper, we explore our theory’s observable predictions to provide three pieces of evidence indicating that technology-skill specificity and changes in the skill distribution across generations are relevant to understand how developed economies adjusted to recent cognitive-biased technological innovations. First, we analyze employment trends in nine broad occupation groups in eighteen developed countries. We document that, in all countries, employment growth in the three most cognitive-intensive occupations was stronger for younger workers than for older workers. Second, we use microdata to provide a more detailed investigation of these responses in Germany. Controlling for a number of confounding factors, we show that employment and payroll grew more in occupations that require more time spent performing cognitive-intensive tasks. We find that the effect of cognitive intensity on these variables is strong for younger generations, but weak for older generations. We also explore the unique large-scale German training program to document higher growth in the number of trainees in more cognitive intensive occupations, suggesting that incoming cohorts tilt investment towards cognitive skills. Finally, following Falck, Gold, and Heblich (2014), we use pre-determined conditions of the German telephone network to obtain quasi-experimental variation across regions in the adoption timing of broadband internet in the early 2000s. By comparing late to early adopting regions, we estimate impulse response functions that show an increase in the relative employment and payroll of more cognitive-intensive occupations starting in 2005. The estimates are again different for older and young generations. The impact on relative employment is small and nonsignificant for older generations, but it is positive and statistically significant for younger generations.

In sum, this evidence suggests that cognitive-skill specificity is high and that the supply of cognitive skills is elastic at longer horizons. Parameterizing our model to match the empirical impulse responses for Germany, we find that these two features make cognitive-biased transitions particularly unequal and slow. As a result, we quantify that, compared to naively extrapolating from observed changes on impact, the true average welfare (lifetime welfare inequality) increase across generations is about 50 percent higher (lower) following a relatively large cognitive-biased innovation. Had technology-skill specificity been lower, such innovation would have led to a faster and less unequal transition instead, featuring smaller between-generation differences in occupation composition changes. Compared to most recent years, we document that these between-generation differences were smaller in the United States and Germany in the 1960s and 1970s, which is consistent with the nature of technological innovations and skills being different in the two periods.

Our approach follows an extensive literature documenting that the recent arrival of new technologies in the workplace, like the computer and the internet, augmented the productivity of jobs intensive in cognitive tasks while substituted jobs intensive in routine tasks —e.g. Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn (2013), Akerman, Gaarder, and Mogstad (2015), Acemoglu and Restrepo (2017), and, for a review, Acemoglu and Autor (2011).
Related literature. Our paper is related to several strands of the literature. A long literature has analyzed structural transformation in the form of long-run worker reallocation across sectors – e.g., Ngai and Pissarides (2007), Buera, Kaboski, and Shin (2011), Buera and Kaboski (2012), and, for a review, Herrendorf, Rogerson, and Valentinyi (2014). Recently, Young (2014) and Lagakos and Waugh (2013) show that endogenous skill-sector sorting affects the process of structural transformation. Moreover, a number of papers have also emphasized between-generation differences in employment reallocation across sectors following long-run changes in sectoral productivity growth (Kim and Topel (1995) and Hobijn, Schoellman, and Vindas (2019)) or schooling (Porzio and Santangelo (2019)). We make two contributions to this literature. First, we provide a tractable theory to analyze how skill heterogeneity within and across generations shapes the transitional dynamics induced by technological innovations. This allows us to characterize how fast the transition is, a focus we share with Gabaix, Lasry, Lions, and Moll (2016). We use this characterization to point out which features of the economy lead to slow adjustment dynamics and large biases from welfare calculations that ignore them. Second, we estimate impulse response functions to a technological innovation in Germany and show how they discipline our theoretical mechanisms.

The only source of dynamics in our theory is the endogenous change in the distribution of skills across generations. This mechanism is consistent with recent evidence documenting the impact of labor demand shocks on young individuals’ decisions of educational attainment (Atkin (2016) and Charles, Hurst, and Notowidigdo (2018)) and field of study (Abramitzky, Lavy, and Segev (2019), Ghose (2019) and, for a review, Altonji, Arcidiacono, and Maurel (2016)). We add to this literature by documenting that cognitive-biased innovations differentially affect employment and training in cognitive-intensive occupations across generations in Germany. Several papers have proposed alternative sources of dynamics to study technological transitions, including sluggish labor mobility across sectors (Matsuyama, 1992), technology diffusion across firms (Atkeson and Kehoe, 2007), firm-level investment in R&D (Atkeson, Burstein, and Chatzikonstantinou, 2018), endogenous creation of new tasks for labor in production (Acemoglu and Restrepo, 2018), mobility costs of heterogeneous workers (Dvorkin and Monge-Naranjo, 2019), and rising wealth inequality via permanent changes in the returns to wealth following increases in automation (Moll, Rachel, and Restrepo, 2019). Our paper complements this literature by analyzing empirically and theoretically how the endogenous dynamics of skill heterogeneity across generations affects the economy’s adjustment to skill-biased technological innovations.

An extensive literature has analyzed the labor market consequences of technological innovations. We depart from the canonical framework in Katz and Murphy (1992) by modeling the supply of skills across technologies at different time horizons. Specifically, given the skill distribution at any point in time, the short-run skill supply to each technology arises from the static sorting decision of workers. This static assignment structure has been used in a recent literature analyzing how labor markets respond to a variety of shocks – e.g., Costinot and Vogel (2010), Acemoglu and Autor (2011), Hsieh, Hurst, Jones, and Klenow (2013), Burstein,
Morales, and Vogel (2016), and Adão (2016). In addition, our theory entails slow-moving changes in skill supply that arise from the entry of young generations with different skills than those of previous generations, as in Chari and Hopenhayn (1991), Caselli (1999) and Galor and Moav (2002). We show that the combination of these features yields tractable expressions for the equilibrium dynamics that resemble a $q$-theory of skill investment. We exploit the parsimony of our theory to establish that higher levels of technology-skill specificity and skill investment costs for younger generations generate slower adjustments following skill-biased innovations. We then link the two adjustment margins in our theory to observable responses of labor market outcomes within and between generations. Our empirical application indicates that separately allowing for these two forces is important in the context of the recent experiences of developed countries, in general, and Germany, in particular.

Our paper is also related to the literature that has estimated the distributional consequences of shocks to the demand and supply of skills – for a review, see Acemoglu and Autor (2011). Our empirical analysis follows the literature studying the impact of new technologies on the demand of skills across occupations with different task intensity – e.g., Autor, Levy, and Murnane (2003), Autor and Dorn (2013) and Acemoglu and Restrepo (2017). As Akerman, Gaarder, and Mogstad (2015), we estimate the labor market consequences of broadband internet adoption. While they focus on the impact on educational composition of employment in Norwegian firms, we estimate its effect on the occupation composition of employment across German local labor markets. Similar to Autor and Dorn (2009), we find that the impact of new technologies differs for younger and older workers. Relative to this literature, our results indicate that such reduced-form evidence estimated at short horizons is informative about structural parameters governing the dynamic adjustment to new technologies, but they also caution against directly extrapolating from it when technological transitions are slow.\footnote{Heckman, Lochner, and Taber (1998) point out that such extrapolations may be biased because prices and skills adjust in general equilibrium. This motivated a quantitative literature studying the labor market consequences of sector- or occupation-specific demand shocks – e.g., Lee and Wolpin (2006), Kambourov and Manovskii (2009), Dix-Carneiro (2014).}

Finally, we note that a full account of inequality trends in developed countries would require analyzing not only the impact of shocks to skill demand but also how the economy adjusts to exogenous shocks to the supply of skills, as in Katz and Murphy (1992) and Goldin and Katz (2009). For instance, Card and Lemieux (2001) show that generation-specific skill supply shocks are important determinants of inequality trends. As in their paper, we incorporate skill differences across generations. However, while it would be possible to study the consequences of skill supply shocks in our theory, we focus on the consequences of shocks to skill demand when skill supply endogenously responds across generations.

**Outline.** Our paper is organized as follows. Section 2 presents our model and establishes the $q$-theory representation of its equilibrium. In Section 3, we analyze how skill-biased technological innovations affect welfare and labor market outcomes over different horizons.
Sector 4 shows how technology-skill specificity and the skill investment cost determine how slow and unequal the transition is. Section 5 links the main ingredients of our theory to responses in observable outcomes for different generations of workers in the short-run. In Section 6, we empirically analyze the adjustment of developed economies to recent cognitive-biased innovations. Section 7 presents our quantitative analysis. Section 8 concludes.

2 A Model of Skilled-biased Technological Transitions

2.1 Environment

We consider a closed economy in continuous time. There is a single final good whose production uses the input of two intermediate goods. The production technology of each intermediate good requires workers to perform a technology-specific task bundle. We denote the two technologies as high-tech \((k = H)\) and low-tech \((k = L)\). There is a continuum of worker skill types, \(i \in [0, 1]\). The skill type determines the worker’s productivity with each production technology.

**Final good.** Production of the final good is a CES aggregator of the two inputs:

\[
Y_t = \left[ (A_t X_{Ht})^{\frac{\theta-1}{\sigma}} + (X_{Lt})^{\frac{\theta-1}{\sigma}} \right]^{\frac{\theta}{\theta-1}}
\]  

where \(\theta > 0\) is the demand elasticity of substitution between the low-tech and the high-tech intermediate inputs, and \(A_t\) is a shifter of the relative productivity of the high-tech input (as in Katz and Murphy (1992)).

Conditional on input prices, the cost minimization problem of firms producing the final good implies that the relative spending on the high-tech input is

\[ y_t \equiv \frac{X_{Ht}}{X_{Lt}} = \left( \frac{\omega_t}{A_t} \right)^{1-\theta} \]  

where \(\omega_t \equiv \omega_{Ht}/\omega_{Lt}\) is the relative price of the high-tech good. We normalize the price of the low-tech good to one, \(\omega_{Lt} \equiv 1\).

We consider a competitive environment where zero profit determines the final good price,

\[ P_t = (1 + y_t)^{\frac{1}{1-\theta}}. \]  

**Assignment of skills to technologies.** We assume that a worker’s skill type determines her productivity with the two technologies in the economy. For a worker of type \(i\), \(\alpha(i)\) is the overall productivity and \(\sigma(i)\) is their differential productivity in high-tech production. Specifically, we assume that the production function of the low-tech good is

\[ X_{Lt} = \int_0^1 \alpha(i)s_{Lt}(i)di, \]
and that of the high-tech good is

\[ X_{Ht} = \int_0^1 \alpha(i) \sigma(i) s_{Ht}(i) di, \quad (5) \]

where \( s_{kt}(i) \) is the density function of workers employed with technology \( k \) at time \( t \).

We assume a competitive labor market with zero profit in low-tech and high-tech production. In equilibrium, the wage rates of skill type \( i \) with the \( H \) and \( L \) technologies are respectively given by

\[ w_{Ht}(i) = \omega_t \sigma(i) \alpha(i) \quad \text{and} \quad w_{Lt}(i) = \alpha(i). \quad (6) \]

As in Roy (1951), workers self-select across technologies to maximize labor income. Thus, the labor income of a worker with skill type \( i \) is

\[ w_t(i) = \max\{\omega_t \sigma(i), 1\} \alpha(i). \quad (7) \]

The technology-skill assignment in equation (7) plays a central role in determining the economy’s adjustment to technological shocks. Equation (7) illustrates that such an assignment depends on the endogenous price \( \omega_t \) defining the relative value of one unit of effective labor employed in high-tech production, as well as the exogenous function \( \sigma(i) \) defining the differential productivity of type \( i \) in high-tech production. Without loss of generality, we assume that \( \sigma(i) \) is increasing: we order types such that higher \( i \) types have higher relative productivity in high-tech production. Recent papers have considered a similar structure of endogenous sorting of workers to different technologies – e.g., Acemoglu and Autor (2011), Costinot and Vogel (2010), Adão (2016).

In our theory, \( \omega_t \) is a natural measure of inequality as it is the endogenous relative wage rate of skill types employed in different technologies conditional on their productivity. In what follows, we will refer to \( \omega_t \) as the relative technology-specific wage or, sometimes, simply as the relative wage. However, it is important to notice that movements in \( \omega_t \) are not perfectly aligned with movements in the relative labor income of high-tech employees. As pointed out by Heckman and Honore (1990), the endogenous assignment problem in (7) implies that high-tech relative labor income may change due to changes in the “selection” of skill types employed in high-tech production – that is, changes in the average \( \sigma(i) \) and \( \alpha(i) \) of types employed with the \( H \) technology. Adão (2016) shows that, depending on the shape of \( \alpha(i) \), these selection forces may amplify or offset the impact of \( \omega_t \) on the average income of high-tech employees.

**Skill investment.** We now endogeneize the distribution of skills by allowing workers to direct their skill investment decisions to target particular skill types. After we define the competitive equilibrium, we discuss the economic interpretation of our main assumptions as well as why they yield a mathematically tractable theory of technological transitions.
We consider an overlapping generations setting in which the birth and death of workers follows a Poisson process with rate $\delta$. At each point in time, workers use their labor earnings to purchase the final good. Utility is the present value of a logarithmic flow utility discounted by a rate $\rho$. For a worker of type $i$ born at time $t$, lifetime utility is

$$V_t(i) = \int_t^{\infty} e^{-(\rho+\delta)(s-t)} \log \left( \frac{w_s(i)}{P_s} \right) ds.$$  

Crucially, as in Chari and Hopenhayn (1991) and Caselli (1999), we allow workers to acquire different skills at birth taking into account the value of future earnings streams. Given the future path for the wage distribution $\{w_s(i)\}_{s>t}$, workers born at time $t$ can pay a utility cost to select a lottery $\tilde{s}_t(i)$ over skill types. If they do not pay the cost, their type is drawn from an exogenous distribution of innate ability, $\bar{s}_t(i)$. A worker’s type is then fixed during their lifetime.

Formally, we assume that the cost of the lottery is proportional to the Kullback-Leibler divergence between the lottery $\tilde{s}_t(i)$ and the baseline distribution $\bar{s}_t(i)$, so that workers of the cohort born at time $t$ solve the following skill investment problem:

$$\max_{\tilde{s}_t(.) : \int_0^1 \tilde{s}_t(i) di = 1} \int_0^1 V_t(i) \tilde{s}_t(i) di - \frac{1}{\psi} \int_0^1 \log \left( \frac{\tilde{s}_t(i)}{\bar{s}_t(i)} \right) \bar{s}_t(i) di.$$  

The positive parameter $\psi$ governs the cost of targeting particular skill types. In the limit when $\psi \to 0$, the cost of targeting a particular skill type is infinite and the economy’s skill distribution does not respond to changes in the lifetime earnings of different skill types. Whenever $\psi > 0$, the optimal lottery $\tilde{s}_t(i)$ endogenously responds to the relative present discounted value of different skill types, $V_t(i)$.

**Equilibrium.** The assumption that only new generations choose skill lotteries implies that the evolution of the skill distribution $s_t(i)$ is given by the following Kolmogorov-Forward equation,

$$\frac{\partial s_t(i)}{\partial t} = -\delta s_t(i) + \delta \tilde{s}_t(i).$$  

Finally, the economy’s equilibrium must satisfy market clearing for all $t$. By Walras law, it is sufficient that relative demand and supply of the high-tech good are equal:

$$y_t = \omega_t x_t$$  

where $y_t$ is given by (2) and $x_t$ is the ratio of high- to low-tech production given by (4)–(5).
Definition 1 (Competitive Equilibrium) Given an initial skill distribution \( s_0(i) \) and exogenous paths for \( \{A_t, \bar{s}_t(i)\}_{t \geq 0} \), a competitive equilibrium is a path of the technology-skill assignment \( \{G_t(i) : i \in [0,1] \rightarrow \{H,L\}\}_{t \geq 0} \), the skill distribution \( \{s_t(i)\}_{t \geq 0} \), the skill lottery \( \{\tilde{s}_t(i)\}_{t \geq 0} \), the relative value of output \( \{y_t\}_{t \geq 0} \), the relative wage and final price index \( \{\omega_t, P_t\}_{t \geq 0} \), such that

1. Given \( \omega_t \), the technology-skill assignment is given by the self-selection decisions in (7).
2. Given \( \{\omega_t\}_{t \geq 0} \), the skill lottery is given by the skill investment decisions of new cohorts in (9).
3. Given \( s_0(i) \) and \( \{\tilde{s}_t(i)\}_{t \geq 0} \), the skill distribution follows the Kolmogorov-Forward equation (10).
4. The final price index is given by (3).
5. For all \( t \geq 0 \), the technology-skill assignment, the skill distribution, the relative value of output, and the relative wage satisfy the market clearing condition in (11).

Discussion. A number of comments on the assumptions and their economic interpretation are in order. There are admittedly four strong assumptions that we make for simplicity and tractability. The first is that there is a continuum of skill types that determine the productivity in each technology. The second is that \( \bar{s}_t(i) \) is exogenous. The third is that only new incoming generations can invest in skills in response to changes in relative wages. Old generations may only respond to such wage changes by moving across technologies but not by changing their skill-type. The fourth is that skill investments have an uncertain outcome represented by the skill lottery \( \tilde{s}_t(i) \) whose cost takes the particular functional form in (9).

First, we assume the existence of a continuum of skills for two main reasons. As discussed below, this assumption implies that changes in the technology-skill assignment are smooth along the transition – that is, any relative wage change triggers the re-allocation of a positive mass of skill types. Second, as discussed in Acemoglu and Autor (2011), Roy-like skill heterogeneity yields responses in worker allocations and wages following technological innovations that do not arise in the canonical model with skills specified in terms of observable worker attributes. Such heterogeneity then allows us to study, for example, how technology-skill specificity affects the economy’s adjustment.

Regarding a skill-type’s economic interpretation, in Appendix E.1 we provide a microfoundation of (4)–(5) where the production of each good combines individual-level output given by a Cobb-Douglas function of each worker’s "cognitive" and "non-cognitive" task input. Production of the \( H \) good is more intensive in cognitive tasks, with \( \sigma(i) \) denoting the \( H \)-to-\( L \) output ratio of \( i \)’s differential ability to perform cognitive tasks. Thus, to observe a type \( i \) in this setting, it is necessary to know each worker’s ability to perform cognitive and non-cognitive tasks. We assume that workers and firms observe such abilities, but treat them as unobservable to researchers.

The second and third assumptions imply that the flow of new workers to a particular point in the skill distribution is independent of the current skill distribution (as can be seen from equation (10)). This simplifies the law of motion of the skill-distribution and allows us to characterize its dynamics in general equilibrium. The independence results from the
fact that skill investment decisions are independent from a worker’s current skill-type (since only young workers invest and are born without a type) and because $\bar{s}_t(i)$ is exogenous. In Appendix B, we relax both assumptions. First, we endogenize $\bar{s}_t(i)$ by considering an extension where workers can "learn from others." Specifically, we assume that $\bar{s}_t(i)$ depends on the current skill distribution in a way that makes it easier for workers to target skills that are already abundant. Second, we allow old generations to re-optimize their skill investments as well. We show that what is important for our main results in the coming sections is that the cost of skill investment is lower for younger generations when compared to that for older generations. It is not essential that this cost is infinite for older generations, as in our baseline specification.

Our preferred economic interpretation of these baseline assumptions is that changes in relative wages may induce older workers in the labor market to switch towards sectors or occupations that require similar skills and may thus entail minimal re-training. To fundamentally change career paths by acquiring completely different skills, however, they may face a high cost. For younger workers though, such skill investments are less costly due to lower opportunity cost or higher ability to learn new skills. For tractability, we collapse these investments that in reality occur either through formal schooling or on-the-job into a one-time decision upon entering the market.

Regarding the fourth assumption, we make it purely for reasons of tractability. Different from theories of uni-dimensional human capital investment, workers in our theory can direct their investments to target specific skill types. Yet, mathematically, this directed skill investment problem is in principle substantially more complex. As we will see below, assuming that ex-ante identical workers choose an uninsurable lottery by incurring the entropy-based cost delivers a tractable problem with a non-degenerate skill distribution as a solution. What is important for our results though is not that workers are ex-ante identical, but (again) the independence of the skill investment from a worker’s current skill-type. As for the entropy cost function, it has a long tradition in macroeconomics. As discussed later, this function yields the continuous time analog of the optimal skill investment in an environment in which worker’s ability to acquire a discrete number of skills follows a Type 1 extreme-value distribu-

---

9In line with this interpretation, Lee and Wolpin (2006) show that older workers exhibit much lower mobility across occupations and sectors than younger workers.

10Note that it is straight forward to extend our model to introduce ex-ante heterogeneity in observed worker attributes that only affect $s(i)$ and $\psi$ in the optimal skill investment problem in (9). The overall skill lottery in this extension is simply the average of lotteries across worker-groups with different attributes. Such an extension does not affect our main theoretical insights, but affects the mapping of the ingredients of the model to the data.

11Such assumptions would be violated if the type of an individual entering the skill lottery affects the relative cost or benefit of particular lotteries. This is the case, for example, if there is inter-generation transmission of skills, or skill acquisition has monetary costs in an environment with credit frictions.

12For example, it has been used to compute the distance between distributions in frameworks with rational inattention (Sims (2003)) and model uncertainty (Hansen and Sargent (2008). Note, however, that the fact the cost is proportional to the relative entropy is not as important for our main results, since in later sections we log-linearize the path for all variables around the stationary equilibrium. Instead, what matters is the curvature of the distance metric around the stationary equilibrium, similar to investment problems with a convex cost of adjustment.
In our theory though, having a continuum of skill types is useful when combined with continuous time because it implies that the dynamic adjustment of all outcomes is smooth along the equilibrium path. This helps us sharply characterize the economy’s transitional dynamics in general equilibrium.

Our preferred interpretation for the uncertainty of the skill type realization is that individuals with different unobservables may have heterogeneous returns to education and on-the-job training. This is in fact consistent with the evidence in Carneiro, Heckman, and Vytlačil (2011). Our model treats this heterogeneity in unobservables through the uncertainty of the type realization.

2.2 Static and dynamic equilibrium conditions

We now proceed to derive equilibrium conditions in two steps. First, we consider static conditions that, given the skill distribution \( s_t(i) \) at time \( t \), determine the technology-skill assignment, the relative wage \( \omega_t \), and the relative output value \( y_t \). Second, we consider dynamic conditions that, given the path of the relative wage \( \{\omega_t\}_{t \geq 0} \), determine the optimal skill lottery chosen by entering generations \( \{\bar{s}_t(i)\}_{t \geq 0} \) and thus the evolution of the skill distribution \( \{s_t(i)\}_{t \geq 0} \).

Static equilibrium conditions. The endogenous sorting decision in (7) determines the assignment of skill types to technologies. It implies that types self-select to work with the technology that yields the highest labor earnings. Thus, high-\( i \) (low-\( i \)) types receive higher relative earnings in high-tech (low-tech) production and choose to be employed with that technology. Since \( \sigma(i) \) is increasing, the assignment is described by a threshold \( l_t \) characterizing the type that is indifferent between working with any of the two technologies. The following lemma formalizes this discussion.

**Lemma 1 (Equilibrium Assignment)** Worker types \( i \leq l_t \) are employed in low-tech production with labor income of \( \omega_t(i) = \alpha(i) \). Worker types \( i > l_t \) are employed in high-tech production with labor income of \( \omega_t(i) = \omega_t \sigma(i) \alpha(i) \). The threshold is determined by the indifference condition

\[
\omega_t \sigma(l_t) = 1. \tag{12}
\]

Lemma 1 links the relative wage \( \omega_t \) to the allocation of skill types across technologies. Condition (12) is central to understand the impact of technological shocks on the allocation of workers across technologies. The slope of \( \sigma(l_t) \) determines the strength of the comparative advantage in high-tech production of skill types slightly below \( l_t \) compared to that of skill type \( l_t \). Thus, as shown by Acemoglu and Autor (2011) and Costinot and Vogel (2010), it essentially determines how much the relative wage must increase to induce the reallocation of skill types below \( l_t \) from the \( L \) to the \( H \) technology. Accordingly, the inverse elasticity of \( \sigma(i) \) controls the

---

13With a discrete number of skill types, our specification yields skill choices that are isomorphic to those implied by a discrete-choice problem a la McFadden et al. (1973). It can thus be seen as a generalization of this framework when there is a continuous of available choices.
subset of skill types that reallocate across technologies in response to changes in the relative wage. Formally, (12) implies that

$$\eta \equiv \left| \frac{\partial \log l_t(\omega_t)}{\partial \log \omega_t} \right| = \left( \frac{\partial \log \sigma(l_t)}{\partial \log i} \right)^{-1}.$$  

where $l_t(\omega_t)$ is the implicit function defined by (12). Since the economy’s skill distribution does not adjust instantaneously, the inverse elasticity of $\sigma(i)$ plays the role of the short-run elasticity of skill supply across technologies. Then, whenever the elasticity of $\sigma(i)$ (i.e., $1/\eta$) is higher, we will say that the degree of technology-skill specificity is higher because the induced short-run worker reallocation following relative wage changes is smaller.

The technology-skill assignment in Lemma 1 together with equations (4)–(5) imply that the relative supply of high-tech production is

$$x_t(l_t,s_t) = \frac{\int_{l_t}^{1} \sigma(i)\alpha(i)s_t(i)di}{\int_{0}^{l_t} \alpha(i)s_t(i)di}. \quad (13)$$

The threshold $l_t$ is then determined by the market clearing condition in (11). Whenever $l_t$ is high, equation (12) implies that $\omega_t$ is low and, therefore, the relative demand for good $H$ is high. In this case, however, the relative high-tech supply is low as only a small share of types are employed in high-tech production. Whenever $l_t$ is low, the opposite is true. In equilibrium, there is a single threshold that equalizes relative demand and supply given the skill distribution $s_t(i)$.

**Lemma 2 (Equilibrium Threshold)** Given $s_t(i)$ and $A_t$, there is a unique equilibrium threshold $l_t$ that guarantees goods market clearing,

$$A_t^{-1}\sigma(l_t) \int_{0}^{l_t} \alpha(i)s_t(i)di = \int_{l_t}^{1} \alpha(i)s_t(i)di. \quad (14)$$

**Proof.** See Appendix A.1.

**Dynamic equilibrium conditions.** We now turn to the entrant’s forward-looking problem of choosing their skill lottery $\tilde{s}_t(i)$ given the path of the relative wage $\{\omega_s\}_{s>t}$. The solution of the maximization problem in (9) yields the following optimal lottery.

**Lemma 3 (Optimal Lottery)** Define $\log (Q_t(i)) \equiv \int_{t}^{s\wedge} e^{-(\rho+\delta)(s-t)} \max\{\log (\omega_s\sigma(i)), 0\} ds$. The optimal lottery is

$$\tilde{s}_t(i) = \frac{\tilde{s}_t(i)\alpha(i)\frac{\phi}{\rho+\delta}Q_t(i)^{\phi}}{\int_{0}^{1} \tilde{s}_t(j)\alpha(j)\frac{\phi}{\rho+\delta}Q_t(j)^{\phi}dj}. \quad (15)$$

**Proof.** See Appendix A.2.
The optimal lottery in (15) is a multinomial logit function over a continuum of types. It shows that the investment on high-\( i \) types is a function of the present value of the relative wage in high-tech production as captured by \( Q_t(i) \). The parameter \( \psi \) governs the sensitivity of the optimal lottery to changes in relative lifetime earnings. To see this more clearly, consider the stationary equilibrium with \( \omega_t = \omega \) such that

\[
s(i) = \bar{s}(i) = \frac{\bar{s}(i)W(i)^\psi}{\int_0^1 \bar{s}(j)W(j)^\psi dj}
\]

where \( \log(W(i)) = \log(\alpha(i) \max_{p+\delta} \omega \sigma(i,1)) \) is the present discounted log-wage of skill type \( i \).

In this case, the skill distribution is a constant-elasticity function of relative wages across types, where the elasticity is \( \psi \).\(^{14}\) Thus, a higher \( \psi \) implies that the long-run supply of high-\( i \) types is more sensitive to changes in the relative wage in high-tech production. Accordingly, \( \psi \) governs the long-run skill supply across technologies, which we formally define as

\[
\psi \equiv \frac{\partial \log s(i)/s(i')}{\partial \log W(i)/W(i')}
\]

In the rest of the paper, we refer to \( 1/\psi \) as the cost of skill investment, which is inversely related to the long-run skill supply across technologies.

### 2.3 Skill distribution dynamics: A \( q \)-theory of skill investment

We now combine the static and dynamic equilibrium conditions to solve for the equilibrium path of the skill distribution as well as all other equilibrium variables, given an arbitrary initial skill distribution \( s_0(i) \) and a constant path for \( \{A_t, \bar{s}_t(i)\}_{t \geq 0} \).

In principle, this involves solving a complex infinite-dimensional fixed-point problem. To see this, consider a conjectured path for the relative wage \( \{\omega_t\}_{t \geq 0} \). This path determines the skill investment decisions of new generations in (15) and, as such, the path for the skill distribution \( \{s_t(i)\}_{t \geq 0} \) from (10) given \( s_0(i) \). The relative wage path also determines the assignment threshold path \( \{l_t\}_{t \geq 0} \) from the indifference condition (12). Taken together, the skill distribution and the assignment threshold determine the relative supply of the high-tech input \( \{x_t\}_{t \geq 0} \). In an equilibrium, the relative supply of the high-tech input needs to be equal to its relative demand at the the conjectured path for the relative wage – i.e., they need to be consistent with market clearing.

Our first result approximates the solution of this fixed-point problem by considering a log-linear expansion around the stationary equilibrium. It establishes that the approximate equilibrium of this economy can be represented as that of a \( q \)-theory of skill investment, where \( q \) refers to the present discounted value of the log-relative wage or, as we call it from

\(^{14}\)Notice that the long-run equilibrium of our model is a generalization with a continuum of types of the extension of the assignment model in Acemoglu and Autor (2011) with endogenous skill supply – see Section 4.6 in Acemoglu and Autor (2011). In our framework however, along the transitional equilibrium, the skill distribution differs from the stationary skill distribution.
now on, the relative lifetime wage:

\[ \log(q_t) \equiv \int_t^\infty e^{-(\rho+\delta)(s-t)} \log(\omega_s) \, ds. \]

Specifically, we show that one does not need to keep track of the whole skill distribution to solve for the equilibrium path of the relative lifetime wage, \( q_t \), and the assignment threshold, \( l_t \). The equilibrium dynamics of these two variables are fully characterized by a simple system of linear differential equations. Letting " \( \hat \) " denote variables in log-deviations from the stationary equilibrium, the following theorem presents the system of differential equations that, given \( \hat l_0 \), determines the equilibrium path of \( \{ \hat q_t, \hat l_t \}_t \) when \( \{ A_t, \bar s_t(i) \}_{t \geq 0} \) are constant over time.\(^\text{15} \) It also characterizes the skill distribution \( \hat s_t(i) \), the optimal lottery \( \hat s_t(i) \) and relative value of output \( \hat y_t \), given the equilibrium path of \( \{ \hat q_t, \hat l_t \}_t \) and the initial distribution \( s_0(i) \).

**Theorem 1 (A \( q \)-theory of skill investment)** Suppose that \( \{ A_t, \bar s_t(i) \}_{t \geq 0} \) are constant over time.

1. Given initial condition \( \hat l_0 \) and terminal condition \( \lim_{t \to \infty} \hat l_t = 0 \), the equilibrium dynamics of \( \{ \hat q_t, \hat l_t \}_t \) are described by the system of differential equations

\[
\begin{align*}
\frac{\partial \hat l_t}{\partial t} &= -\delta \hat l_t + \frac{\eta \psi}{\theta + \kappa \eta} \delta \hat q_t, \\
\frac{\partial \hat q_t}{\partial t} &= (\rho + \delta) \hat q_t + \frac{1}{\eta} \hat l_t,
\end{align*}
\]

where \( \kappa > 0 \) is a constant.

2. The equilibrium \( \{ \hat q_t, \hat l_t \}_{t \geq 0} \) is saddle-path stable and given by

\[ \hat l_t = \hat l_0 e^{-\lambda t} \quad \text{and} \quad \hat q_t = \zeta \hat l_t \]  

where

\[ \lambda = -\frac{\rho}{2} + \sqrt{\left( \frac{\rho}{2} \right)^2 + \delta \left( \frac{\rho + \delta}{\theta + \kappa \eta} \right)} \quad \text{and} \quad \zeta = -\frac{1}{\eta \rho + \delta + \lambda}. \]

3. The equilibrium dynamics of the skill distribution \( \hat s_t(i) \), the optimal lotteries \( \hat s_t(i) \), and the value of relative high-tech output \( \hat y_t \) are given by

\[
\begin{align*}
\hat s_t(i) &= \left( I_{i > l} - \int_1^l s(i) \, di \right) \psi \hat q_t + o_t(i), \\
\hat s_t(i) &= \hat s_0(i) e^{-\delta t} + \int_0^t e^{\delta (\tau - t)} \hat s_{\tau}(i) \, d\tau, \\
\hat y_t &= (\theta - 1) \frac{1}{\eta} \hat l_t,
\end{align*}
\]

where \( o_t(i) \) is such that \( \int s(i) o_t(i) \, di = 0 \).

\(^{15}\text{Note that an initial } l_0 \text{ is determined by the initial skill distribution } s_0(i) \text{ from the static equilibrium condition (14).} \)
Theorem 1 reduces the dimensionality of the equilibrium’s fixed-point problem. It characterizes the equilibrium dynamics of \{\hat{q}_t, \hat{l}_t\}_{t \geq 0} without tracking the full skill distribution \(s_t(i)\). This is possible for three reasons. First, the dynamics of \(s_t(i)\) only depend on \(\log(Q_t(i))\) via the optimal skill lottery. Yet, \(\log(q_t)\) suffices to determine the value of most skill-types in this skill investment decision—as opposed to the full path of relative wages \(\omega_t\) in \(\log(Q_t(i))\)—because most workers never switch technologies along an equilibrium path whenever relative wages are close to their stationary level. Second, the market clearing condition (14) determining \(l_t\) only contains integrals of \(s_t(i)\). Because of the continuum of skill types, the effect of the marginal types that switch technologies are of second order when evaluating changes in these
integrals. Taken together, the two observations imply that changes in $\hat{q}_t$ over time are a function of $\hat{q}_t$ and $\hat{l}_t$, as described in (17). Finally, since the indifference condition (12) yields a mapping between $\omega_t$ and $l_t$, the dynamics of $\hat{q}_t$ can be written as a function of the future path of $l_t$, as described by (18).

3 The Adjustment to Skill-biased Technological Innovations

We now analyze the dynamic adjustment of our economy to a permanent, unanticipated increase in the relative productivity $A$. Because this innovation increases the relative productivity of workers with higher skill-types $i$ that are sorted into the $H$ sector, we refer to it as a skill-biased technological innovation. We use the results from the previous section to characterize in closed-form the dynamic responses of $q_t$, $l_t$ and $y_t$, as well as the evolution of the skill distribution $s_t(i)$. The dynamic responses indicate that the impact of new technologies on the economy may significantly change over time due to the endogenous evolution of the skill distribution across generations. How slow this adjustment is then crucially determines the average and distributional welfare consequences of new technologies.

Our results show that the economy’s adjustment is shaped by a form of Samuelson’s LeChatelier principle: the elasticity of relative output supply increases over time due to changes in the skill distribution across generations. The dynamics of this relative supply elasticity points to the risk of using naive reduced-form representations of the economy to extrapolate from observed changes for short horizons or different historical contexts. Our theory formally establishes a micro-foundation for the idea that the relative supply elasticity changes over time. In the rest of the paper, we use this micro-foundation to study the determinants of skill-biased technological innovations, and to recover them from observed short-run responses of labor market outcomes following technological innovations.

3.1 Dynamic responses of equilibrium outcomes

We assume that immediately prior to the shock at time $t = 0^−$ the economy is in a stationary equilibrium. We let $\Delta \log(A) > 0$ be the relative productivity shock, and denote log-changes in outcomes as $\Delta \log(q_t) \equiv \log(q_t/q_{0−})$, $\Delta \log(y_t) \equiv \log(y_t/y_{0−})$, and $\Delta \log(l_t) \equiv \log(l_t/l_{0−})$.

**Proposition 1 (Dynamic responses)** Given a skill-biased technological innovation $\Delta \log(A)$, the dynamic responses $\Delta \log(l_t)$, $\Delta \log(q_t)$ and $\Delta \log(y_t)$ are approximated by:

$$
\begin{bmatrix}
\Delta \log(l_t) \\
\Delta \log(q_t) \\
\Delta \log(y_t)
\end{bmatrix}
= 
\begin{bmatrix}
\frac{-\eta}{1+\kappa\eta} \\
\frac{\theta - 1}{\rho + \lambda} \\
\frac{\psi}{\lambda}
\end{bmatrix}
\Delta \log(A)
+ 
\frac{\eta}{\rho + \delta + \lambda}
\begin{bmatrix}
\frac{\rho + \delta}{\kappa} \\
\theta - 1 \\
1
\end{bmatrix}
(1 - e^{-\lambda t})
\begin{bmatrix}
\theta - 1 \\
\rho + \delta \\
\rho + \delta + \lambda
\end{bmatrix}
\Delta \log(A)
$$

where $\chi \equiv \left(\theta + \kappa\eta + \frac{\psi}{\rho + \delta}\right)(\rho + \delta)$.

17
Proof. See Appendix A.4. ■

Figure 1 illustrates these dynamic responses together with the dynamics of the skill distribution and lottery. We do so for the case where the two technologies are substitutes in production ($\theta > 1$) and $a(i) = 1$. The first term in (24) is the immediate impact of the shock represented by the responses at $t = 0$ in Figure 1. In the short-run, there are increases in both relative output ($\Delta \log(y_0) > 0$) and relative lifetime wages ($\Delta \log(q_0) > 0$). The higher relative wage in the $H$ technology induces the reallocation of skill types in the existing worker generations from the $L$ to the $H$ technology, as can be seen from the decline in the assignment threshold $l_t$, which in turn adds to the increase in relative output.

The second term in (24) describes the change in all variables along the transition. It shows that these variables converge at the constant rate $\lambda$. The increase in the relative lifetime wage in high-tech production causes entering worker generations to twist their skill lotteries $\bar{s}_t(i)$ towards high-$i$ types whose skills are more complementary to high-tech production, as illustrated in the bottom left panel of Figure 1. This triggers changes in the economy’s skill distribution $s_t(i)$ as older generations are replaced with younger generations at rate $\delta$. Along the transition, the growing mass of high-$i$ types employed with the $H$ technology implies a continuing process of relative output increase and relative wage decline. The rising relative high-tech output implies that the consumption price index in (3) falls along the transition. By reducing the relative high-tech wage, the arrival of more high-$i$ types in younger generations triggers the displacement of marginal $i$ types from high-tech production over time, as illustrated by the increasing $l_t$ in Figure 1.

Figure 1: The economy’s adjustment to a skill-biased technological shock ($\theta > 1$)
In the long-run, the economy features higher relative wage and output in high-tech production, and a larger mass of workers in the high-tech sector. The increase in high-tech employment is driven both by a skill distribution with higher mass in high-i types and a lower assignment threshold of skill types employed in technology $H$. It is important to notice that the only source of dynamics in our theory is the skill investment decision of cohorts born after the shock. Whenever incoming cohorts cannot invest in skills (i.e., $\psi = 0$), the transitional dynamics term in (24) disappears and the responses in the long-run are identical to those observed in the short-run.

We conclude this section by defining the discounted cumulative impulse response (DCIR). It conveniently summarizes the importance of transitional dynamics and thus relates to how slowly economies adjust to skill-biased innovations. Intuitively, it is the answer to the question: from the point of view of generations alive just before the innovation happens, how different is the adjustment they expect to see during their lifetime compared to the overall (long-run) adjustment? We will then say that the economy’s adjustment is faster when existing generations expect to see more of the overall adjustment during their lifetime (i.e., the DCIR is smaller). Instead, the adjustment is slower when these generations expect to miss more of it (i.e., the DCIR is larger).

**Definition 2 (Discounted Cumulative Impulse Response)** For any variable $z_t$ and innovation $\Delta \log(A)$, the discounted cumulative impulse response DCIR($z$) is:

$$DCIR(z) = \left| \int_0^{\infty} \delta e^{-\delta t} \frac{\Delta \log(z_t)}{\Delta \log(A)} dt - \frac{\Delta \log(z_t)}{\Delta \log(A)} \right|.$$  

Formally, the DCIR is the distance between the long-run response and the expected response of $\log(z_t)$ during the initial generations’ lifetime, since all generations born before the shock have exponentially distributed death probabilities with rate $\delta$. This is a natural and convenient measure of the importance of transitional dynamics in our context for a number of reasons. First, it encodes not only the rate of convergence $\lambda$ but also other relevant features of the impulse responses like how front-loaded they are. For instance, one could have an adjustment where the short- and long-run changes are almost identical—implying a DCIR close to zero—but the rate of convergence $\lambda$ from the short- to the long-run is very low. According to the DCIR, we would intuitively say that it is a fast adjustment since almost all of the overall adjustment is completed on impact, whereas looking at $\lambda$ alone would give the impression that the adjustment is slow. Second, the DCIR does not mechanically scale with the replacement rate of generations. If $\delta$ is higher, this mechanically increases $\lambda$ (making the adjustment faster) but it also decreases the expected lifetime of a generation (meaning they expect to miss more of the adjustment). Finally, in the next section, we show that this measure of how slowly economies adjust is the relevant one for analyzing the welfare consequences of skill-biased innovations.
3.2 Changes in average welfare and lifetime welfare inequality

We now use the characterization of the economy’s transitional dynamics above to compute the welfare consequences of skill-biased technological innovations. Our welfare measure is the ex-ante expected utility of individuals born at each point in time, which is given by the solution of the utility maximization problem in (9). Given the log-utility assumption, the consumption-equivalent welfare gain is the change in the ex-ante utility multiplied by $(\rho + \delta)$. Equations (7) and (9) imply that the consumption-equivalent utility of cohort $\tau$ is

$$U_{\tau} \equiv (\rho + \delta) \int_{0}^{1} \tilde{s}_{\tau}(i) \left[ \log \left( \alpha(i)^{\frac{1}{\rho+\delta}} Q_{\tau}(i) \right) - \int_{\tau}^{\infty} e^{-(\rho+\delta)(t-\tau)} \log(P_{t}) \, dt - \frac{1}{\psi} \log \left( \frac{\tilde{s}_{\tau}(i)}{\bar{s}(i)} \right) \right] \, di,$$

where $\tilde{s}_{\tau}(i)$ is the skill distribution of cohort $\tau$, $Q_{\tau}(i)$ is the present-discounted value of $\max\{\log(\omega_{t} \sigma(i)), 0\}$ defined in Lemma 3, and $P_{t}$ is the ideal price index defined in (3).

To obtain an average welfare measure, we take an utilitarian approach by considering a weighted average of the ex-ante utility of different cohorts where cohort $\tau$’s weight is $r_{\tau}$—as in Calvo and Obstfeld (1988) and Itskhoki and Moll (2019).\(^{16}\) The average welfare is

$$\bar{U} = r \int_{0}^{\infty} e^{-r_{\tau}} U_{\tau} \, d\tau.$$

To obtain a measure of welfare inequality, notice that the relative wage is the only endogenous component of the relative earnings of skill types employed in different technologies. Thus, we define lifetime welfare inequality for cohort $\tau$ as the consumption-equivalent of the present discounted value of the relative wage, $(\rho + \delta) \log q_{\tau}$. We again aggregate different worker cohorts by defining the economy’s average lifetime welfare inequality as

$$\bar{\Omega} \equiv (\rho + \delta) r \int_{0}^{\infty} e^{-r_{\tau}} \log(q_{\tau}) \, d\tau.$$

The following proposition characterizes the induced changes in average welfare $\Delta \bar{U} \equiv \bar{U} - U_{0-}$ and lifetime welfare inequality $\Delta \bar{\Omega} \equiv \bar{\Omega} - \log(q_{0-})$.

**Proposition 2 (Average welfare and lifetime welfare inequality)** The changes in average welfare $\Delta \bar{U}$ and lifetime inequality $\Delta \bar{\Omega}$ are approximately:

$$\Delta \bar{U} = \frac{y_{\infty}}{1 + y_{\infty}} \Delta \log(A) - \left( \frac{y_{\infty}}{1 + y_{\infty}} - \frac{e_{\infty}}{1 + e_{\infty}} \right) \Delta \bar{\Omega}$$

$$\Delta \bar{\Omega} = (\rho + \delta) \left( \frac{\Delta \log(q_{\infty})}{r + \lambda} + \frac{\lambda r}{r + \lambda} \int_{0}^{\infty} \tilde{q}_{\tau} \, d\tau \right)$$

where $e_{\infty} \equiv \left( \int_{l_{\infty}}^{1} s(i) \, di \right) / \left( \int_{0}^{l_{\infty}} s(i) \, di \right)$ is the relative high-tech employment in the long-run.

\(^{16}\)The parameter $r$ captures the idea that the welfare of future generations may be discounted at each point in time. To see this, it is useful to consider two extreme cases. When $r \to \infty$, the social welfare function completely ignores the welfare of all future cohorts. In the other extreme, when $r \to 0$, the social welfare function only gives positive weight to generations born in the new stationary equilibrium.
Proof. See Appendix A.5. ■

First, consider the change in lifetime welfare inequality. It trivially increases when the long-run change $\Delta \log(q_\infty)$ is larger, but also when the overall magnitude of the response along the transition is larger, as measured by the cumulative impulse response $\int_0^\infty \hat{q}_\tau d\tau$. Furthermore, the relative importance of the cumulative impulse response is increasing in $\lambda$ since it governs how fast lifetime inequality decays, and as such, between-generation differences in lifetime inequality.

Second, the proposition shows that the innovation causes average welfare to increase, but this increase is partially offset by higher welfare inequality whenever the $H$ technology has a higher average wage than the $L$ technology (i.e., $y_\infty > e_\infty$).\footnote{Such a case arises if absolute advantage is positively correlated with the comparative advantage to operate the $H$-technology – i.e., $a(i)$ is increasing in $i$.} This offsetting effect of inequality arises because there are two consequences of the increase in the relative high-tech wage (i.e., $\Delta \log q_t > 0$). It increases the average wage in the economy by increasing the wage of those employed in high-tech production – a share $\frac{e_\infty}{1 + e_\infty}$ of workers. However, it also raises the economy’s price index by increasing the consumption cost of the high-tech good – a share $\frac{y_\infty}{1 + y_\infty}$ of overall output. The negative impact of the price index on the average real wage dominates whenever the high-tech output share is higher than its employment share.

Importantly, Proposition 2 shows that the average and distributional welfare consequences of new technologies depend crucially on how slow the adjustment is. To see this, note that when $r = \delta$ then $\Delta \hat{\Omega} = (\rho + \delta)(\Delta \log(q_\infty) + DCIR(q) \Delta \log(A))$. Whenever the increase in the relative supply of $H$ goods happens mostly through changes in the distribution of skills as opposed to worker reallocation within a generation, then such increases will take many generations to materialize. This implies that the average wage increase will be back-loaded and come far in the future, whereas the inequality increase will be front-loaded (i.e., $DCIR(q)$ larger). In other words, generations born before the shock expect to see a small fraction of the long-run increase in relative output and decline in the price index during their lifetimes, but expect to experience larger changes in inequality compared to the long-run. As a result, the increase in average welfare (lifetime welfare inequality) will be smaller (larger) in such economies.

3.3 LeChatelier Principle and the risks of extrapolation

In this section, we connect the adjustment predicted by our theory to that implied by a reduced-form supply and demand framework. For each $t$, our model implies that the relative output and wage in high-tech production solves the following system of equations:

$$\Delta \log(x_t) = (\theta - 1) \Delta \log(A) - \theta \Delta \log(\omega_t), \quad (25)$$

$$\Delta \log(x_t) = q_t \Delta \log(\omega_t). \quad (26)$$

The first expression is the “relative demand equation” in (2). As discussed above, it is the
cornerstone of the canonical model in Katz and Murphy (1992) and its extensions reviewed by Acemoglu and Autor (2011). The demand equation relates changes in relative demand, \( \Delta \log(x_t) \), to changes in relative productivity, \( \Delta \log(A) \), and relative wages, \( \Delta \log(\omega_t) \). The parameter \( \theta \) is the elasticity of substitution between the output of skill types employed in different technologies.

The second expression is the “relative supply equation” linking changes in relative output supply, \( \Delta \log(x_t) \), to changes in relative wages, \( \Delta \log(\omega_t) \). The parameter \( \varphi_t \) is the elasticity of relative output supply, which is a function of the degree of skill-technology specificity and the cost of adjusting skill investment. Specifically, we show in Appendix A.6 that the impulse response functions in Proposition 1 yield

\[
\varphi_t = \frac{\kappa \eta \chi + \theta \psi (1 - e^{-\lambda t})}{(\theta + \kappa \eta)(\delta + \rho) + \psi e^{-\lambda t}},
\]

where \( \varphi_t > 0 \) and \( \frac{\partial \varphi_t}{\partial t} \geq 0 \) for all \( t \).

The positive and increasing \( \varphi_t \) over time implies a form of Samuelson’s LeChatelier principle: the relative supply of high-tech output is more elastic over longer horizons due to changes in the skill distribution over time. This is the main difference between our theory and the canonical model of Katz and Murphy (1992) in which relative supply does not respond to changes relative wages (\( \varphi_t = 0 \)).

The positive elasticity arises from two sources in our framework. First, even if skills are exogenous (\( \psi = 0 \)), the relative supply elasticity is positive because a fraction of the heterogeneous workers in the economy decides to reallocate across technologies in response to changes in the relative wages, as in Acemoglu and Autor (2011). Second, the change in the skill investment decision of cohorts born after the shock introduces an additional adjustment margin for relative supply. This margin becomes stronger over time as younger cohorts replace older cohorts, driving \( \varphi_t \) upwards along the transition – in fact, \( \frac{\partial \varphi_t}{\partial t} > 0 \) if, and only if, \( \psi > 0 \).

By microfounding the dynamics of the relative supply elasticity, our results point to two types of risks associated with using reduced-form estimates of \( \varphi_t \). The first arises when extrapolating from observed responses in the economy over any given horizon. Consider a researcher who knows \( \theta \) and obtains \( \varphi_T \) and \( \Delta \log A \) from the estimated impact of a technological shock on relative output and wages at horizon \( T \). Suppose this researcher then uses her estimates to analyze the consequences of skill-biased innovations. It is clear that the time-varying nature of the reduced-form parameter \( \varphi_t \) implies that predictions will be biased for any period other than \( T \). Specifically, the researcher’s predictions will overestimate (underestimate) inequality changes and underestimate (overestimate) relative output changes for any period after (before) horizon \( T \). The researcher will also obtain biased estimates of the welfare consequences of the shock as she will wrongly conclude that the change in lifetime welfare inequality is \((\rho + \delta)\Delta \log q_T = \Delta \log \omega_T\), which may be higher or lower than \( \Omega \) depending on
the estimation horizon $T$.\textsuperscript{18}

The second type of risk arises when extrapolating from past technological transitions in different contexts: a type of threat to external validity. Consider a researcher that has estimates of the full path for the reduced-form elasticity $\varphi_t$ obtained in a particular historical episode. Suppose this researcher uses such estimates to make predictions about the dynamic consequences of a new technological innovation in a different economy or historical context. Our theory shows that if either technology-skill specificity ($\eta$) or the cost of skill investment ($\psi$) are different, then the path of $\varphi_t$ will be different as well. Thus, the researcher will obtain biased predictions about the economy’s adjustment at all horizons whenever the nature of technology and skills or the underlying flexibility of skill investment are significantly different across episodes.

4 Determinants of Skill-biased Technological Transitions

In this section, we analyze how parameters governing technology-skill specificity and the cost of skill investment affect the economy’s adjustment to a skill-biased technological innovation. The comparative static exercises speak to when is it that technological transitions are more unequal and slower, with the adjustment mainly driven by changes in the skill distribution across generations as opposed to fast reallocation of workers within a generation. As such, they help interpret differences between historical episodes or future transitions where the nature of technological innovations and associated skills differ. Furthermore, describing which type of economies adjust more slowly helps understanding the welfare consequences of technological innovations and when is it that researchers should be more cautious when extrapolating from reduced-form elasticities estimated using observations at short horizons.

4.1 Comparative statics with respect to technology-skill specificity

Consider first how the economy’s dynamic responses change with the degree of technology-skill specificity, i.e., with how different skill types are in terms of their relative productivity in the high-tech sector. In our theory, technology-skill specificity is inversely related to the short-run skill supply elasticity $\eta$. Thus, this exercise speaks to differences in the dynamics across episodes in which skills of incumbent workers were more or less easily transferable for use in the new improved technology.

Figure 2 shows the responses of two economies that differ in their degree of technology-skill specificity, i.e., with how different skill types are in terms of their relative productivity in the high-tech sector. In Appendix E.2, we consider researchers taking alternative approaches that ignore the dynamics of the skill distribution across generations.

\textsuperscript{18}To see this, consider the bias in the extreme case of $T = 0$, which yields the highest possible value of $\Delta \log \omega_0$:

$$
\Delta \log \omega_0 - \Delta \bar{\Omega} = \left(1 + \frac{\rho + \delta}{r + \lambda}\right) \lambda^2 \int_0^\infty \dot{q}_t dt > 0.
$$

In this case, the bias is proportional to the cumulative impulse response of inequality since an overall larger magnitude of the transitional dynamics amplifies the difference between the relative wage at $t = 0$ and the present discounted value of the change in lifetime inequality, $\Delta \bar{\Omega}$. In Appendix E.2, we consider researchers taking alternative approaches that ignore the dynamics of the skill distribution across generations.
skill specificity. The black lines show the responses of an economy with a high value of $\eta$ (i.e., low technology-skill specificity). The blue lines show the responses of an economy with a low value of $\eta$ (i.e., high technology-skill specificity). In Appendix A.7, we support the graphical representation in Figure 2 with Proposition A.1 which establishes how $\eta$ affects the short- and long-run responses, the cumulative impulse response, and the rate of convergence.

Figure 2: Comparative statics with respect to $\eta$

In the short-run, when technology-skill specificity is higher (lower $\eta$), a smaller mass of workers reallocate across technologies in response to the shock (i.e., $\frac{\partial}{\partial \eta} \mid \Delta \log(l_0) > 0$). As a result, the short-run increase in relative wages and lifetime inequality $q$ are larger (i.e., $\frac{\partial}{\partial \eta} \mid \Delta \log(q_0) < 0$) and the increase in relative output is smaller (i.e., $\frac{\partial}{\partial \eta} \mid \Delta \log(y_0) > 0$). The larger increase in $q$ then implies that younger entering generations have stronger incentives to invest in those skills that are more complementary to the $H$ technology. As a consequence, there are larger differences in skill heterogeneity across generations. Then, the overall magnitude of the adjustment of $y_t$ and $q_t$ that happens along the transition is larger as well because larger changes in the skill distribution (the only slow moving state variable) take place as younger generations replace older generations. Formally, we measure this as the cumulative impulse response function being larger (e.g., $\frac{\partial}{\partial \eta} \int_{0}^{\infty} q_t dt < 0$). Graphically, it corresponds to the blue

---

19 The figure shows the case where $\theta > 1$ and the threshold’s cumulative impulse response increases with $\eta$.
20 This follows directly from the fact that $s_\tau(i)$ is proportional to $\hat{q}_\tau$ in (21) and $\hat{q}_\tau$ is larger for all $\tau$ when technology-skill specificity is higher.
shaded areas being larger than the black shaded areas.

Moreover, while the larger changes in the skill distribution could have implied a larger (smaller) overall long-run adjustment in relative output (lifetime inequality), it turns out that the smaller (larger) short-run response dominates. Thus, the long-run adjustment in relative output (lifetime inequality) is smaller (larger) in the economy with higher technology-skill specificity (i.e., $\frac{\partial |\Delta \log(y_{\infty})|}{\partial \eta} > 0$, $\frac{\partial |\Delta \log(q_{\infty})|}{\partial \eta} < 0$).

Finally, we can come back to the DCIR to summarize how technology-skill specificity affects the importance of transitional dynamics.

**Theorem 2.1 (DCIR comparative statics with respect to $\eta$)** Following a skill-biased technological innovation $\Delta \log(A)$, lifetime inequality ($q$) and relative output ($y$) adjust slower in economies with a higher degree of technology-skill specificity (i.e., lower $\eta$). Formally,

$$\frac{\partial DCIR(q)}{\partial \eta} < 0, \quad \frac{\partial DCIR(y)}{\partial \eta} < 0.$$  

**Proof.** We have that $DCIR(q) = \frac{\lambda \delta}{\lambda + \delta} \left| \int_{0}^{\infty} \hat{q}_t dt \right| \Delta \log(A)$. From Proposition A.1 in Appendix A.7, we know that when $\eta$ is higher then the rate of convergence $\lambda$ and the cumulative impulse response $\int_{0}^{\infty} \hat{q}_t dt$ are both smaller. The proof for $y_t$ is analogous. ■

The theorem shows that the DCIR is larger and transitional dynamics are more important in economies with a higher degree of technology-skill specificity. That is, the adjustment is slower and more back-loaded, with generations alive before the shock expecting to see less of the long-run changes during their lifetime. Intuitively, this is because the muted reallocation of workers at shorter horizons causes larger endogenous changes in the skill distribution along the transition due to the larger increases in lifetime inequality. 21

It is also worth noting that the slower adjustment in economies with higher technology-skill specificity does not mechanically follow from the fact that reallocation is smaller in the short-run, neither from the fact that old generations are replaced slowly at rate $\delta$. Instead, it follows from the skill distribution responding to stronger changes in relative wages. To make this point clear, Proposition 3 shows that technology-skill specificity has no effect on the DCIR of $q$ and $y$ when either the cost of skill investment for young generations is large ($\psi \to 0$) or the high- and low-tech inputs have a large elasticity of substitution and thus the relative wage responds little to technological innovations ($\theta \to \infty$).

**Proposition 3 (Interaction of technology-skill specificity with $\psi$ and $\theta$)**

1. Small changes in the skill distribution ($\psi \to 0$)

$$\left. \frac{\partial DCIR(y)}{\partial \eta} \right|_{\psi \to 0} = \left. \frac{\partial DCIR(q)}{\partial \eta} \right|_{\psi \to 0} = 0,$$

21More generally, after a shock, economies with a less mobile stock of a factor experience stronger changes in the flow of entrants because of larger changes in relative prices. For example, when old vintages of physical capital are less adaptable to use in a new sector, then the flow of firm entrants with newer capital vintages will be larger.
2. Small changes in inequality ($\theta \rightarrow \infty$)

\[
\left. \frac{\partial DCIR(y)}{\partial \eta} \right|_{\theta \rightarrow \infty} = \left. \frac{\partial DCIR(q)}{\partial \eta} \right|_{\theta \rightarrow \infty} = 0
\]

Proof. See Appendix A.8. ■

To summarize, the results in this section highlight that how economies adjust to technological innovations depends crucially on the degree of technology-skill specificity. When technology-skill specificity is higher, technological transitions will be driven more by changes in the skill distribution across generations than the reallocation of workers within a generation. As a result, they will be more unequal and play out slower over many generations.

4.2 Comparative statics with respect to the cost of skill investment

We now consider how the parameter $\psi$ affects the economy’s adjustment to a skill-biased technological innovation. This comparative static exercise speaks to differences across historical episodes in the gap between younger and older generations’ ability to invest in skills. Specifically, it captures situations in which younger generations may have found it easier to invest in skills in high demand than older generations due to, for example, better educational systems, the availability of vocational training for young workers, or the absence of re-training programs for older generations.

Figure 3 illustrates the responses of two economies that differ with respect to the skill investment cost of young generations. The blue lines depict the adjustment of an economy with a low investment cost (i.e., high value of $\psi$), and the black lines represent the responses of an economy with a high investment cost (i.e., low value of $\psi$). Appendix A.7 presents a formal proposition supporting the graphical representation in Figure 3.

In the short-run, both economies exhibit identical responses in relative output and worker allocation. This follows from the fact that $\psi$ does not affect the self-selection decisions of generations born before the shock. However, a higher $\psi$ attenuates the short-run increase in lifetime inequality because future relative wages fall by more due to the larger increase in the future supply of high-$i$ skills implied by the more responsive skill lottery in (21). The larger change in the skill distribution of the economy with a lower investment cost (i.e., higher $\psi$) has two important implications for its dynamic adjustment to the shock. In the long run, it implies that relative output (lifetime inequality) increases more (less). Along the transition, it implies a larger cumulative impulse response in both lifetime inequality and relative output. Thus, as the next theorem shows, economies with a lower cost of skill investment for younger workers exhibit slower, more backloaded adjustment in relative output and inequality.
Theorem 2.2 (DCIR comparative statics with respect to $\psi$) Following a skill-biased technological innovation $\Delta \log(A)$, lifetime inequality ($q$) and relative output ($y$) adjust slower in economies with a lower cost of skill investment for younger workers (i.e., higher $\psi$). Formally,

$$\frac{\partial \text{DCIR}(q)}{\partial \psi} > 0, \quad \frac{\partial \text{DCIR}(y)}{\partial \psi} > 0$$

**Proof.** The proof is analogous to the one for Theorem 2.1 but using Proposition A.2 in Appendix A.7 instead.

4.3 Back to LeChatelier Principle and the risks of extrapolation

To better understand the comparative statics with respect to $\eta$ and $\psi$, it is useful to return to the supply-demand representation of the economy’s adjustment introduced in Section 3.3. The different dynamic implications of changing $\eta$ or $\psi$ arise because the two parameters shape different horizons of the reduced-form elasticity of relative output supply. Figure 4 illustrate these implications.

Both higher values of $\eta$ and $\psi$ increase the elasticity of relative supply in the long-run. However, the timing of the increase in $\varphi_t$ differs when the economy has a higher $\eta$ or a higher $\psi$. Specifically, increasing $\eta$ flattens the path of $\varphi_t$ but increasing $\psi$ steepens it. Intuitively, a higher $\eta$ front-loads more the response in the relative supply of $H$ goods by making it easier
for skill types to reallocate across technologies in response to the shock. This in turn reduces the relative wage changes and, therefore, reduces the incentives of young workers to invest in skills. As a result, there are smaller differences in the skill distribution across generations and $\varphi_t$ is more similar across horizons. In contrast, a higher $\psi$ implies that it is easier for new generations to invest in skills, amplifying the difference in the skill distribution across generations and making $\varphi_t$ more different across horizons.

This discussion also points to which type of economies should cause researchers to exercise more caution when extrapolating from observed responses at short horizons. This is the case precisely when technology-skill specificity is higher and/or the cost of skill investment for young generations is lower. In such economies, increases in relative output and decreases in relative wages are slower and more back-loaded.

4.4 Additional determinants of skill distribution dynamics

The theory so far has ignored several determinants of the dynamics of the skill distribution along the transition. In Appendix B, we consider three extensions that relax some of the assumptions of our baseline model. For all extensions, the results above regarding the economy’s comparative statics with respect to $\eta$ and $\psi$ remain valid.

Our first extension considers a “learning-from-others” externality. Specifically, we relax the assumption that the reference distribution $\bar{s}_t(i)$ in the skill investment problem is exogenous and fixed over time. Instead, we assume that certain skills may be easier to acquire than others because workers “learn from others” when such skills are already abundant in the economy. This extended model yields impulse response functions that are qualitatively similar to those of our baseline economy when $\psi$ is higher and $\delta$ is lower. Thus, compared

---

22This mechanism implies that the skill distribution of existing workers directly affects the skill investment problem in (9) for incoming generations. Such effects could make more abundant skills more attractive when skills of different generations are complements in production, as in Chari and Hopenhayn (1991), or make them less attractive when skills of different generations are substitutes in production, as in Card and Lemieux (2001).
to our baseline model, learning from others makes the adjustment slower, with higher $y_t$ and lower $q_t$ in the long-run.

Our second extension relaxes the assumptions that workers can only invest in new skills upon birth by allowing a fraction of older generations to re-train when technology changes at $t = 0$. This extension yields impulse response functions that are qualitatively similar to those of our baseline economy when $\eta$ is higher (i.e., lower technology-skill specificity).

Our third extension allows for population growth by making the birth rate higher than the death rate. When population growth is higher, the convergence rate $\lambda$ is also higher, implying a faster adjustment for relative output and inequality, but no change in their long-run adjustment.

## 5 Observable Implications at Short Horizons: changes within- and between-generations

The previous sections have shown that the degree of technology-skill specificity and the skill investment cost of young generations determine the extent to which economies adjust to skill-biased technological innovations either through the reallocation of workers within a generation or changes in the skill distribution across generations. In this section, we ask two related questions. What are the observable implications of our theory that are informative about $\eta$ and $\psi$? Given observed responses, how can we tell if the economy’s adjustment will be slower and more back-loaded?

There are a number of practical challenges in addressing these questions. The first is that, typically, researchers can only credibly measure the effects of new technologies over short horizons. This is either because the new technologies are recent and the transition is ongoing, or because ex-post it is hard to separate such effects from other confounding shocks at long horizons. The second is that many of the theoretical objects in the previous sections are hard to measure in the data without strong assumptions. For example, the relative wage $\omega_t$ in efficiency units is different than the relative average labor income (which is measurable) because of "selection" forces.\footnote{In fact, recent empirical applications of assignment models that use log-linear functions $s(i)$ and $a(i)$ yield identical distributions of labor income across technologies – e.g., see Hsieh et al. (2013) and Burstein, Morales, and Vogel (2016).} Furthermore, as in the $q$-theory of capital investment, $q_t$ is a forward-looking variable whose measurement requires knowledge of the entire equilibrium path of $\omega_t$. So, to construct $q_t$, we would need to observe $\omega_t$ along the entire transition to the new stationary equilibrium. Finally, the direct measurement of the skill distribution $s_t(i)$ and the technology-skill assignment $l_t$ requires taking an explicit stance on observable attributes that determine worker skills in different activities (e.g., college graduation or occupation history). The empirical analysis is misspecified whenever the chosen attributes do not completely determine the relative productivity of workers in the two technologies.

Given these challenges, we focus on observable changes in relative payroll and relative employment across sectors/occupations over short horizons. These variables are common in
most datasets and available across many countries and time periods. Our novel measurement insight is that relative employment changes for different worker generations are connected to the degree of technology-skill specificity and the cost of skill investment. As a result, even though we observe these changes at short horizons, they are informative about how economies adjust at longer horizons.\footnote{The estimation of generation-specific responses are common in empirical analysis of how economies adjust to different types of shocks – e.g., Kim and Topel (1995), Card and Lemieux (2001), Autor and Dorn (2009), Autor, Dorn, and Hanson (2013), Guvenen et al. (2017), McCaig and Pavcnik (2018), Greenland, Lopresti, and McHenry (2019), Porzio and Santangelo (2019). Our insight is not that such responses can be estimated, but that, through the lens of our theory, they are connected to structural parameters and are thus informative about the economy’s dynamic adjustment to technological innovations.}

Specifically, we consider two types of responses in the short-run: (i) the within-generation change in outcomes of the "old" generation born before the shock, and (ii) the between-generation difference in outcomes of "young" generations entering at the time of the shock and "old" generations born before the shock. For relative employment in high-tech production, we formally define the within- and between-generation elasticities as

\[
\varepsilon^{within}_0 \equiv \frac{1}{\Delta \log(A)} \left( \log \left( \frac{\int_{s_0(i)}^{1} s_0(i) \, di}{\int_{0}^{l_0} s_0(i) \, di} \right) - \log \left( \frac{\int_{s_0(i)}^{1} \tilde{s}_0(i) \, di}{\int_{0}^{l_0} \tilde{s}_0(i) \, di} \right) \right),
\]

\[
\varepsilon^{between}_0 \equiv \frac{1}{\Delta \log(A)} \left( \log \left( \frac{\int_{\tilde{s}_0(i)}^{1} \tilde{s}_0(i) \, di}{\int_{0}^{\tilde{s}_0(i)} \tilde{s}_0(i) \, di} \right) - \log \left( \frac{\int_{s_0(i)}^{1} \tilde{s}_0(i) \, di}{\int_{0}^{s_0(i)} \tilde{s}_0(i) \, di} \right) \right).
\]

The following theorem shows how these measures are affected by changes in $\eta$ and $\psi$.

**Theorem 3 (Observable implications in the short-run)**

1. **Within-generation elasticity**

\[ \frac{\partial |\varepsilon^{within}_0|}{\partial \eta} > 0, \quad \frac{\partial |\varepsilon^{within}_0|}{\partial \psi} = 0 \]

2. **Between-generation elasticity**

\[ \frac{\partial |\varepsilon^{between}_0|}{\partial \eta} < 0, \quad \frac{\partial |\varepsilon^{between}_0|}{\partial \psi} > 0 \]

**Proof.** See Appendix A.9. □

The theorem states that, in the short-run, economies with a higher degree of technology-skill specificity (i.e., lower $\eta$) experience weaker within-generation growth in the relative employment of older workers, but stronger between-generation differences in the relative employment of younger and older workers. Intuitively, as discussed above, the higher technology-skill specificity diminishes the reallocation of skill types across technologies, which reduces the re-allocation of older workers, amplifies the short-run increase in relative wages,
and, consequently, increases skill differences across generations. In contrast, the lower investment cost (i.e., higher $\psi$) does not affect older workers whose skills were chosen before the shock, so within-generation employment change remains the same. The lower cost however triggers larger changes in the skill investment decisions of younger generations, creating stronger between-generation differences in relative employment.

We can now use these results to return to the questions in the beginning of this section. Suppose that we observe a technological transition with small within-generations employment elasticity, but large between-generation employment elasticity. The results above indicate that such observed responses are consistent with high technology-skill specificity and/or small costs of skill investment for young workers. As a consequence, through the lens of our theory, this technological transition should have a more unequal and slower adjustment. Alternatively, transitions with both relatively large within- and between-generation elasticities are consistent with low technology-skill specificity and small costs of skill investment, leading to a slower adjustment but only a small short-run increase in inequality.

Finally, note that the within- and between-generation employment elasticities are defined with respect to the shock, $\Delta \log(A)$. This is the relevant measure of the magnitude of the shock inducing relative employment responses in the economy. Yet, in some applications (like the one in the following sections), the shock is not directly observed. To circumvent this empirical challenge, we can use the observed response of relative payroll in Proposition 1 since it depends on the parameters of technology-skill specificity and skill investment costs, as well as the size of the shock.

6 Application: Cognitive-biased Technological Transitions

Our theoretical results established that technology-skill specificity and the cost of skill investment for entering generations are connected to within- and between-generation differences in relative employment following skill-biased technological innovations. In this section, we provide three pieces of evidence indicating the extent to which these two determinants affected the adjustment of developed economies to new cognitive-biased technologies.

First, in 18 developed countries, employment growth in the most cognitive-intensive occupations was stronger for young workers than for old workers. Second, turning to a detailed investigation of these responses in Germany, we show that in the cross-section of occupations, growth of employment and payroll was increasing in the time spent performing cognitive-intensive tasks. We find that these responses are stronger for younger than for older generations. In line with our theory’s predicted changes in skill investment, we use the unique features of the large-scale German training system to document higher growth in the number of trainees in more cognitive intensive occupations. Finally, we explore cross-regional variation in adoption timing to estimate empirical impulse response functions to one cognitive-biased technological innovation: the arrival of broadband internet in the early 2000s. We find that the impact on relative employment is small for older generations at all horizons, but
increasing over time for younger generations. Taken together, the evidence suggest that, for recent cognitive-biased innovations, technology-skill specificity is high and the cost of skill investment is smaller for younger generations.

### 6.1 Cognitive-intensive employment growth in developed economies

We define cognitive-intensive occupations as being the set of production activities that were disproportionately augmented by recent technological innovations. In our theory, we will interpret these activities as those corresponding to high-tech production. Our approach follows an extensive literature documenting that the recent arrival of new technologies in the workplace, like the computer and the internet, had different effects on jobs with different task content —e.g. Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn (2013), Akerman, Gaarder, and Mogstad (2015), and, for a review, Acemoglu and Autor (2011). Specifically, this literature has documented that these new technologies augmented the productivity of cognitive-intensive jobs whose daily activities require problem-solving, creativity, or complex interpersonal interactions. On the other hand, these recent technological innovations substituted for routine-intensive jobs whose tasks follow well-understood procedures that can be codified in computer software, performed by machines or, alternatively, offshored over computer networks to foreign work sites.²⁵

We analyze the evolution of the occupation employment composition of 18 developed countries. We use data on the number of males employed by occupation for two age groups: “Young” workers aged 15-39 yrs and “Old” workers aged 40-64 yrs. We consider employment in 9 aggregate occupation groups.²⁶ Using the German BERUFNET dataset, we rank occupations according to their share of time spent on tasks that intensively require analytical non-routine and interactive skills. We classify as cognitive-intensive the top 3 occupations in this ranking: Managers, Professionals, Technicians and Associate Professionals.²⁷

Figure 5 displays the recent trends of employment in cognitive-intensive occupations for several developed countries. The dashed bars indicate that employment in cognitive-intensive occupations has been expanding in 16 out of the 18 countries in our sample. This trend is a reflection of the occupation polarization process documented by Goos, Manning, and Salomons (2009) for European countries, Autor and Dorn (2013) for the United States, and Green and Sand (2015) for Canada.

²⁵In Appendix C.3, we use the German Qualification and Working Conditions Survey to show that internet and computer usage is strongly correlated with time spent on cognitive tasks across occupations. We also document that there are no systematic differences in internet and computer usage across different cohorts of workers employed in the same occupation.²⁶Our sample of countries includes Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom, United States. As data sources, we use Eurostat for European countries and IPUMS International for Non-European countries. For all countries, these data sources report the number of persons employed in the following 2-digit ISCO occupations: Managers, Professionals, Technicians and Associate Professionals, Clerical Workers, Service and Sales Workers, Skilled Agricultural Workers, Craft Trades workers, Plant and Machine Operators, and Elementary Occupations.²⁷The German Federal Employment Agency produces the BERUFNET dataset using expert knowledge about the skills required to perform the daily tasks in each occupation. We define an occupation’s cognitive intensity as the simple average of the time spent on analytical non-routine and interactive tasks in the years of 2011-2013.
Figure 5: Recent trends in cognitive-intensive employment growth in developed countries

Note. The figure reports the log-change in the share of males employed in cognitive-intensive occupations in 1997-2017 for European countries, in 2000-2010 for the United States, and in 2001-2011 for Canada. Sample of males in two age groups: “Young” workers aged 15-39yrs and “Old” workers aged 40-64yrs. Cognitive-intensive occupations defined as the 3 occupation groups spending more time performing cognitive tasks on the job among the 9 occupation groups in the 2-digit ISCO classification: Managers, Professionals, Technicians and Associate Professionals. For each country, annualized growth rate is the log-change of the cognitive-intensive employment share in the period divided by the number of years.

Figure 5 also shows how annualized growth in the employment of cognitive-intensive occupations differed for younger and older generations of workers. While older workers increased their employment in cognitive-intensive occupations in most countries, this increase was substantially stronger for younger generations. Across all countries, the annualized growth in cognitive-intensive employment of younger workers was 73% higher than that of older workers. The young-old gap is higher whenever overall reallocation is higher: across countries, there is a correlation of 0.43 between the young-old gap in cognitive-intensive employment growth and that of all workers. These new stylized facts complement the finding in Autor and Dorn (2009) that the average age of workers employed in contracting middle-wage occupations increased in the United States between 1980 and 2005.

As discussed in Section 5, the different employment responses for young and old workers is consistent with an elastic supply of cognitive skills in the long-run driven by younger generations tilting their investment towards skills used in cognitive-intensive occupations. However, the aggregate trends in Figure 5 are subject to concerns about potential confounding shocks causing the expansion of cognitive-intensive employment. They also do not provide any direct evidence about the skill investment mechanism in our theory. Moreover, by not relying on a specific innovation, they are not informative about the dynamic adjustment of economies to new technologies. For these reasons, we now turn to a more detailed investigation of the impact of cognitive-biased technologies on the German labor market.
6.2 Cognitive-intensive employment growth and new technologies: Evidence from Germany

We next study how the German economy adjusted to recent cognitive-skill-biased technological shocks. We first describe the data used in our analysis. We then investigate the relative performance of occupations with a higher cognitive intensity in terms of employment, payroll, and numbers of trainees. Finally, we exploit quasi-experimental cross-regional variation in adoption timing of broadband internet to estimate the dynamic impact of this new technology on cognitive intensive occupations.

6.2.1 Data

Our main source of information on German labor market outcomes is the LIAB Longitudinal Model between 1995 and 2014. We follow Card, Heining, and Kline (2013) to construct a sample of employed males aged 15-64 years old residing in West Germany. We first use individual-level information to construct yearly series of outcomes for 120 occupations. While our theory features only two technologies, this is an abstraction, and we obtain more variation empirically by using more detailed occupation information. We therefore now move from the sharp predictions of the two-technology theory to look at employment trends across occupations more generally. Appendix C.1 lists the steps involved in constructing our sample.

We then construct a second dataset with annual data on employment and payroll for each occupation in 323 regional labor markets. Following Dauth, Findeisen, and Suedekum (2014) and Huber (2018), we use administrative districts to define regional labor markets in West Germany. We use the BERUFNET dataset discussed previously to define each occupation’s cognitive intensity as the share of time spent performing analytical non-routine and interactive skills.

We construct labor market outcomes for different groups of individuals in our sample. We first construct outcomes for “Young” and “Old” generations of workers. We define the “Young” generation as all individuals born after 1960, and the “Old” generation as all other individuals in the sample. The young generation was at most 35 years old in the beginning of our period of analysis in 1995, representing 57.5% of the German labor force in that year. Over time, the young generation increased its overall employment share, reaching around 89% by the end of the analysis period in 2014 (when the young generation was at most 54 years old). Appendix C shows that the results in this section are robust to alternative definitions of worker generations.

We also define a sub-sample of trainees composed of workers whose employment status is trainee, student trainee, or intern. In this trainee sub-sample, 97.5% of all workers are below 30 years old and the mean age is 20.8 years old. Thus, we interpret the changes in occupation
allocation in this trainee sample as a proxy for the changes in the skill investment decision of incoming generations in our theory.\footnote{In line with this interpretation, Eckardt (2019) shows that the occupation classification of trainees in Germany is unique in its ability to capture a worker’s field of study.}

### 6.2.2 Cognitive intensity and labor market outcomes across occupations

We now study the relationship between employment growth and cognitive intensity across occupations in Germany. Motivated by the predictions in Section 5, we estimate the following linear regression for each worker generation $g$ and year $t$:

$$\log Y_{o,t}^g - \log Y_{o,1995}^g = \beta_t^{\bar{C}_o} + \epsilon_{o,t}^g$$ (28)

where $Y_{o,t}^g$ is a labor market outcome in occupation $o$ at year $t$ of workers of generation $g$, and $\bar{C}_o$ is the cognitive intensity of occupation $o$.\footnote{We do not include any controls in our baseline specification. Appendix Table B4 shows that results are similar when we include controls that capture potential confounding effects from the occupation’s exposure to immigration and trade shocks in the period of analysis.}

Table 1 reports the estimation of equation (28) in the periods of 1995-2000 (Panel A) and 1995-2014 (Panel B). We report the estimated impact of the occupation’s cognitive intensity on the log-change of employment in columns (1)-(3), payroll in columns (4)-(6), and number of trainees in column (7).

Over all horizons, column (1) indicates that occupations with a higher cognitive intensity experienced stronger growth in employment. This differential employment response is larger over longer horizons. Compared to the least cognitive-intensive occupation, the employment growth in the most cognitive-intensive occupation was around 143 percent higher by 2014. These results show that the German trends in Figure 5 also hold when we consider variation across occupations with different levels of cognitive intensity. Comparing the responses by generation in columns (2)–(3), we find that employment growth in cognitive-intensive occupations was weaker for older generations than for younger generations. In fact, the coefficient estimates for the old generations are between one-third and one-half of that for the young generations at all horizons. Column (2) also shows that young generations display very strong employment growth in occupations with a higher cognitive intensity in all sample periods.

Columns (4)-(6) show that the relative payroll responses are slightly stronger than the relative employment responses between 1995 and 2014. This suggests that there were only small relative changes in the average earnings of those employed in cognitive-intensive occupations. As discussed in Section 2.1, in our theory, these relative payroll responses include the rise in the marginal productivity of labor in more cognitive-intensive occupations, as well as the change in overall productivity of workers employed in cognitive-intensive occupation (i.e., the selection effect created by the change in worker allocations). So, the difference between columns (4) and (1) do not correspond to the response of the relative wage per efficiency unit of more cognitive-intensive occupations. In fact, the small responses in relative average earn-
Table 1: Cognitive intensity and labor market outcomes across occupations in Germany

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Employment Growth</th>
<th>Real Payroll Growth</th>
<th>Trainee Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (1)</td>
<td>Young (2)</td>
<td>Old (3)</td>
</tr>
<tr>
<td>Cognitive intensity</td>
<td>0.388***</td>
<td>0.650***</td>
<td>0.113***</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.098)</td>
<td>(0.043)</td>
</tr>
</tbody>
</table>

Panel A: Change in 1995-2000

Cognitive intensity 1.488*** 1.894*** 0.871*** 1.535*** 2.029*** 1.044*** 2.121***

Panel B: Change in 1995-2014

Cognitive intensity (0.225) (0.234) (0.229) (0.227) (0.238) (0.223) (0.385)

Note. Sample of 120 occupations. Each panel reports the estimate for the dependent variable over the indicated time period. Young cohort defined as all workers born after 1960 and Old cohort as all workers born before 1960. Robust standard errors in parentheses.

ings for both young and old are consistent with strong selection forces created by entry of marginal workers with lower occupation-specific productivity than infra-marginal workers. Such a pattern arises in assignment models with a Frechet distribution of technology-specific ability, as in Hsieh et al. (2013) and Burstein, Morales, and Vogel (2016).

Column (7) shows that occupations with a higher cognitive intensity experienced stronger growth in the number of trainees. As discussed above, trainee programs are an important part of the formal training of young individuals in Germany – especially for non-degree occupations. As such, our estimates suggest that investment in cognitive-intensive skills by incoming generations became stronger throughout this period.

Taken together, this evidence again speaks qualitatively to the main mechanisms in our model. The small responses in employment for old workers suggest that skills are very specific to occupations with the same cognitive content. The large differences in employment responses between generations suggest that the cost of skill investment is smaller for younger workers. In fact, young workers seem to increase their investment on cognitive skills by becoming trainees in occupations with a higher cognitive intensity. The differences in overall responses at longer horizons are in line with LeChatelier’s principle.

That said, one concern with this interpretation is that the occupation-level responses may not be a consequence of a single technological innovation in a particular year. Instead, they may be driven by different innovations introduced sequentially throughout the period of analysis – e.g. computers, industrial robots, or the internet. Thus, while our interpretation remains qualitatively valid, it is hard to quantitatively connect the estimates above to the mechanism in our theory because the empirical estimates are not impulse response functions to one-time permanent shocks. That is, the estimated dynamics may potentially confound both the endogenous skill distribution dynamics and the exogenous sequence of technological innovations. We address this concern in the next section.
Additional results. Appendix C.4 presents additional results that attest the robustness of the findings presented in this section. Table B2 shows that results are qualitatively similar over different horizons. Second, Tables B3 shows that the positive relative employment growth in cognitive occupations is driven by the top third of occupations by cognitive intensity (for all workers and separately for each worker generation). Table B4 shows that results are similar when restricting the sample to native-born Germans, changing the definition of the young generation, or including controls for each occupation’s exposure to trade and immigration shocks.

6.2.3 Dynamic adjustment to broadband internet adoption

In this section, we analyze the dynamic response to one cognitive-biased technological innovation: the introduction of broadband internet in the early 2000s. There are two main reasons to focus on this particular innovation in Germany. First, it resembles the one-time permanent shock studied in Section 3 since its adoption was fast: the share of households with broadband access increased from 0% in 2000 to over 90% in 2009. Second, it is possible to explore cross-regional variation in adoption timing to estimate the impulse response functions of labor market outcomes for different worker generations. Our strategy relies on the fact that the timing of broadband adoption was spatially heterogeneous: across German districts in 2005, the mean share of household with broadband internet access was 76% and the standard deviation was 16%. In addition, following Falck, Gold, and Heblich (2014), we isolate exogenous spatial variation in adoption timing implied by the suitability of pre-existing local telephone networks for broadband internet transmission.

Empirical Strategy. Our goal is to estimate the dynamic impact of broadband internet adoption on labor market outcomes across districts in Germany. For each year between 1996 and 2014, we estimate the following linear specification

\[ Y_{io,t}^g - Y_{io,1999}^g = \sum_{c \in \{young, old\}} (\alpha_{ct}^g + \beta_{ct}^g \bar{C}_o) 1_{[g=c]} DSL_i + \delta_{o,t} + \zeta_{g,t} + X_{io,t}^g \gamma_t^g + \epsilon_{io,t}^g, \quad (29) \]

where \( o \) is an occupation, \( i \) is a German district, and \( g \) is a worker generation. In this specification, \( Y_{io,t}^g \) is a labor market outcome (employment or payroll), \( DSL_i \) is the broadband internet penetration in district \( i \) in 2005 (normalized to have standard deviation of one), and \( \bar{C}_o \) is the time-invariant measure of the cognitive intensity of occupation \( o \). As above, we consider two generations: the old generation born before 1960 and the young generation born after 1960. The specification includes two sets of fixed-effects: generation-year fixed effects that capture nationwide labor market trends of different worker cohorts, and occupation-year fixed-effect that absorbs any confounding shock that has the same impact on an occupation.

31 As shown Akerman, Gaarder, and Mogstad (2015), broadband internet expanded the relative demand for more educated workers in non-routine jobs inside firms. In Appendix C.3, we show that this new technology is disproportionately used by individuals employed in more cognitive-intensive occupations.
in all regions. We also include a control vector $X_{io,t}$ to absorb confounding effects associated with the pretrend growth in 1995-1999 and initial district demographic characteristics. These controls account for differential performance of cognitive-intensive occupations in regions with characteristics that may affect the profitability of broadband internet adoption.  

We are mainly interested on the impact of broadband internet adoption on the relative outcome of cognitive-intensive occupations for each generation: $\beta_{g}^{t}$ in equation (29). To understand the interpretation of this coefficient, consider region A whose broadband internet penetration in 2005 was one standard deviation higher than that of region B. In each year $t$, $\beta_{g}^{t}$ is the difference between regions A and B in the relative outcome of workers of generation $g$ in more cognitive intensive occupation.

The unbiased estimation of $\beta_{g}^{t}$ requires an exogenous source of variation on the adoption of broadband internet across German districts in 2005. However, internet penetration is unlikely to be random since adoption should be faster in regions with workers more suitable to use that technology. For instance, this would be the case if broadband internet expands first in regions with a growing number of young individuals specialized in cognitive-intensive occupations. To circumvent this issue, we follow Falck, Gold, and Heblich (2014) to obtain exogenous variation in broadband internet adoption across German districts stemming from pre-existing conditions of the regional telephone networks. In West Germany, the telephone network constructed in the 1960s used copper wires to connect households to the municipality’s main distribution frame (MDF). The initial roll-out of DSL internet access in Germany used these pre-existing copper wire lines to provide high-speed internet to households. As argued by Falck, Gold, and Heblich (2014), the copper wire transmission technology did not support high-speed internet provision over long distances. In fact, provision was impossible in areas located more than 4200m away from an existing main distribution frame (MDF). It was necessary to set up an entirely new system to provide DSL access to areas connected to a MDF located more than 4200m away. Thus, areas initially located close to MDFs obtained broadband internet access before areas located far away from them.

This discussion suggests that the initial location of MDFs is an exogenous shifter of DSL access in 2005. This requires that, conditional on controls, the determinants of MDF construction in the 1960s were orthogonal to the determinants of changes in labor market outcomes in the 2000s, except through their effect on broadband internet penetration in 2005. Building on this idea, we construct two instrumental variables at the district-level that measure the

32We follow Dix-Carneiro and Kovak (2017) and Freyaldenhoven, Hansen, and Shapiro (2018) by explicitly controlling for pretrends. As argued by the latter paper, pretrends caused by unobserved confounding effects might exist even when they are not actually observed in the data due to estimation error, implying they should be controlled for in estimation. The demographic controls are the college graduate population share, the manufacturing employment share, the immigrant employment share, and the age composition of the labor force. Appendix Table B7 shows results for different control sets.

33While some of these MDFs were built in population centers, others were built in locations where large empty building sites were available. Falck, Gold, and Heblich (2014) provide a detailed discussion of why the main orthogonality assumption is plausible in this setting. Our strategy is similar to the geographic barriers exploited in Akerman, Gaarder, and Mogstad (2015) to estimate the impact of broadband internet on within-firm skill upgrading in Norway. In contrast, our empirical strategy uncovers reduced-form responses in regional outcomes, which combine adjustment margins within and between firms at the regional-level.
region’s population share located in areas where the existing telephone network could not be used to supply high-speed internet. These variables are aggregates of the municipality-level instrumental variables used in Falck, Gold, and Heblich (2014). The first variable is a simple count of the number of municipalities in the district that did not have a MDF within the municipality, and whose population center (measuring as a population-weighted centroid) was further than the cut-off threshold of 4200m to the MDF used by the municipality. We refer to this variable as the “MDF density measure.” The second variable counts the number of municipalities that satisfied the conditions in the first variable, but were further hampered by the lack of any MDFs in neighboring municipalities that were closer than 4200m. The municipalities in the second group required the installation of completely new networks since it was not possible to install copper wire lines connecting them to any existing MDF. We refer to this variable as “Alternative MDF availability.”

We then estimate (29) using the exogenous variation induced by these two measures of the cost of expanding broadband availability in the district, which we summarize in the vector $Z_i$. Specifically, since the observation unit in equation (29) is an occupation-generation-district triple, we use an instrument vector that includes $Z_i$ interacted with generation dummies and the cognitive intensity of each occupation $o$, $\bar{C}_o$. Figure B2 in Appendix C.1 presents the pattern of cross-district variation in $Z_i$. Table B5 in Appendix C.4 shows that regions with higher values of these cost measures had a lower share of households with broadband access in 2005. Intuitively, this is the main source variation in the first-stage of our strategy to estimate equation (29). Formally, to test for weak instruments for the multiple endogenous variables in (29), Table B6 in Appendix C.4 shows that we obtain high values for the Sanderson-Windmeijer F-statistics (Sanderson and Windmeijer, 2016).

Results. We now turn to the estimation of $\hat{\beta}_{old}^t$ and $\hat{\beta}_{young}^t$ in equation (29). Panel A of Figure 6 reports the estimates for each year between 1996 and 2014. Prior to 2003, regions with early DSL expansion did not experience differential growth in the relative outcomes of cognitive-intensive occupations for old and young workers. After 2005, there is a significant impact on the relative employment of young cohorts in cognitive-intensive occupations. In 2014, the point estimate suggests that a region with a one-standard deviation higher broadband internet penetration in 2005 had 0.5 log-points more young workers employed in the most cognitive-intensive occupation than in the least cognitive-intensive occupation. However, we do not find such an effect for old cohorts – if anything, the effect is negative. Thus, our estimates indicate a positive between-generation difference in relative employment growth. Figure B7 in Appendix C.4 shows that the between-generation difference is statistically significant for every year after 2006.

We can use the theoretical predictions in Section 5 to interpret these empirical results. The small relative employment response of old generations suggests that technology-skill specificity is high (i.e., $\eta$ is low). In this case, most workers from old generations do not switch occupations as their skills would have a lower value in the more cognitive-intensive

39
occupations augmented by the technological innovation. Furthermore, the positive between-generation difference in the relative employment response indicates that incoming cohorts tilt their investments towards skills more suitable for cognitive-intensive jobs. This suggests that the technological innovation induced skill heterogeneity across generations (i.e., \( \psi \) is positive).

In Panel B of Figure 6, we investigate how early broadband expansion affected the relative payroll of more cognitive intensive occupations for all worker generations. Specifically, we estimate equation (29) with a single generation \( c \) containing workers of all ages in the district. This is the empirical analog of the impulse response function for relative output \( y_t \) presented in Section 3. Again, we find no evidence of responses in the pre-shock period of 1996-2005. Starting in 2006, there is a slow and steady increase in the relative payroll of more cognitive-intensive occupations. 34 In our theory, these results are consistent with broadband internet augmenting the relative productivity of cognitive intensive occupations when cognitive and non-cognitive intensive occupations are substitutes in production (i.e., \( \theta > 1 \)).

Figure 6: Impact of early DSL adoption on more cognitive-intensive occupations

(a) Relative employment response for each generation
(b) Relative payroll response for all generations

Note. Left panel: estimation of equation (29) for log-employment as dependent variable in the sample of 2 generations, 120 occupations and 323 districts. Right panel: estimation of equation (29) for log-payroll as dependent variable in the sample of 120 occupations, 323 districts, and a single generation with all working-age employed individuals. For each year, the dot is the point estimate of \( \beta_g^c \). All regressions are weighted by the district population size in 1999 and include occupation-time and generation-time fixed-effects. Baseline controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share, district age composition, and the dependent variable pre-shock growth in 1995-1999. Bars are the 90% confidence interval implied by the standard error clustered at the district level.

Additional results. Appendix Tables B7–B9 provide additional results that complement the estimates in Figure 6. Table B7 shows that results are qualitatively similar when we drop the pretrend control, but estimated coefficients are less precise and slightly smaller in magnitude. We also demonstrate that results are similar when controlling for district-generation-year fixed-effects. This is reassuring as this restrictive set of controls absorbs all potential con-

34Figure B8 in Appendix C.4 shows that we obtain similar qualitative responses for the relative employment of more cognitive intensive occupations among all generations of workers in the district.
founding shocks that affect each district-generation pair in a year. In this case, identification comes purely from the differential effect of early broadband expansion on occupations with a higher cognitive intensity. That is, this control set captures any variation that might have resulted in a district receiving broadband access early, including differential immigration into a district that received DSL or differential aging or birth patterns in the district over time.

Table B8 presents results when we vary the definition of the young generation, as well as when we restrict the sample to only native-born males. We consider several definitions of the young generation: those born after 1955, 1965 or 1970, and those aged less than 35, 40 or 45 in each year. Once again, the results are qualitatively similar across specifications. However, in line with our theory, the estimated coefficients for the young generation are stronger when we restrict the young generation to include only more recent cohorts.

In addition, Table B8 also reports estimates with outcomes in a sample that includes only workers employed in small establishments. The rationale is that larger establishments might have received broadband internet access prior to the roll-out for households across Germany. In this case, we would expect adjustment in these establishments to have occurred earlier, biasing our results to zero. Consistent with this intuition, we find that our results are quantitatively stronger in the sample of small establishments.

Finally, Table B9 shows that early adopting regions experienced stronger growth in the number of trainees in more cognitive intensive occupations. This evidence is consistent with our theory’s prediction that, after the arrival of a cognitive-intensive innovation, incoming cohorts increase their investment on cognitive skills.

6.3 Is this time different?

The evidence above suggests that recent cognitive-biased innovations triggered a transition that is particularly slow and unequal. However, our theoretical results indicate that not all technological transitions are the same. The adjustment may be less unequal and faster if the economy features lower technology-skill specificity. The results in Section 5 indicate that, in this case, old and young generations exhibit more similar changes in relative employment across occupations along the transition. We now build on this insight to investigate whether past changes in employment composition featured weaker between-generation differences and, consequently, may have been part of a transition with lower technology-skill specificity.

We focus on the evolution of the occupation employment composition in Germany and the United States over different time periods. We again use the nine aggregate occupations in the 2-digit ISCO classification used in Section 6.1. Due to data availability, our early period is 1970-1987 for Germany and 1960-1990 for the United States. For both countries, the recent period is the same as the one used to compute the trends in Figure 5. To obtain a

---

35Our primary data source for the early period is the individual-level Census data downloaded from IPUMS international, which contains information on the 2-digit ISCO occupation of males aged 16-64 in each Census year. For the recent period, we compute all outcomes using the same underlying data of Figure 5. We select a sample of employed males in each country-year and split them into two age groups: “Young” workers aged 15-39yrs and “Old” workers aged 40-64yrs.
measure of the expanding occupations that is consistent over time, we no longer rely on the set of cognitive intensive occupations since past shocks may have augmented a different set of skills. Instead, for each country and period, we define the expanding occupations as the three occupations with the highest change in log employment share among young workers. Through the lens of our theory, since young workers adjust their skills to work on occupations that became more attractive, their employment decisions provide a revealed-preference way of recovering the occupations experiencing positive demand shocks under the assumption of no shocks to the cost of investing on different skills.

Table 2 reports the employment growth trends in the three occupations with the highest growth among young workers. Columns (1) and (3) report substantial growth in these occupations for both periods and countries. Interestingly, columns (2) and (4) show that the two periods differ in the relative magnitude of the between- and within-generation components of employment changes. As in Figure 5, there is a large between-generation difference in recent years when most expanding occupations were cognitive intensive. However, such a between-generation difference was much smaller before 1990 when changes in the occupation composition was more similar for young and old generations. In this earlier period, the set of expanding occupations was less cognitive intensive with services and retail occupations at the top of the list in both countries. In fact, Germany did not have any cognitive intensive occupation among the fastest growing occupations in 1970-1987.

Through the lens of our theory, these aggregate trends are consistent with a lower degree of technology-skill specificity in the occupations expanding before 1990. In this case, changes in the skill distribution across generations are smaller, giving rise to a faster and less unequal transition. It is important to notice that this is just one of many possible interpretations of the evidence in Table 2. For example, the generation-specific shocks in college graduation rates documented in Card and Lemieux (2001) may help explain why young and old generations have similar changes in employment composition in the 1970s and 1980s.

7 A Numerical Illustration of the Theory

We conclude the paper by using the evidence in the preceding section to analyze how economies adjust to cognitive-biased innovations. Our goal is not to provide a full quantitative account of such technological transitions, but rather to numerically illustrate our theoretical insights. In particular, we are interested in giving a sense of how large are the impacts of technology-skill specificity and skill investment cost on the economy’s dynamic adjustment following technological shocks. In addition, by presenting the full non-linear equilibrium dynamics, the numerical exercise also demonstrates that our theoretical insights are not driven by the first-order approximations.

Appendix C.5 provides additional evidence of this trend reversal by investigating the correlation between the change in the average age and the employment share across occupations in the United States over different time periods. We show that such a correlation is strongly negative in periods after 1990, but it was much weaker between 1960 and 1990.
Table 2: Changes in between-generation employment differences and employment shares across occupations in different periods

<table>
<thead>
<tr>
<th></th>
<th>Early period</th>
<th>Recent period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{1}{T} \Delta \log e_{t}^{all}$</td>
<td>$\frac{1}{T} \Delta \log e_{t}^{old}$</td>
</tr>
<tr>
<td>Germany</td>
<td>1.94%</td>
<td>1.59%</td>
</tr>
<tr>
<td>United States</td>
<td>0.91%</td>
<td>1.45%</td>
</tr>
</tbody>
</table>

Note: Columns (1) and (3) report the annualized growth rate in the three 2-digit ISCO occupations with the highest change in log employment share in the period among young workers in the country (where $T$ is the number of years in the period). For the top 3 occupations by log-employment growth for young workers, columns (2) and (4) report the ratio between the log-change in the between-generation employment share and the log-change in employment share for old workers. Early period: 1970-1987 for West Germany and 1960-1990 for the United States. Recent period: 1997-2017 for Germany and 2000-2015 for the United States. Sample of males in two age groups: “Young” workers aged 15-39yrs and “Old” workers aged 40-64yrs.

We map the $H$ technology to cognitive-intensive occupations, and use the empirical impulse responses of Section 6 to parameterize the model. We first externally calibrate the discount rate $\rho$ to match an annual interest rate of 2% and the demand elasticity of substitution to $\theta = 3$. We then select the parameters governing production technologies ($\alpha(i)$, $\sigma(i)$) and the skill distribution dynamics ($\delta, \psi$) to match the estimates in Figure 6. The decline in the share of the old workers in total employment from 1997 to 2014 implies $\delta = 0.057$, i.e, an expected working life-span of about 18 years after age 35. The small response in the cognitive-intensive employment of old generations yields an $\eta$ close to zero, and the large young-old gap in the relative employment response implies $\psi = 0.35$. Appendix D describes the matching procedure in detail, along with the model’s goodness of fit.

We use the parameterized model to study the consequences of a cognitive-biased innovation that increases the employment share in the cognitive-intensive technology from 20% to 50%. We focus here on the impact of the shock on average welfare ($\Delta \bar{U}$) and lifetime welfare inequality ($\Delta \bar{\Omega}$), as well as the importance of transitional dynamics as measured by $DCIR(q)$. Appendix D.3 shows the dynamics of the skill distribution and other outcomes.

Table 3 shows that, for our baseline parameterization, the increase in average welfare across all generations (in consumption equivalent units) is 46% and the increase in lifetime welfare inequality is 39%. These large effects follow from the substantial shock size necessary to induce the reallocation of almost one-third of the economy’s labor force.

The remaining rows of Table 3 compare these figures to those obtained with two calculations that ignore the adjustment across generations. The ‘Short-run’ calculation assumes that changes observed at impact are permanent, while the ‘Long-run’ calculation assumes that the

---

37 These values approximately correspond to the cognitive-intensive employment share in 1997 of the countries with the lowest and the highest cognitive-intensive employment share among those listed in Figure 5 (Portugal and Netherlands, respectively). Thus, our quantitative results can be seen as analyzing the transitional dynamics of a cognitive-biased shock that generates convergence in cognitive-intensive employment shares across such countries.

38 Our analysis specifies the discount rate of social welfare to $r = \rho + \delta$, so that the social discounting of future generations is identical to the discounting of worker’s future utility.
Table 3: Changes in Average Welfare and Lifetime Welfare Inequality

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Low specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\eta \approx 0, \psi = 0.35)</td>
<td>(\eta = 0.75, \psi = 0.35)</td>
</tr>
<tr>
<td>(\Delta \bar{U})</td>
<td>46%</td>
<td>44%</td>
</tr>
<tr>
<td>(\Delta \bar{\Omega})</td>
<td>39%</td>
<td>29%</td>
</tr>
<tr>
<td>(\Delta \bar{U})</td>
<td>55%</td>
<td>47%</td>
</tr>
<tr>
<td>(\Delta \bar{\Omega})</td>
<td>30%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Note. The table reports the changes in average welfare \(\Delta \bar{U}\) and lifetime welfare inequality \(\Delta \bar{\Omega}\) implied by a shock calibrated to increase the employment share in cognitive-intensive occupations from 20% to 50% between stationary equilibria. ‘True’ corresponds to the measures that fully account for the economy’s transitional dynamics. ‘Short-run’ assumes that changes at impact are permanent. ‘Long-run’ assumes that long-run changes happened at impact.

changes observed in the long-run were permanent and happened at impact. As discussed in Section 3.3, these calculations are equivalent to those that would be obtained by researchers using a reduced-form model that ignores changes in the supply elasticity over time.

We can see that these two calculations lead to substantial biases in welfare analysis. The ‘Short-run’ calculation severely understates the average welfare gains and overstates the inequality increases. The opposite is true for the ‘Long-run’ calculation. The biases arise because of the slow adjustment in the economy’s skill distribution. For instance, the \(DCIR(q)\) of 0.9 reported in the last row implies that a worker born right before the shock expects to experience in her lifetime a relative wage that is 90 percent larger than the relative wage in the long-run equilibrium of the economy. Thus, the ‘Short-run’ approach misses the future accumulation of skills that increases relative output– thus reducing the ideal price index and increasing average real wages– and reduces relative wage of cognitive-intensive occupations. In contrast, the ‘Long-run’ approach misses the fact that it takes generations for the economy to accumulate the cognitive skills necessary to achieve the levels of relative output and wages observed in the long-run.

In the remaining columns of Table 3, we analyze the same shock in an economy with a lower degree of technology-skill specificity (i.e., higher \(\eta\)). As discussed in Section 5, in this case, the between-generation difference in the relative employment response is smaller due to the smaller change in the skill distribution across generations. As such, we interpret the comparison between our baseline and this alternative calibration as a numerical illustration of the welfare consequences of the same shock if a lower technology-skill specificity resulted in more similar occupation composition changes between old and young workers– as those reported in Section 6.3 for the United States and Germany before 1990. The second panel of Table 3 shows that the higher \(\eta\) implies a faster transition with \(DCIR(q)\) falling from 0.9 to 0.4. This is a consequence of the stronger reallocation of old workers at impact which then leads to weaker increases in inequality and changes in the skill distribution, as well as...
a stronger decline in the price index in the short-run (which translates into higher average welfare gain in the short-run). Importantly, the faster transition implies that there are smaller biases from the short- and long-run welfare calculations.

8 Conclusions

We develop a theory where overlapping generations of workers are heterogeneous over a continuum of technology-specific skills. Technological transitions are driven both by the reallocation of workers within a generation and changes in the skill distribution across generations. We show that this economy can be represented as a $q$-theory of skill investment. This allow us to sharply characterize the transitional dynamics and welfare implications of a skill-biased innovation, as well as derive observable predictions for changes in labor market outcomes within and between generations. We use these insights to study the adjustment of developed economies to recent cognitive-biased technological innovations. Several pieces of evidence show strong responses of cognitive-intensive employment for young but not old generations.

Taken together, we derive two broad takeaways from this piece. First, the evidence suggests that cognitive-biased transitions may be particularly unequal and slow to play out because of the high specificity of cognitive skills. Most of the adjustment happens through slow changes in the skill distribution across generations as opposed to the fast reallocation of workers within a generation. These features are not universal though. They may be different in past or future technological transitions where a broader set of skills can be transferred to the occupations or sectors improved by the technological innovation. Second, caution should be exercised when interpreting technological transitions based on evidence spanning much less than a generation. This may lead to overly pessimistic views of the consequences of new technologies for inequality and average welfare. Yet, observed changes for different generations, even at short horizons, are useful when combined with a theory of technological transitions. Looking at the decisions of younger workers allows us to “see the future” and thus appropriately derive the full implications of technological innovations.

Some of the ideas we presented may be useful to tackle other questions where transitional dynamics are important. Extensions of our theory with multiple sectors and regions can be used to study how various sources of labor demand shocks (e.g., trade liberalizations, routine-biased innovations) affect the economy over different horizons through within-generation worker reallocation and between-generation changes in skills. Moreover, future work can address normative questions related to the optimal speed of adjustment to such labor demand shocks or the role of workers with more transferable skills in providing aggregate insurance against them. Finally, the notion that within- and between-cohort changes at short horizons are informative about structural parameters governing elasticities at longer horizons can be used both to improve on empirical projections about future labor market conditions as well as to discipline other dynamic models with, for instance, incumbents and entrant firms.
References


Online Appendix (not for publication)

Appendix A  Proofs

A.1 Proof of Lemma 2

We obtain (14) by applying this expression into the relative supply expression in (13) and the relative demand expression in (2). We can re-write it as

$$A_t^{\theta - 1} = \frac{\int_{l_t}^{1} \alpha(i) \sigma(i) s_t(i) di}{\sigma(l_t) \int_{0}^{l_t} \alpha(i) s_t(i) di}$$

The right-hand side is strictly decreasing in $l_t$, converges to zero as $l_t \to 1$, and converges to infinity as $l_t \to 0$. Then, existence and uniqueness of a solution follows from applying Bolzano’s theorem.

A.2 Proof Lemma 3

The FOC of workers’ skill-accumulation problem are:

$$V_t(i) - \frac{1}{\psi} \left( 1 + \log \left( \frac{s_t(i)}{\bar{s}_t(i)} \right) \right) - \lambda_t = 0$$

$$\lambda_t \left( \int_{0}^{1} s_t(x) dx - 1 \right) = 0$$

Integrating over $i \in [0, 1]$, we obtain an equation characterizing $\lambda_t$:

$$\log \left( \int_{0}^{1} s_t(i) e^{\psi V_t(i)} di \right) = \psi \lambda_t + 1$$

Therefore,

$$s_t(i) = \frac{s_t(j) e^{\psi V_t(i)}}{\int_{0}^{1} s_t(j) e^{\psi V_t(j)} dj}$$

Using the wage expressions and assignment function in Lemma 1, we can write the value function of a worker $i$ at time $t$ as

$$V_t(i) = \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} \log(w_s(i)) ds - \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} \log(P_s(s)) ds$$

$$= \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} (\log(\omega_s \sigma(i) \alpha(i)) \mathbb{I}_{i \geq l_s} + \log(\alpha(i)) (1 - \mathbb{I}_{i < l_s})) ds - \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} \log(P_s(s)) ds$$

$$= \frac{\log(\alpha(i))}{\rho + \delta} + \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} \log(\omega_s \sigma(i)) \mathbb{I}_{i \geq l_s} ds - \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} \log(P_s(s)) ds$$
By defining \( Q_t(i) \equiv e^{l_t} e^{-(\rho+\delta)(s-t) \log(\omega_t \sigma(i))} \) for all \( s \geq l_t \), we obtain

\[
\tilde{s}_t(i) = \frac{s_t(i) \alpha(i) \tilde{\phi} Q_t(i)}{\int_0^1 s_t(j) \alpha(j) \tilde{\phi} Q_t(j) dj}.
\]

### A.3 Proof of Theorem 1

**Part 1.** We start by taking a first order approximation around the stationary equilibrium of equations (10), (12) and (14). We obtain

\[
\frac{\partial \tilde{s}_t(i)}{\partial t} = -\delta \tilde{s}_t(i) + \delta \hat{s}_t(i) \quad (A.1)
\]

\[
\hat{l}_t = \frac{\eta}{a - 1} \tilde{y}_t \quad (A.2)
\]

\[
\hat{l}_t = \frac{\eta}{\kappa \eta + \theta} \left( \frac{\int_1^1 s_t(i) \int_1^1 \alpha(i) \sigma(i) s(i) di - \int_0^1 s_t(i) \int_0^1 \alpha(i) s(i) di}{\int_0^1 \alpha(i) s(i) di} \right) \quad (A.3)
\]

where

\[
\kappa = \frac{\alpha(l) s(l)}{\int_0^1 \alpha(i) s(i) di} + \frac{\alpha(l) s(l) l}{\int_1^1 \alpha(i) s(i) di}.
\]

Differentiating (A.3) with respect to time, we get that

\[
\frac{\partial \hat{l}_t}{\partial t} = \frac{\eta}{\kappa \eta + \theta} \left( \frac{\int_1^1 \partial \tilde{s}_t(i) \int_1^1 \alpha(i) \sigma(i) s(i) di - \int_0^1 \partial \tilde{s}_t(i) \int_0^1 \alpha(i) s(i) di}{\int_0^1 \alpha(i) s(i) di} \right)
\]

Applying (A.1) to this expression, we obtain

\[
\frac{\partial \hat{l}_t}{\partial t} = -\delta \hat{l}_t + \frac{\eta}{\kappa \eta + \theta} \delta \left( \frac{\int_1^1 \hat{s}_t(i) \int_1^1 \alpha(i) \sigma(i) s(i) di - \int_0^1 \hat{s}_t(i) \int_0^1 \alpha(i) s(i) di}{\int_0^1 \alpha(i) s(i) di} \right). \quad (A.4)
\]

We now guess and verify that \( \hat{l}_t \) converges monotonically along the equilibrium path. We establish this starting from \( \hat{l}_0 < 0 \). We omit the analogous proof for \( \hat{l}_0 > 0 \). Whenever \( \hat{l}_0 < 0 \) and increases monotonically along the equilibrium path, we have that for all \( s > t \), types \( i < l_t \) are employed in technology \( L \) and types \( i > l_t \) are employed in technology \( H \). Also, for workers with \( i \in (l_t, 1) \), there exist a \( \tau(i) \) such that they work in \( H \) for all \( t < s < t + \tau(i) \) and in \( L \) for all \( s > t + \tau(i) \). Thus, given the definition of \( Q_t(i) \), we get

\[
Q_t(i) = \begin{cases} 
1 & i \leq l_t \\
\frac{1}{\sigma(i) l_t^\gamma} e^{(l_t + \tau(i)) - (\rho+\delta)(s-t) \log(\omega_t \sigma(i))} ds & i \in (l_t, 1) \\
\sigma(i) l_t^\gamma q_t & i \geq l_t
\end{cases} \quad (A.5)
\]
This implies the following expression for the optimal lottery:

\[
\tilde{s}_t(i) = \begin{cases} 
\frac{\tilde{s}(i)}{\tilde{s}(l)} \tilde{s}_t(I)e^{-\psi \int_{t}^{\infty} e^{-(\rho + \delta)(s-t)} \log \left( \frac{\omega_t}{\omega} \right) ds} & i \leq l_t \\
\frac{\tilde{s}(i)}{\tilde{s}(l)} \tilde{s}_t(I)e^{-\psi \int_{t+\tau(i)}^{\infty} e^{-(\rho + \delta)(s-t)} \log \left( \frac{\omega_t}{\omega} \right) ds} & i \in (l_t, l) \\
\frac{\tilde{s}(i)}{\tilde{s}(l)} \tilde{s}_t(I) & i \geq l
\end{cases} \tag{A.6}
\]

The log-linearization of (A.6) implies

\[
\hat{s}_t(i) = \hat{s}_t(I) - \psi \hat{q}_t \mathbb{I}_{i \leq l_t} - \psi \hat{q}_{t+\tau(i)} \mathbb{I}_{i \in (l_t, l)}. \tag{A.7}
\]

By replacing (A.7) into the expression inside the parenthesis in (A.4), we obtain

\[
\left( \int_{l}^{1} \hat{s}_t(i) \frac{\alpha(i) \sigma(i) s(i)}{\int_{l}^{1} \alpha(i) \sigma(i) s(i) di} di - \int_{0}^{l} \hat{s}_t(i) \frac{\alpha(i) \sigma(i) s(i)}{\int_{0}^{l} \alpha(i) \sigma(i) s(i) di} di \right) = \int_{0}^{l} \psi \left( \hat{q}_t \mathbb{I}_{i \leq l_t} + \hat{q}_{t+\tau(i)} \mathbb{I}_{i \geq l_t} \right) \frac{\alpha(i) s(i)}{\int_{0}^{l} \alpha(x) s(x) dx} di = \psi \hat{q}_t - \psi \int_{l_t}^{l} \left( \hat{q}_t - \hat{q}_{t+\tau(i)} \right) \frac{\alpha(i) s(i)}{\int_{0}^{l} \alpha(x) s(x) dx} di
\]

where the last line uses our guess that \( l_t \leq l \) for all \( t \).

Then, given our guess that \( l_t \) increases monotonically along the equilibrium path, from (12) we see that \( \omega_t \) decreases monotonically along the equilibrium path. This implies that \( \hat{q}_t > \hat{q}_{t+\tau(i)} > 0 \) for all \( i \) and all \( t \). So, we can show that the term inside the integral is of second order:

\[
0 \leq \int_{l_t}^{l} \left( \hat{q}_t - \hat{q}_{t+\tau(i)} \right) \frac{\alpha(i) s(i)}{\int_{0}^{l} \alpha(x) s(x) dx} di \leq \int_{l_t}^{l} \hat{q}_t \frac{\alpha(i) s(i)}{\int_{0}^{l} \alpha(x) s(x) dx} di \leq \frac{\max_{i \in (l_t, l)} \alpha(i) s(i)}{\int_{0}^{l} \alpha(x) s(x) dx} \hat{q}_t \approx 0.
\]

We then obtain (17) by replacing this expression back in (A.4).

To show (18), we differentiate the definition of \( \log(q_t) \) with respect to time:

\[
\frac{\partial \log(q_t)}{\partial t} = -\log(\omega_t) + (\rho + \delta) \log(q_t).
\]

Notice that indifference condition (A.4) immediately implies that \( \hat{\omega}_t = -(1/\eta) \hat{l}_t \). Then, by log-linearizing the expression above and replacing, we obtain (18)

\[
\frac{\partial \hat{q}_t}{\partial t} = \frac{1}{\eta} \hat{l}_t + (\rho + \delta) \hat{q}_t.
\]

**Part 2.** We now derive the policy functions in (19), show that the equilibrium is saddle-path stable, and verify that \( l_t \) increases monotonically along the equilibrium path.

We start by guessing that the policy functions are given by \( \frac{\partial l_t}{\partial t} = -\lambda \hat{l}_t \) and \( \hat{q}_t = \zeta \hat{l}_t \). By
replacing this guess into (17)–(18), we obtain the following system:

\[-\lambda = -\delta + \frac{\eta}{\kappa \eta + \theta} \delta \psi \zeta\]
\[-\zeta \lambda = \frac{1}{\eta} + (\rho + \delta) \zeta.\]

The second equation immediately yields the expression for \( \zeta \). To get the expression for \( \lambda \), notice that substituting the expression for \( \zeta \) into the first equation implies that

\[(\delta - \lambda)(\rho + \delta + \lambda) + \frac{\psi \delta}{\kappa \eta + \theta} = 0,\]

which yields the following solutions

\[\lambda = -\frac{\rho}{2} \pm \sqrt{\left(\frac{\rho}{2}\right)^2 + \delta \left(\rho + \delta + \frac{\psi}{\kappa \eta + \theta}\right)}\].

Because the term inside the square root is always positive, two solutions always exist with one being positive and the other negative. This implies that the equilibrium is saddle-path stable. The positive solution is the speed of convergence of \( l_t \).

Finally, the equilibrium threshold is \( \hat{l}_t = \hat{l}_0 e^{-\lambda t} \). Then, if \( \hat{l}_0 < 0 \), this implies that \( l_t \) increases monotonically along the equilibrium path, which verifies our initial guess and completes the proof of the theorem.

**Part 3.** Notice that \( \int s(i) \hat{s}_t(i) di = \int (\hat{s}_t(i) - s(i)) di = 0 \). Using (A.7), we have that

\[0 = \int_0^1 s(i) \hat{s}_t(i) di = \hat{s}_t(l) - \psi \int_0^l \left( \hat{q}_t \mathbb{I}_{i < l} + \hat{q}_{t+\tau(i)} \mathbb{I}_{i \in (l, l]} \right) s(i) di\]
\[= \hat{s}_t(l) - \left( \int_0^l s(i) di \right) \psi \hat{q}_t + \psi \int_{l_0}^1 \left( \hat{q}_t - \hat{q}_{t+\tau(i)} \right) s(i) di\]

We can use the same arguments as in Appendix A.3 to show that the last term is of second order. Thus,

\[\hat{s}_t(l) = \left( \int_0^l s(i) di \right) \psi \hat{q}_t\]

and, therefore,

\[\hat{s}_t(i) = \left( \int_0^l s(i) di \right) \psi \hat{q}_t - \psi \hat{q}_t \mathbb{I}_{i < l} + \psi (\hat{q}_t - \hat{q}_{t+\tau(i)}) \mathbb{I}_{i \in (l, l]} \].

54
To prove the result, we use the fact that $\hat{q}_{t+\tau(i)} = \hat{q}_t e^{-\lambda \tau(i)}$. So,

$$\hat{s}_t(i) = \left( \int_0^l s(i) di \right) \psi \hat{q}_t - \psi \hat{q}_t \mathbb{I}_{i < l} + \psi(\hat{q}_t - \hat{q}_{t+\tau(i)}) \mathbb{I}_{i \in (l, l)}$$

$$= \mathbb{I}_{i > l} \psi \hat{q}_t - \left( 1 - \int_0^l s(i) di \right) \psi \hat{q}_t + \psi \hat{q}_t (1 - e^{-\lambda \tau(i)}) \mathbb{I}_{i \in (l, l)}$$

$$= \left( \mathbb{I}_{i > l} - \int_l^1 s(i) di \right) \psi \hat{q}_t + o_t(i)$$

where $o_t(i) \equiv \psi \hat{q}_t (1 - e^{-\lambda \tau(i)}) \mathbb{I}_{i \in (l, l)}$ and has $\int s(i) o_t(i) di = 0$.

Finally, the dynamics of the skill distribution and the relative value of output $y_t$ were already derived in equations A.1 and A.2.

### A.4 Proof of Proposition 1

Using the definitions $y_t$ and $q_t$ together with Theorem 1, we have

$$\Delta \log(y_t) = (\theta - 1) (\Delta \log(A) - \Delta \log(\omega) - \hat{\omega}_t)$$

$$= (\theta - 1) \left( \Delta \log(A) - \left( \Delta \log(\omega) + \hat{\omega}_0 e^{-\lambda t} \right) \right) \quad (A.8)$$

$$\Delta \log(q_t) = \Delta \log(q) + \hat{q}_t$$

$$= \frac{1}{\rho + \delta} \Delta \log(\omega) + \frac{1}{\rho + \delta + \lambda} \hat{\omega}_0 e^{-\lambda t} \quad (A.9)$$

Furthermore,

$$\Delta \log(l_t) = -\eta \Delta \log(\omega_t) = -\eta \left( \Delta \log(\omega) + \hat{\omega}_0 e^{-\lambda t} \right) \quad (A.10)$$

We next derive the long-run change $\Delta \log(\omega)$ and the short-to-long-run change $\hat{\omega}_0$

**Long-run.** In this case the skill distribution is given by (16), so that the equilibrium threshold solves

$$A^{\theta - 1} \sigma(l) \int_0^l \bar{s}(i) \alpha(i)(\alpha(i))^{\frac{\psi}{\rho + \delta}} di = \int_l^1 \bar{s}(i) \alpha(i) \sigma(i) \left( \alpha(i) \frac{\sigma(i)}{\sigma(l)} \right)^{\frac{\psi}{\rho + \delta}} di$$

Consider a log-linear approximation around the final stationary equilibrium:

$$(\theta - 1) \Delta \log(A) + \left( \theta + \frac{\psi}{\rho + \delta} \right) \frac{1}{\eta + \kappa} \Delta \log(l) = 0$$

Thus,

$$\Delta \log(l) = -\frac{\eta}{\left( \theta + \frac{\psi}{\rho + \delta} \right) + \eta \kappa} (\theta - 1) \Delta \log(A)$$
From equation (12), $\Delta \log(\omega) = -\frac{1}{\eta} \Delta \log(l)$ and, therefore,

$$\Delta \log(\omega) = \frac{1}{(\theta + \frac{\psi}{\rho + \delta}) + \eta \kappa} (\theta - 1) \Delta \log(A) \quad (A.11)$$

**Short-to-Long** We start by deriving the change in the skill distribution using (16): $\hat{s}_0(i) = \hat{s}_0(l)$ if $i < l$ and $\hat{s}_0(i) = \hat{s}_0(l) - \frac{\psi}{\rho + \delta} \Delta \log(\omega)$ if $i > l$. Along the transition, the change in the assignment threshold is determined by (14) given the change in the skill distribution:

$$\left(\frac{\theta}{\eta} + \kappa\right) \hat{l}_0 = -\frac{\psi}{\rho + \delta} \Delta \log(\omega)$$

Then,

$$\hat{\omega}_0 = \frac{1}{\theta + \kappa \eta} \frac{\psi}{\rho + \delta} \Delta \log(\omega) \quad (A.12)$$

**Dynamic responses** We now use the derivations above to show that

$$\Delta \log(l_t) = -\frac{\eta}{\theta + \kappa \eta} \left(1 + \frac{1}{\theta + \kappa \eta} \frac{\psi}{\rho + \delta} (e^{-\lambda t} - 1)\right) (\theta - 1) \Delta \log(A)$$

$$\Delta \log(y_t) = \frac{1}{\theta + \kappa \eta} \left((1 + \kappa \eta) + \frac{(\theta - 1)}{\theta + \kappa \eta} \frac{\psi}{\rho + \delta} (1 - e^{-\lambda t})\right) (\theta - 1) \Delta \log(A)$$

$$\Delta \log(q_t) = \frac{1}{\theta + \kappa \eta} \left(1 + \frac{\lambda - \delta}{\delta} e^{-\lambda t}\right) (\theta - 1) \Delta \log(A)$$

where the last line uses the solution to $\lambda$ from Theorem 1.

**A.5  Proof of Proposition 2**

We have that, because of the envelope theorem, for any $\tau \geq 0$

$$U_\tau = \int \hat{s}_\tau(i) V_\tau(i) di - \frac{1}{\psi} \int \hat{s}_\tau(i) \log \left(\frac{\hat{s}_\tau(i)}{\bar{s}(i)}\right) di$$

$$\approx \int s(i) (V_\tau(i) - V(i)) di + U_\infty$$

56
Then, for $\tau \geq 0$

\[
U_\tau - U_\infty = \int_\tau^\infty e^{-(\rho + \delta)(t-\tau)} \int s(i) \log \left( \frac{\alpha(i) \max(\omega_i \sigma(i), 1)}{P_t} \right) di dt
- \int_0^\infty e^{-(\rho + \delta)\tau} \int s(i) \log \left( \frac{\alpha(i) \max(\omega \sigma(i), 1)}{P} \right) di dt
\approx \int_1^1 s(i) di \left( \int_\tau^\infty e^{-(\rho + \delta + \lambda)(t-\tau)} \hat{\omega}_\tau dt \right) - \left( \int_\tau^\infty e^{-(\rho + \delta + \lambda)(t-\tau)} \hat{P}_\tau dt \right)
= - \left( \frac{y_\infty}{1 + y_\infty} \int_1^1 s(i) di \hat{y}_0 \right) \frac{1}{\rho + \delta + \lambda} e^{-\lambda \tau}
= - \left( \frac{y_\infty}{1 + y_\infty} - \int_1^1 s(i) di \right) \hat{q}_\tau
\]

Also, for $\tau = 0^-$

\[
U_\infty - U_0^- \approx \left( \int_1^1 s(i) di \right) \frac{1}{\rho + \delta} \Delta \log (\omega_\infty) + \frac{y_\infty}{1 + y_\infty} \frac{1}{\theta - 1} \frac{1}{\rho + \delta} \Delta \log (y_\infty)
= \left( \int_1^1 s(i) di \right) \frac{1}{\rho + \delta} \Delta \log (\omega_\infty) + \frac{y_\infty}{1 + y_\infty} \frac{1}{\rho + \delta} (\Delta \log (A) - \Delta \log (\omega_\infty))
= \frac{y_\infty}{1 + y_\infty} \Delta \log (A) - \left( \frac{y_\infty}{1 + y_\infty} - \int_1^1 s(i) di \right) \Delta \log (q_\infty)
\]

Then,

\[
\Delta \Omega = (\rho + \delta)(U_\infty - U_0^-) + (\rho + \delta) r \int_0^\infty e^{-r \tau} (U_\tau - U_\infty) d\tau
\approx (\rho + \delta)(U_\infty - U_0^-) - \left( \frac{y_\infty}{1 + y_\infty} - \int_1^1 s(i) di \right) (\rho + \delta) r \int_0^\infty e^{-r \tau} \hat{q}_\tau d\tau
= \frac{y_\infty}{1 + y_\infty} \Delta \log (A) - \left( \frac{y_\infty}{1 + y_\infty} - \int_1^1 s(i) di \right) \Delta \Omega
\]

Finally, using Proposition 1,

\[
\Delta \Omega = (\rho + \delta) r \int_0^\infty e^{-r \tau} \Delta \log (q_\tau) d\tau
= (\rho + \delta) \Delta \log (q_\infty) + (\rho + \delta) r \int_0^\infty e^{-r \tau} \hat{q}_\tau d\tau
\approx (\rho + \delta) \Delta \log (q_\infty) + (\rho + \delta) \frac{r}{r + \lambda} \hat{q}_0
\approx (\rho + \delta) \Delta \log (q_\infty) + (\rho + \delta) \frac{r \lambda}{r + \lambda} \int_0^\infty \hat{q}_\tau d\tau
\]

A.6 Proof of Demand-Supply representation in (25)–(27)

The demand equation in (2) immediately implies that

\[
\Delta \log x_i = (\theta - 1) \Delta \log (A) - \theta \Delta \log \omega_i.
\]
We guess and verify the responses in Proposition 1 can be derived from a relative supply equation with the following form:

\[ \Delta \log x_t = \varphi_t \log \omega_t. \]

By combining the supply and demand equations, the change in relative wage is given by

\[ \Delta \log \omega_t = \frac{1}{\varphi_t + \theta (\theta - 1) \Delta \log (A)} \]

We now derive the expression for \( \Delta \log \omega_t \) implied by Proposition 1. The demand equations in (2) implies that

\[ \Delta \log \omega_t = \Delta \log (A) + \frac{1}{1 - \theta} \Delta \log y_t, \]

which combined with Proposition 1 yields

\[ \Delta \log \omega_t = \left( \frac{1}{\theta + \kappa \eta} \right) - \frac{\psi}{\chi} (1 - e^{-\lambda t}) \frac{1}{\theta + \kappa \eta} \] \( (\theta - 1) \Delta \log (A). \)

Equalizing the two expressions above for \( \Delta \log \omega_t \), we obtain

\[ \varphi_t + \theta = \frac{\theta + \kappa \eta}{1 - \frac{\psi}{\chi} (1 - e^{-\lambda t})}, \]

which implies that

\[ \varphi_t = \frac{\kappa \eta \chi + \theta \psi (1 - e^{-\lambda t})}{(\theta + \kappa \eta) (\delta + \rho) + \psi e^{-\lambda t}}. \]

This establishes the representation in (25)–(27) that yields the same path for \( \Delta \log \omega_t \) and \( \Delta \log y_t \) implied by Proposition 1. Since \( e^{-\lambda t} \leq 1 \) for all \( t \geq 0 \), this expression implies that \( \varphi_t > 0 \) for all \( t \). In addition, we can verify that \( \varphi_t \) is increasing over time because

\[ \frac{\partial \varphi_t}{\partial t} = \frac{\theta (\theta + \kappa \eta) (\delta + \rho) + \kappa \eta \chi + \theta \psi}{((\theta + \kappa \eta) (\delta + \rho) + \psi e^{-\lambda t})^2} \psi \lambda e^{-\lambda t} > 0. \]

### A.7 Comparative Statics with respect to \( \eta \) and \( \psi \)

**Proposition A.1 (Comparative statics with respect to \( \eta \))** Assume that \( \theta > 1 \). Then,

1. **Short-run adjustment**

   \[ \frac{\partial \Delta \log (y_0)}{\partial \eta} > 0, \quad \frac{\partial |\Delta \log (l_0)|}{\partial \eta} > 0, \quad \frac{\partial \Delta \log (q_0)}{\partial \eta} < 0; \]

2. **Long-run adjustment**

   \[ \frac{\partial \Delta \log (y_\infty)}{\partial \eta} > 0, \quad \frac{\partial |\Delta \log (l_\infty)|}{\partial \eta} > 0, \quad \frac{\partial \Delta \log (q_\infty)}{\partial \eta} < 0; \]
3. Rate of convergence

\[ \frac{\partial \lambda}{\partial \eta} < 0 \]

4. Cumulative impulse response

\[ \frac{\partial \left( \int_0^\infty |\hat{y}_t| \, dt \right)}{\partial \eta} < 0, \quad \frac{\partial \left( \int_0^\infty |\hat{t}_t| \, dt \right)}{\partial \eta} \leq 0, \quad \frac{\partial \left( \int_0^\infty \hat{q}_t \, dt \right)}{\partial \eta} < 0; \]

Proposition A.2 (Comparative statics with respect to $\psi$) Assume that $\theta > 1$. Then,

1. Short-run adjustment

\[ \frac{\partial \Delta \log(y_0)}{\partial \psi} = 0, \quad \frac{\partial |\Delta \log(l_0)|}{\partial \psi} = 0, \quad \frac{\partial \Delta \log(q_0)}{\partial \psi} < 0 \]

2. Long-run adjustment

\[ \frac{\partial \Delta \log(y_\infty)}{\partial \psi} > 0, \quad \frac{\partial |\Delta \log(l_\infty)|}{\partial \psi} < 0, \quad \frac{\partial \Delta \log(q_\infty)}{\partial \psi} < 0 \]

3. Rate of convergence

\[ \frac{\partial \lambda}{\partial \psi} > 0 \]

4. Cumulative impulse response

\[ \left. \frac{\partial \left( \int_0^\infty |\hat{y}_t| \, dt \right) \right|_{\psi=0} > 0, \quad \left. \frac{\partial \left( \int_0^\infty |\hat{t}_t| \, dt \right) \right|_{\psi=0} > 0, \quad \left. \frac{\partial \left( \int_0^\infty \hat{q}_t \, dt \right) \right|_{\psi=0} > 0 \]

Next, we prove each of the items of the two propositions above.

1. Short-run adjustment

\[ \Delta \log(y_0) = \left( 1 - \frac{\theta - 1}{\theta + \kappa \eta} \right) (\theta - 1) \Delta \log(A) \]

\[ \Delta \log(q_0) = \frac{1}{\theta + \kappa \eta + \phi \rho + \delta} \frac{\lambda}{\delta \rho + \delta} (\theta - 1) \Delta \log(A) \]

\[ = \frac{1}{\theta + \kappa \eta \rho + \lambda} (\theta - 1) \Delta \log(A) \]

\[ |\Delta \log(l_0)| = \frac{\eta}{\theta + \kappa \eta} (\theta - 1) \Delta \log(A) \]
The first and last lines show that $\Delta \log(y_0), |\Delta \log(l_0)|$ are increasing in $\eta$ and independent of $\psi$. Since $\lambda$ is decreasing in $\eta$, the second line shows that $\Delta \log(q_0)$ is decreasing in $\eta$. Since $\lambda$ is increasing in $\psi$, the third line shows that $\Delta \log(q_0)$ is decreasing in $\psi$.

2. Long-run adjustment

$$
\Delta \log(y_\infty) = \left(1 - \frac{\theta - 1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}}\right) (\theta - 1) \Delta \log(A) 
$$

$$
\Delta \log(q_\infty) = \frac{1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}} \frac{1}{\rho + \delta} (\theta - 1) \Delta \log(A) 
$$

$$
\Delta \log(l_\infty) = -\frac{\eta}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}} (\theta - 1) \Delta \log(A) 
$$

Then, it is straightforward to see that $\Delta \log(y_\infty)$ is increasing in both $\eta$ and $\psi$, while the opposite holds for $\Delta \log(q_\infty)$. Moreover, $|\Delta \log(l_\infty)|$ is increasing in $\eta$ but decreasing in $\psi$.

3. Rate of convergence

From the expression for $\lambda$ in Theorem 1 it is straightforward to see that is decreasing in $\eta$ and increasing in $\psi$.

4. Cumulative impulse response

$$
\int_0^\infty \hat{y}_t dt = -\frac{1}{\lambda} \hat{y}_0 = \frac{1}{\lambda} \frac{\theta - 1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}} (\theta - 1) \Delta \log(A) 
$$

$$
\int_0^\infty \hat{q}_t dt = \frac{1}{\lambda} \hat{q}_0 = \frac{1}{\theta + \eta \kappa + \frac{\psi}{\rho + \delta}} (\theta - 1) \Delta \log(A) 
$$

$$
\int_0^\infty \hat{l}_t dt = \frac{\eta}{\theta - 1} \int_0^\infty \hat{y}_t dt 
$$

The second line shows that $\int_0^\infty \hat{q}_t dt$ is decreasing in $\eta$, since $\lambda$ is decreasing in $\eta$. Furthermore, $\int_0^\infty \hat{q}_t dt$ is increasing in $\psi$ around $\psi = 0$. This is because $\lambda$ is increasing in $\psi$,

$$
\lambda = \delta \text{ when } \psi = 0, \quad \text{and } \frac{\partial \left(\frac{\frac{1}{\lambda} \frac{1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}}}{\psi} \right)}{\partial \psi} \text{ is bounded.}
$$

The first line shows that $\int_0^\infty \hat{y}_t dt$ is increasing in $\psi$ around $\psi = 0$ since $\frac{\partial \left(\frac{\frac{1}{\lambda} \frac{1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}}}{\psi} \right)}{\partial \psi}$ is
bounded. To show that it is decreasing in \( \eta \), we show that:

\[
\partial \log \left( \frac{1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta} \theta - 1} \right) \delta \eta\]

\[
= \frac{1}{\lambda + \theta + \kappa \eta + \frac{\psi}{\rho + \delta}} \left( \frac{\delta}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}} \right) \left( \lambda - \delta \right) (\theta - 1) \delta (\rho + \delta)
\]

\[
= \frac{\delta \lambda}{\lambda + \delta} \frac{\delta}{\lambda + \theta + \kappa \eta + \frac{\psi}{\rho + \delta}} \left( \theta - 1 \right) \frac{\delta (\rho + \delta + \lambda)}{\lambda + \delta \eta (\rho + \lambda)} (\lambda - \theta - 1) ^ 2 (\theta + \kappa \eta + \frac{\psi}{\rho + \delta})^2.
\]

Finally, \( \int_0^\infty |\hat{\eta}| \, dt \) is increasing in \( \psi \) around \( \psi = 0 \), since it is proportional to \( \int_0^\infty |\hat{\eta}| \, dt \). However, the derivative with respect to \( \eta \) is ambiguous. This is because the constant of proportionality \( \eta / (\theta - 1) \) is increasing in \( \eta \) while \( \int_0^\infty |\hat{\eta}| \, dt \) is decreasing in \( \eta \).

A.8 Proof of Proposition 3

From the proof of Proposition A.1 in Appendix A.7, we have that

\[
DCIR(q) = \frac{\delta \lambda}{\lambda + \delta} \int_0^\infty |\hat{\eta}| \, dt = \left( \frac{1}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}} \right) \left( \lambda - \delta \right) (\theta - 1) \delta (\rho + \delta)
\]

\[
DCIR(y) = \frac{\delta \lambda}{\lambda + \delta} \int_0^\infty |\hat{\eta}| \, dt = \frac{\delta}{\lambda + \theta + \kappa \eta + \frac{\psi}{\rho + \delta}} \left( \theta - 1 \right) \frac{\delta (\rho + \delta + \lambda)}{\lambda + \delta \eta (\rho + \lambda)} (\lambda - \theta - 1) ^ 2 (\theta + \kappa \eta + \frac{\psi}{\rho + \delta})^2.
\]

The definition of \( \lambda \) in Theorem 1 implies that \( \lambda |_{\psi \to 0} = \lambda |_{\theta \to \infty} = \delta \) and \( \frac{\partial \lambda}{\partial \eta} |_{\psi \to 0} = \frac{\partial \lambda}{\partial \eta} |_{\theta \to \infty} = 0 \). Taken together, they immediately imply that \( \frac{\partial DCIR(q)}{\partial \eta} |_{\psi \to 0} = \frac{\partial DCIR(q)}{\partial \eta} |_{\theta \to \infty} = 0 \) and 

\[
\frac{\partial DCIR(y)}{\partial \eta} |_{\psi \to 0} = \frac{\partial DCIR(y)}{\partial \eta} |_{\theta \to \infty} = 0
\]

A.9 Proof of Theorem 3

Part 1. We start by deriving the elasticity of relative employment of old generations with respect to \( \Delta \log(A) \). We first use a first-order approximation to write the log-change in relative high-tech employment in terms of changes in the high-tech employment share:

\[
e^0_{\text{within}} \approx \frac{1}{\Delta \log(A)} \frac{1}{e_\infty (1 - e_\infty)} \left( \int_0^1 s_0(i) \, di - \int_{l_0}^1 s_0(i) \, di \right)
\]

Taking a first-order approximation around \( l \),

\[
\int_0^1 s_0(i) \, di - \int_{l_0}^1 s_0(i) \, di \approx -s_0(l) l \left( \hat{l} + \Delta \log(l_\infty) \right)
\]

\[
\approx s_0(l) l \eta \Delta \log(\omega_i)
\]

\[
\approx \frac{s_0(l) l}{e_\infty (1 - e_\infty) \eta} \left( -\frac{1}{\theta - 1} \Delta \log(y_0 + \Delta \log A) \right).
\]
where the last line uses the demand expression in (2).

Then, using Proposition 1,

$$
\varepsilon_0^{within} \approx \frac{s_0(l)}{e_\infty(1-e_\infty)} \frac{\eta}{\theta + \kappa \eta}(\theta - 1),
$$

Thus,

$$
\frac{\partial |\varepsilon_0^{within}|}{\partial \eta} = \frac{s_0(l)}{e_\infty(1-e_\infty)} \frac{\theta}{(\theta + \kappa \eta)^2} |\theta - 1| > 0 \quad \text{and} \quad \frac{\partial |\varepsilon_0^{within}|}{\partial \psi} = 0.
$$

**Part 2.** We first use a first-order approximation to write the relative high-tech employment in terms of changes in the high-tech employment share:

$$
\varepsilon_0^{between} \approx \frac{1}{e_\infty(1-e_\infty)} \frac{1}{\Delta \log A} \left( \int_{l_0}^{1} (\hat{s}_0(i) - s_0(i))di \right)
$$

To write this expression in terms of fundamentals, we derive the changes in the skill distribution between stationary equilibria. Using the expression for the stationary skill distribution in (16),

$$
s_0(i) = \frac{s(i)\alpha(i)^{\frac{\psi}{\rho + \delta}} (\omega_0 - \sigma(i))^{\frac{\psi}{\rho + \delta}} \Pi_{i > l}}{\int_{l}^{1} s(j)\alpha(j)^{\frac{\psi}{\rho + \delta}} (\omega_0 - \sigma(j))^{\frac{\psi}{\rho + \delta}} dj + \int_{l_0}^{1} s(j)\alpha(j)^{\frac{\psi}{\rho + \delta}} (\omega_0 - \sigma(j))^{\frac{\psi}{\rho + \delta}} dj}
$$

$$
\Rightarrow
\hat{s}_0(i) \approx - \left( \mathbb{I}_{i > l} - \int_{l}^{1} s(j)dj \right) \frac{\psi}{\rho + \delta} \Delta \log(\omega)
$$

Recall also that the third part of Theorem 1 yields

$$
\hat{s}_0(i) = \left( \mathbb{I}_{i > l} - \int_{l}^{1} s(i)di \right) \psi \hat{q}_0 + o_0(i).
$$

Combining the expressions above,

$$
\varepsilon_0^{between} \approx \frac{1}{\Delta \log A} \left( \psi \hat{q}_0 + \frac{\psi}{\rho + \delta} \Delta \log(\omega) \right)
$$

$$
\approx \frac{1}{\Delta \log A} \psi (\hat{q}_0 + \Delta \log(q_\infty))
$$

$$
\approx \frac{1}{\Delta \log A} \psi \Delta \log(q_0)
$$

Using the expression for $\Delta \log(q_0)$ in Proposition 1,

$$
\varepsilon_0^{between} \approx \frac{\psi}{(\rho + \lambda)(\theta + \kappa \eta)}(\theta - 1).
$$
Using the expressions derived in Appendix A.8 and defining $\varrho \equiv (\rho^2)^2 + \delta \left( (\rho + \delta) + \frac{\psi}{\vartheta + \kappa \eta} \right)$, we obtain

$$\frac{\partial |_{0}^{\text{between}}}{\partial \psi} = \frac{1 - e_\infty}{(\theta + \kappa \eta)(\rho + \lambda)^2} \left( \rho + \lambda - \psi \frac{\partial \lambda}{\partial \psi} \right) |_{\theta - 1}$$

$$\frac{\partial |_{0}^{\text{between}}}{\partial \psi} = \frac{1}{(\theta + \kappa \eta)(\rho + \lambda)^2} \left( \frac{\rho}{2} \theta^{1/2} - \frac{1}{2} \theta^{1/2} - \frac{1}{2} \theta^{1/2} \frac{\delta \psi}{\theta + \kappa \eta} \right) |_{\theta - 1}$$

which implies that $\frac{\partial |_{0}^{\text{between}}}{\partial \psi} > 0$.

Using the expressions derived in Appendix A.8,

$$\frac{\partial |_{0}^{\text{between}}}{\partial \eta} = - \frac{(1 - e_\infty)}{(\rho + \lambda)(\theta + \kappa \eta)^2} \left( \kappa (\rho + \lambda) + (\theta + \kappa \eta) \frac{\partial \lambda}{\partial \eta} \right) |_{\theta - 1}$$

$$\frac{\partial |_{0}^{\text{between}}}{\partial \eta} = - \frac{\psi}{(\rho + \lambda)(\theta + \kappa \eta)^2} \left( \frac{\rho}{2} \theta^{1/2} - \frac{1}{2} \theta^{1/2} \frac{\delta \psi}{\theta + \kappa \eta} \right) |_{\theta - 1}$$

which implies that $\frac{\partial |_{0}^{\text{between}}}{\partial \eta} < 0$.

## Appendix B Extensions

This section discusses the extensions described in Section 4.4. In Section B.1, we introduce "learning-from-others" by allowing the innate ability distribution $\bar{s}_\tau(i)$ to depend on the economy’s skill distribution $s_\tau(i)$. In Section B.2, we introduce re-training by allowing a fraction of the older generations to make skill investment following the shock. Section B.3 introduces population growth by allowing the birth rate to be higher than the death rate.

### B.1 Learning-from-others

We relax the assumption that the reference distribution $\bar{s}_\tau(i)$ in the skill investment problem is exogenous and fixed over time. Instead, we assume that certain skills may be easier to acquire than others because workers can "learn from others" when such skills are already abundant in the economy. Formally, we assume that the baseline distribution $\bar{s}_\tau(i)$ is a geometric average of a fixed distribution $\bar{e}(i)$ and the current skill distribution in the economy $s_\tau(i)$ at the time where generation $\tau$ is born,

$$\bar{s}_\tau(i) = s_\tau(i)^\gamma \bar{e}(i)^{1-\gamma}, \quad \gamma \in [0, 1).$$

Note that as $\gamma$ increases it becomes easier for workers to choose skill lotteries that put
more weight in those skill types that are already abundant in the economy. As opposed to our benchmark case ($\gamma = 0$), this extension with $\gamma > 0$ introduces a backward-looking element to the skill investment problem and complementarities in skill investment decisions across generations.

In what follows, we reproduce the key steps that change in the proofs in Appendix A.3. First, we log-linearize the extended version of (A.6). We begin by noting that the stationary distribution exist and is

$$s(i) = \frac{s(i)\gamma e(i)^{1-\gamma}w(i)^{\psi}}{\int_0^1 s(j)\gamma e(j)^{1-\gamma}w(j)^{\psi} dj} \implies s(i) = \frac{e(i)w(i)^{1-\gamma}^{\psi}}{\int_0^1 e(i)w(i)^{1-\gamma}^{\psi} di}.$$ 

Then, we obtain that

$$\hat{s}_t(i) = \gamma (\hat{s}_t(i) - \hat{s}_t(l)) + \hat{s}_t(l) - \psi \hat{q}_t \mathbb{I}_{i<l} - \psi \hat{q}_{t+\tau(i)} \mathbb{I}_{i\in(l,t)}.$$  

(B.2)

Second, we replace the above in the expression inside the parenthesis in (A.4), we obtain

$$\gamma \int_1^l \hat{s}_t(i) \frac{\alpha(i)\sigma(i)s(i)}{\int_1^l \alpha(x)\sigma(x)s(x)dx} di - \int_0^l \frac{\alpha(i)s(i)}{\int_0^l \alpha(i)s(i) di} di = \gamma \int_1^l \hat{s}_t(i) \frac{\alpha(i)\sigma(i)s(i)}{\int_1^l \alpha(x)\sigma(x)s(x)dx} di - \int_0^l \frac{\alpha(i)s(i)}{\int_0^l \alpha(x)s(x)dx di} \gamma \frac{\kappa \eta + \theta}{\eta} \hat{i}_t + \psi \hat{q}_t - \psi \int_1^l \left( \hat{q}_t - \hat{q}_{t+\tau(i)} \right) \frac{\alpha(i)s(i)}{\int_0^l \alpha(x)\sigma(x)s(x)dx} di
$$

where the last line uses (A.3) annd (A.2).

Third, as in the proof in Appendix A.3, we can show that the last term inside the integral is of second order. Thus, replacing the above expression back in (A.4), we obtain the Kolmogorov-Forward equation for $\hat{i}_t$ in the economy with learning-from-others,

$$\frac{\partial \hat{i}_t}{\partial t} = -\delta (1-\gamma) \hat{i}_t + \frac{\eta}{\kappa \eta + \theta} \delta \psi \hat{q}_t.$$  

(B.3)

Fourth, since the law of motion for $\hat{q}_t$ is the same as in the benchmark model, this implies that the equilibrium is saddle-path stable where the new $\lambda$ in the economy with learning-from-others is the positive solution to

$$(\delta (1-\gamma) - \lambda)(\rho + \delta + \lambda) + \frac{\psi \delta}{\kappa \eta + \theta} = 0.$$ 

Finally, the optimal lottery in the economy with learning-from-others is

$$\hat{s}_t(i) = \gamma \hat{s}_t(i) + \left( \mathbb{I}_{i>l} - \int_l^1 s(i) di \right) \psi \hat{q}_t + o_t(i).$$

Next, we reproduce the key steps that change in Appendices A.4 and A.7. First, from the
expression for the stationary distribution above, note that the long-run skill supply elasticity in the learning-from-others economy is $\frac{1}{1-\gamma} \psi$ as opposed to simply $\psi$.

This implies that the dynamic responses are

\[
\Delta \log(l_t) = -\frac{\eta}{\theta + \kappa \eta} \left( 1 + \frac{1}{\theta + \kappa \eta + \frac{\psi}{1-\gamma} \rho + \delta} \frac{1}{1-\gamma} \frac{\psi}{\rho + \delta} (e^{-\lambda t} - 1) \right) (\theta - 1) \Delta \log(A)
\]

\[
\Delta \log(y_t) = \frac{1}{\theta + \kappa \eta} \left( 1 + \frac{(\theta - 1)}{\theta + \kappa \eta + \frac{1}{1-\gamma} \rho + \delta} \frac{1}{1-\gamma} \psi (1 - e^{-\lambda t}) \right) (\theta - 1) \Delta \log(A)
\]

\[
\Delta \log(q_t) = \frac{1}{\theta + \kappa \eta + \frac{1}{1-\gamma} \frac{\psi}{\rho + \delta}} \left( 1 + \frac{\lambda - \delta (1 - \gamma)}{\delta (1 - \gamma)} e^{-\lambda t} \right) (\theta - 1) \Delta \log(A)
\]

where the last line follows from the equation for the new $\lambda$.

Second, note that the short-run responses for $l_t$ and $y_t$ are identical than in the benchmark model. The long-run responses are larger (smaller) in magnitude for $y_t$ (for $l_t$) in the economy with learning-from-others since the long-run skill supply elasticity is larger and thus $\frac{1}{\theta + \kappa \eta + \frac{1}{1-\gamma} \rho + \delta} \frac{1}{1-\gamma} \psi$ is larger. As for the DCIR, note that $\lambda$ is smaller in the learning-from-others economy. Together with the fact that $\frac{1}{\theta + \kappa \eta + \frac{1}{1-\gamma} \rho + \delta} \frac{1}{1-\gamma} \psi$ is larger, they imply that the DCIR of both $y_t$ and $l_t$ is higher in the learning-from-others economy.

Third, for $q_t$ we have that

\[
\Delta \log(q_\infty) = \frac{1}{\theta + \kappa \eta + \frac{1}{1-\gamma} \rho + \delta} \left( \frac{1}{1-\gamma} \frac{\psi}{\rho + \delta} (\theta - 1) \Delta \log(A) \right)
\]

\[
\Delta \log(q_0) = \frac{1}{\theta + \kappa \eta} \left( \rho + \delta + \frac{\psi}{\theta + \kappa \eta} + \frac{1}{\rho + \delta + \lambda} \right) (\theta - 1) \Delta \log(A)
\]

\[
\int_0^\infty \hat{q}_tdt = \frac{1}{\theta + \kappa \eta + \frac{1}{1-\gamma} \frac{\psi}{\rho + \delta}} \left( \frac{1}{1-\gamma} \frac{1}{\rho + \delta + \lambda} \frac{1}{\theta + \kappa \eta} (\theta - 1) \Delta \log(A) \right)
\]

Then, since $\lambda$ is smaller, the short- and long-run responses are smaller in magnitude and the DCIR is larger in the economy with learning-from-others.

Finally, we note that the proofs for the comparative statics in Appendix A.7 with respect to $\eta$ and $\psi$ are unchanged. To see this, it suffices to show that the dynamics for $q_t, l_t, y_t$ in the economy with learning-from-others are equivalent to those from a re-parameterized benchmark economy where $\delta' = \delta (1 - \gamma), \psi' = \frac{1}{1-\gamma} \psi$ and $\rho' = \rho + \delta \gamma$.

### B.2 Old generations skill investment

We now let a fraction of workers that were present before the shock re-optimize their skill investment "as if" they were a young generation entering at time $t = 0$. Formally, the skill distribution on impact now becomes
\[ s_0(i) = (1 - \beta)s_0^-(i) + \beta \hat{s}_0(i), \]

where \( \beta \) is the fraction of workers in the generation present before the shock that can re-optimize.

The first thing to note is that this does not change any of the transitional dynamics given the new initial skill distribution on impact. As such Theorem 1 is unchanged. However, the initial conditions and the dynamic responses do change. Next, we reproduce the key steps that change in Appendix A.4.

The deviation from the skill distribution on impact from the new stationary distribution is now

\[ \hat{s}_0(i) = \hat{s}_0^-(i) + \beta (\hat{s}_0(i) - \hat{s}_0^-(i)) \]

\[ = (1 - \beta) \left( \hat{s}_0(l) - \mathbb{I}_{i>l} \frac{\psi}{\rho + \delta} \Delta \log(\omega) \right) + \beta \left( \mathbb{I}_{i>l} - \int_l^1 s(i) \, di \right) \psi \hat{q}_0 + \beta o(i) \]

where the long-run change \( \Delta \log(\omega) \) is the same as in the benchmark model.

Following the same steps as in the benchmark proof, this then implies that

\[ \left( \frac{\theta}{\eta} + \kappa \right) \hat{l}_0 = \int_l^1 \frac{\sigma(i) \alpha(i) s(i)}{\int_l^1 \sigma(i) \alpha(i) s(i)} \hat{s}_0(i) \, di - \int_l^1 \frac{\alpha(i) s(i)}{\int_l^1 \alpha(i) s(i)} \hat{s}_0(i) \, di \]

\[ = -(1 - \beta) \frac{\psi}{\rho + \delta} \Delta \log(\omega) + \beta \psi \hat{q}_0. \]

Thus,

\[ \hat{\omega}_0 = -\frac{1}{\eta} \hat{l}_0 \]

\[ = \frac{1}{\theta + \kappa \eta} \left( \frac{\psi}{\rho + \delta} \Delta \log(\omega) - \beta \left( \frac{\psi}{\rho + \delta} \Delta \log(\omega) + \psi \hat{q}_0 \right) \right) \]

\[ = \frac{1}{\theta + \kappa \eta} \left( \frac{\psi}{\rho + \delta} \Delta \log(\omega) - \beta \left( \frac{\psi}{\rho + \delta} \Delta \log(\omega) + \frac{\psi}{\rho + \delta + \lambda} \hat{\omega}_0 \right) \right) \]

\[ = \frac{1 - \beta}{1 + \beta \frac{\psi}{\rho + \delta + \lambda} \frac{1}{\theta + \kappa \eta} \frac{\psi}{\rho + \delta}} \Delta \log(\omega). \]

Finally, using the above together with the expression for \( \Delta \log(\omega) \) in equations (A.8)-(A.10), we obtain:
\[ \Delta \log(y_t) = \frac{1}{\theta + \kappa \eta} \left( 1 + \kappa \eta + (\theta - 1) \frac{\psi}{\chi} \left( 1 - \frac{1 - \beta}{1 + \beta \frac{\lambda - \rho}{\delta}} e^{-\lambda t} \right) \right) (\theta - 1) \Delta \log(A) \]

\[ \Delta \log(q_t) = \frac{1}{\chi} \left( 1 + \frac{\lambda - \delta}{1 + \beta \frac{\lambda - \rho}{\delta}} \right) (\theta - 1) \Delta \log(A) \]

\[ \Delta \log(l_t) = -\frac{\eta}{\theta + \kappa \eta} \left( 1 + \frac{\psi}{\chi} \left( 1 - \frac{1 - \beta}{1 + \beta \frac{\lambda - \rho}{\delta}} e^{-\lambda t} - 1 \right) \right) (\theta - 1) \Delta \log(A) \]

Then, mathematically, the dynamic responses in the economy where old generations can re-optimize their skills are similar to those in the benchmark economy except that the function \( e^{-\lambda t} \) is now multiplied by \( \frac{1 - \beta}{1 + \beta \frac{\lambda - \rho}{\delta}} < 1 \). This immediately implies that: the long-run responses are the same in both economies, the short-run responses of \( y \) and \( l \) (of \( q \)) are now larger (smaller) in magnitude, and the DCIR of all variables is now smaller. Hence, in many ways, this new economy behaves qualitatively similar to an economy with a lower degree of skill specificity (higher \( \eta \)), with the exception that long-run responses are unchanged.

### B.3 Population growth

We now assume that the size of entering generations is \( \mu \) as opposed to \( \delta \). This implies that the population growth rate is \( \mu - \delta \). The Kolmogorov-Forward equation describing the evolution of the skill distribution becomes

\[ \frac{\partial e^{(\mu-\delta)t} s_i(t)}{\partial t} = -\delta e^{(\mu-\delta)t} s_i(t) + \mu e^{(\mu-\delta)t} \tilde{s}_i(t). \]

Then, we have that

\[ \frac{\partial s_i(t)}{\partial t} = -\mu s_i(t) + \mu \tilde{s}_i(t). \]

The remaining elements in the model remain the same. Hence, the economy with population growth is identical to our benchmark economy except that the convergence rate \( \lambda \) is higher iff \( \mu > \delta \) since it is now the positive solution to:

\[ (\lambda - \mu)(\rho + \delta + \lambda) = \frac{\psi \mu}{\theta + \kappa \eta}. \]

Then, if \( \mu > \delta \), the short- and long-run dynamic responses for \( y_t, l_t \) remain unchanged, the short-run response of \( q \) is smaller in magnitude, and the DCIR of all variables is lower. The opposite holds when \( \mu < \delta \).
Appendix C  Empirical Analysis

This appendix presents additional empirical results that complement those presented in Section 6. Section C.1 discusses details about the data construction procedure. Section C.2 reports the summary statistics of our baseline sample. Section C.3 presents evidence on the types of tasks required by cognitive-intensive occupations. Section C.4 presents additional empirical results that attest the robustness of the estimates presented in Section 6.2. Section C.5 presents the correlation between changes in the mean age of an occupation and its employment share in the United States over different time periods.

C.1 Data construction

The raw data in the LIAB comes in the form of entire job histories of workers in the sample. Individual entries therefore contain worker information, as well as information on the start and end date of a job spell for that individual, the location (establishment), and characteristics of the job spell. We transform this data into an annual panel dataset following the steps in Card, Heining, and Kline (2013), with minor modifications. Specifically, we sequentially restrict our sample by selecting (i) males in West Germany, (ii) those aged 15-64 years at the time of the job spell, and (iii) the job-spell within a calendar year with maximum earnings. We then adjust wages by (i) deflating earnings using German CPI information from FRED (Series id: DEUCPIALLMINMEI) and (ii) replacing daily wages with Upper Earnings Limits in Card, Heining, and Kline (2013) for daily wages above censor limit. Finally, we impute the district of employment using the district of the establishment if the district of employment is missing (before 1999).

While the years represented in our data and our underlying data sample differ from those of Card, Heining, and Kline (2013), our panel well represents the data used in that paper. Figure B1 illustrates that the mean wage changes of job movers, classified by the mean log wages of coworkers in their old and new establishments, is similar in our data to the main findings in Card, Heining, and Kline (2013) (their Figure Vb).

We link our LIAB-based worker panel to the DSL access data from Falck, Gold, and Heblich (2014) using the district identifiers in both datasets. We then construct the instrumental variables discussed in Section 6.2.1. Figure B2 illustrates the spatial variation of the instruments used to estimate our baseline results.
Figure B1: Replication of Card, Heining, and Kline (2013)

Note. Figure illustrates the mean wage changes for job movers from the fourth and first quartile of establishments in all quartiles of establishments. Movers are defined as workers who move jobs from a job they held for two years before moving, and stay in the new job for two years after moving. Quartiles are defined by the mean log wages of coworkers in the old and new establishments. The sample period is 2002-2009. \( \text{trans}_i = 3 \) is the year of moving.

Figure B2: Spatial Variation in the Instrumental Variables

Note. Panel A illustrates the number of municipalities across districts in Germany that did not have access to an MDF within the 4200m radius ("MDF Density Measure"), as described in Section 6.2.1. Panel B illustrates the number of municipalities across districts that did not have their own MDF and did not have access to an alternative MDF in a neighboring district "Alternative MDF Availability".
C.2 Sample statistics

This section reports the summary statistics of our baseline sample. We begin by illustrating the increase in inequality, measured by the standard deviation of log wages, in our sample. Figure B3 compares the overall change in inequality together with the between district-generation-occupation component, measured using the residual log-wage dispersion from a mincer regression including dummies for the district-generation-occupation estimated on the sample in each year. Between 1997-2012, overall inequality in our sample increased by about 8.5 log points. As the figure illustrates, the between district-generation-occupation component explains about half of the increase in inequality during this period. In results available on request, we attest that each of these characteristics alone does not account for the inequality rise.\footnote{We also attest that the explanatory power of the between district-generation-occupation component is similar to that of the between establishment component of log-wage variance, which Card, Heining, and Kline (2013) point as the main driver of the inequality increase in Germany during this period. Notice that this is not mechanical because there are nearly 50 times as many establishments as district-occupation-generation triples in our sample.}

Table B1 presents summary statistics underlying the FDZ microdata used in our empirical analysis. They illustrate the evolution of the number of employees, ages and log-wage of the baseline generations used in estimation.

Figure B3: Aggregate Trends in Log Wage Variance

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure_b3.png}
\caption{Aggregate Trends in Log Wage Variance}
\end{figure}

\textit{Note.} Estimation of the aggregate standard deviation of log wages on the full LIAB sample and the residual dispersion in log wages from a mincer regression including district-occupation-generation dummies. Estimates are changes in dispersion relative to 1999.
Table B1: Summary Statistics: German Microdata

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Number of observations</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Born before 1960 (“Old”)</td>
<td>185,751</td>
<td>96,045</td>
</tr>
<tr>
<td>Born after 1960 (“Young”)</td>
<td>251,451</td>
<td>538,590</td>
</tr>
<tr>
<td><strong>Mean log wage</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Born before 1960 (“Old”)</td>
<td>4.54</td>
<td>4.42</td>
</tr>
<tr>
<td>Born after 1960 (“Young”)</td>
<td>4.15</td>
<td>4.54</td>
</tr>
<tr>
<td><strong>Mean age</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Born before 1960 (“Old”)</td>
<td>44.86</td>
<td>60.53</td>
</tr>
<tr>
<td>Born after 1960 (“Young”)</td>
<td>28.22</td>
<td>39.56</td>
</tr>
</tbody>
</table>

Note: Sample of male workers in LIAB data, living in West Germany, employed full-time with a positive wage in 120 occupations. Generations as defined in the table.
C.3 Cognitive intensity and use of new technologies across occupations in Germany

This section analyzes the types of tasks required by cognitive-intensive occupations. Figure B4 reports the correlation between the occupation’s intensity in cognitive skills and the share of individuals in that occupation reporting they intensely perform each of the listed tasks. The top tasks performed in cognitive-intensive occupations are directly related to technological innovations recently introduced in the workplace: working with internet, in particular, and with computers, more generally. On the other extreme, individuals employed in the least cognitive-intensive occupations tend to perform routine tasks associated with manufacturing and repairing. The results in Figure B4 are consistent with the evidence establishing the heterogeneous impact of new technologies on different tasks performed by workers – e.g., Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn (2013), and Akerman, Gaarder, and Mogstad (2015).

We then investigate whether these new technologies affected worker generations differently conditional on their occupation. We consider two generations: a young generation aged less than 40 years and an old generation aged more than 40 years. Figure B5 shows that, while internet and computer usage are biased towards cognitive-intensive occupations, there were only small differences in the usage of these new technologies across worker cohorts employed in the same occupation in 2012. These results are complement the finding in Spitz-Oener (2006) that there were small between-cohort differences in the change of the task content of German occupations in the 1990s.

C.4 Impact of new technologies on cognitive-intense occupations in Germany

This section investigates the robustness of the results presented in Section 6.2.

Cognitive intensity and labor market outcomes across occupations. We first report the impact of cognitive-intensity on occupation employment growth for different time horizons. The estimates in Table B2 show that results are qualitatively similar for 1995-2000 and 1995-2010.

We then investigate the impact of cognitive-intensity on occupation employment growth with a more flexible specification that allows for different coefficients for different levels of cognitive-intensity. As is clear from Table B3, the results in Table 1 are driven largely by an increase in employment for all generations in the most cognitive intensive occupations (above the 60th percentile of cognitive intensity). This increase is substantially stronger for the young generation. Some evidence of polarization is also evident for the young generation, as they also disproportionately enter the least cognitive intensive occupations.

Appendix Table B4 investigates the robustness of the estimates of equation (28) reported in Table 1. Panel A of Table B4 reports similar results when we include occupation-level controls for import and export exposure and the growth in the fraction of migrants in the occupation. Panel B shows that results are also robust to restricting the sample to native-born German males only. Panel C presents results where the “Young” generation is defined alternatively as those born after 1965 or 1955. As expected, when the definition of the young generation is further restricted to include only more recent cohorts, the coefficient on “Young” is stronger.

40 Results are similar if we define young generations to include workers who are less than 30, 35 or 45 years old.
Note. Sample of 85 occupations. The occupation task intensity is the share of individuals in that occupation reporting to intensively perform the task in the 2012 Qualification and Working Conditions Survey. The occupation cognitive-skill intensity is the share of time spent on cognitive-intensive tasks in the BERUFNET dataset (2011-2013).

Note. Sample of 85 occupations in Working Condition Survey. For each occupation, we compute the share of individuals reporting intensive internet and computer usage on their job. Young generations defined as workers aged below 40 years and Old generations defined as all workers aged above 40 years. The occupation cognitive-skill intensity is the share of time spent on cognitive-intensive tasks in the BERUFNET dataset (2011-2013). Figure reports the lowess smooth fit.
The opposite happens if we relax the young definition to include older cohorts. Panel C also shows that results are similar if the “Young” generation is defined as those aged below 40 in each year (as in Figure 5).

**Dynamic adjustment to broadband internet adoption across regions and occupations.** We start by examining the first-stage regression that relates the initial telephone network to DSL access. Although the unit of observation in equation (29) is a district-occupation-generation triple, the exogenous variation in the instrument vector comes only from cross-district variation. Therefore, to provide a clear picture of the exogenous variation underlying the first-stage regression, we first examine the impact of the instrument vector \( Z_i \) on the district’s share of population with broadband internet access in 2005, \( DSL_i \). That is, we begin by estimating the following linear regression:

\[
DSI_i = Z_i \rho + X_i \gamma + \epsilon_i
\]  
(C.1)

where \( X_i \) is the vector of district-level controls used in the estimation of (29).

Table B5 shows that districts with adverse initial conditions for internet adoption had a lower share of households with high-speed internet in 2005. Columns (1) reports the first-stage estimates controlling for the baseline set of district-level controls. We can see that the F statistic of excluded variables remains high in the presence of these controls.

As discussed in Section 6, equation (29) has multiple endogenous variables since they include DSL access interacted with occupation cognitive intensity and worker generation dummies. To test for weak instruments in this setting, we provide the Sanderson-Windmeijer F-statistics (Sanderson and Windmeijer, 2016) for the first stage of each specification in Table B6. This test statistic checks for whether any of our endogenous variables are weakly instrumented, as well as whether there are sufficiently many strong instruments to instrument the multiple endogenous variables. As shown in the table, we obtain uniformly high first-stage SW F-statistics in all specifications, indicating that our instrument vector has enough power to estimate responses for different worker cohorts.

We now turn to a more careful investigation of the robustness of the results in Figures 6. Table B7 investigates how our baseline set of controls affects estimates. The three panels of Table B7 present estimates for the entire post-shock period of the sample (1999-2014, Panel A), the period during which DSL was rolled out across German regions (1999-2007, Panel B), and the period before the shock (1996-1999, Panel C). Each panel includes the results of our baseline specification, as well as alternative specifications in which (i) we drop the pre-trend control, and (ii) we augment baseline controls with district-generation-year fixed effects.

Consider first the impact of the pretrend control in the second row of each panel. This control increases the magnitude and the precision of the estimates coefficients in the period of 1999-2007 and 1999-2014. However, it has the opposite impact on the pre-shock period of 1996-1999. In this pre-shock period, there are marginally significant negative responses. Once those are taken into account, the impact of broadband internet adoption on more cognitive intensive occupations is stronger.

Turning to the specification including district-generation-year fixed effects, we can see that results are remarkably similar to our baseline estimates. This is reassuring as this specification includes a restrictive set of controls that absorb all potential confounding shocks that affect each district-generation pair in a year. For instance, they account for any pre-existing variation that might have lead to differential DSL access in the district. As a result, identification in this specification comes purely through the differential effect of the DSL access shock on occupations with higher cognitive intensity in the district.

Table B8 investigates the robustness of the baseline estimates in Figures 6 to the sample
specification. The two panels present estimates for the entire post-shock period of the sample (1999-2014, Panel A), and the period during which DSL was rolled out across German regions (1999-2007, Panel B). All specifications include the baseline set of controls.

The second row of each panel show that results are similar if we restrict the sample to only include workers born in Germany. This suggests that the inclusion of immigrants in our sample does not drive our baseline results.

We consider next several alternative definitions of the young generation based on (i) cohorts groups born after 1955, 1965 or 1970, and (ii) age groups aged below 35, 40 or 45 in each year. For all definitions, the coefficient on the cognitive intensity of the occupation for young workers is positive and strongly significant, while that for the old generation is insignificant and close to zero. As before, the coefficient in column (2) is stronger when we restrict the young generation to cohorts born in more recent years. Similar patterns arise when we define the young generation based on a lower or higher age cutoff in each year.

The last row of each panel reports estimates when we restrict the sample by excluding workers employed in establishments belonging to the top 25 percentile of establishment sizes. This exercise accounts for the likelihood that the largest establishments in Germany acquired DSL earlier through specialized private connections. In this case, we would expect adjustment in these establishments to have occurred earlier, biasing our results to zero. In line with this intuition, estimated coefficients are stronger than the baseline for all workers in column (1) and for the young-old gap in column (4). This indicates that our instrument seems to generate variation in the roll-out of broadband internet that mostly affected the occupation composition of small establishments across German districts.

Finally, Table B9 investigates the impact of early DSL adoption on investment in cognitive skills by young workers in the district. Specifically, it reports the estimated impact, on the growth in the number of trainees in an occupation-district, of the interaction between the occupation’s cognitive intensity and the district’s DSL access in equation (29). The estimates are for a single generation of working-age individuals whose employment status is a trainee or intern in each year. Our estimates suggest that regions where DSL expansion happened faster also experienced stronger growth in the number of trainees in more cognitive intensive occupations. This evidence is consistent with our model’s prediction that, after the arrival of a cognitive-intensive innovation, incoming cohorts increase their investment in the cognitive skills used in more cognitive intensive occupations.
Table B2: Cognitive intensity and labor market outcomes across occupations in Germany

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Employment Growth</th>
<th></th>
<th></th>
<th>Real Payroll Growth</th>
<th></th>
<th></th>
<th>Trainee Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Young</td>
<td>Old</td>
<td>All</td>
<td>Young</td>
<td>Old</td>
<td>All</td>
</tr>
<tr>
<td>(1) (2) (3) (4) (5) (6) (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Panel A: Change in 1995-2000**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>0.388***</th>
<th>0.650***</th>
<th>0.113***</th>
<th>0.340***</th>
<th>0.616***</th>
<th>0.157***</th>
<th>0.379*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.076) (0.098) (0.043)</td>
<td>(0.048) (0.070) (0.037)</td>
<td>(0.209)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Panel B: Change in 1995-2005**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>0.778***</th>
<th>1.150***</th>
<th>0.290***</th>
<th>0.741***</th>
<th>1.158***</th>
<th>0.404***</th>
<th>0.545</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.111) (0.130) (0.079)</td>
<td>(0.086) (0.114) (0.063)</td>
<td>(0.427)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Panel C: Change in 1995-2010**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>1.110***</th>
<th>1.523***</th>
<th>0.454***</th>
<th>1.036***</th>
<th>1.525***</th>
<th>0.539***</th>
<th>0.768*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.137) (0.149) (0.125)</td>
<td>(0.111) (0.133) (0.091)</td>
<td>(0.430)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Panel D: Change in 1995-2014**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>1.488***</th>
<th>1.894***</th>
<th>0.871***</th>
<th>1.535***</th>
<th>2.029***</th>
<th>1.044***</th>
<th>2.121***</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.225) (0.234) (0.229)</td>
<td>(0.227) (0.238) (0.223)</td>
<td>(0.385)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Sample of 120 occupations. Each panel reports the estimate for the dependent variable over the indicated time period. Young cohort defined as all workers born after 1960 and Old cohort as all workers born before 1960. Robust standard errors in parentheses. *

Table B3: Cognitive intensity and labor market outcomes across occupations in Germany: Percentiles specification

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Employment Growth</th>
<th></th>
<th></th>
<th>Real Payroll Growth</th>
<th></th>
<th></th>
<th>Trainee Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Young</td>
<td>Old</td>
<td>All</td>
<td>Young</td>
<td>Old</td>
<td>All</td>
</tr>
<tr>
<td>(1) (2) (3) (4) (5) (6) (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Low: below P30**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>-0.012</th>
<th>0.286**</th>
<th>-0.946***</th>
<th>0.220*</th>
<th>0.590***</th>
<th>-0.875***</th>
<th>-0.790***</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.128) (0.137) (0.129)</td>
<td>(0.132) (0.140) (0.135)</td>
<td>(0.178)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Medium: P30-P60**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>-0.054</th>
<th>-0.046</th>
<th>0.031</th>
<th>-0.086</th>
<th>-0.036</th>
<th>-0.014</th>
<th>-0.112</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.194) (0.205) (0.208)</td>
<td>(0.195) (0.208) (0.202)</td>
<td>(0.274)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**High: above P60**

<table>
<thead>
<tr>
<th>Cognitive intensity</th>
<th>0.812***</th>
<th>1.038***</th>
<th>0.531***</th>
<th>0.816***</th>
<th>1.099***</th>
<th>0.592***</th>
<th>1.052***</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.156) (0.166) (0.016)</td>
<td>(0.158) (0.169) (0.157)</td>
<td>(0.237)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Sample of 120 occupations. The table reports the estimate for the dependent variable over the time period 1995-2014. Occupations have been classified into 100 percentiles based on cognitive intensity, and separate coefficients estimated for percentiles below 30, 30-60 and above 60. Young generation defined as all workers born after 1960 and Old generation as all workers born before 1960. Robust standard errors in parentheses. *

* p < 0.1, ** p < 0.05, *** p < 0.01
Table B4: Cognitive intensity and labor market outcomes across occupations in Germany: Robustness

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Employment Growth</th>
<th>Trainee Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (1)</td>
<td>Young (2)</td>
</tr>
</tbody>
</table>

Panel A: Alternative control set, 1995-2014
Controls for immigration and trade

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Panel B: Alternative sample definition, 1995-2014
Native-born Males Only

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Panel C: Alternative generation definition, 1995-2014
Young: Born after 1965

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Young: Born after 1955

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Young: Aged Below 40 in each year

<table>
<thead>
<tr>
<th></th>
<th>Coefficients</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Note. Sample of 120 occupations, sample periods as defined in the table. Columns (1)–(3) report the estimated coefficient on the occupation’s cognitive intensity in equation (28). Column (4) reports the difference between the coefficients in columns (3) and (2). Each row defines a separate robustness exercise. The row “Controls for immigration and trade” includes a set of baseline controls: growth in occupational exposure to exports during the sample period, growth in occupational exposure to imports during the sample period, and growth in the fraction of immigrants in the occupation during the sample period. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table B5: First-stage regressions – Share of households with DSL access in 2005

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDF density measure</td>
<td>-0.020***</td>
<td>-0.018***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Alternative MDF availability</td>
<td>0.002</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

Baseline controls

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>F statistic</td>
<td>26.49</td>
<td>43.06</td>
</tr>
</tbody>
</table>

Note. Sample of 323 districts in West Germany. All regressions are weighted by the district population size in 1999. Baseline controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share and workforce age composition. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table B6: First-stage SW F-statistics for estimation of equation (29) reported in Panel A of Figure 6

<table>
<thead>
<tr>
<th>Instrumented Variable</th>
<th>1997</th>
<th>2007</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young Generation*DSL Access</td>
<td>18.74</td>
<td>18.78</td>
<td>19.04</td>
</tr>
<tr>
<td>Old Generation*DSL Access</td>
<td>19.04</td>
<td>17.57</td>
<td>20.45</td>
</tr>
<tr>
<td>Young Generation<em>DSL Access</em>Cognitive Intensity</td>
<td>21.95</td>
<td>20.48</td>
<td>19.77</td>
</tr>
<tr>
<td>Old Generation<em>DSL Access</em>Cognitive Intensity</td>
<td>21.31</td>
<td>18.57</td>
<td>22.32</td>
</tr>
</tbody>
</table>

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Table reports the Sanderson-Windmeijer F-statistic for each endogenous regressor when estimating equation (29).
Table B7: Impact of early DSL adoption on more cognitive-intensive occupations: Alternative control sets

<table>
<thead>
<tr>
<th>Control Set</th>
<th>Employment Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td><strong>Panel A: 1999-2014</strong></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.240***</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
</tr>
<tr>
<td>No Pretrend Control</td>
<td>0.177**</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
</tr>
<tr>
<td>District-Year Effects</td>
<td>0.149**</td>
</tr>
<tr>
<td></td>
<td>(0.067)</td>
</tr>
<tr>
<td><strong>Panel B: 1999-2007</strong></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.077*</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
</tr>
<tr>
<td>No Pretrend Control</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
</tr>
<tr>
<td>District-Year Effects</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
</tr>
<tr>
<td><strong>Panel C: 1996-1999</strong></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
</tr>
<tr>
<td>No Pretrend Control</td>
<td>-0.109*</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
</tr>
<tr>
<td>District-Year Effects</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
</tr>
</tbody>
</table>

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Sample periods as defined in the table. Column (1) reports the estimated coefficient on interaction between the occupation cognitive intensity and district DSL access in equation (29) for a single generation of working-age employed individuals. Columns (2)-(3) report the estimated coefficients on interaction between the occupation cognitive intensity, generation dummies and district DSL access in equation (29) for the old and young generations. Column (4) reports the difference between the coefficients in columns (3) and (2). Generations are the baseline generations with young workers those born after 1960. All regressions are weighted by the district population size in 1999 and include a set of baseline district-level controls as well as occupation-year and generation-year fixed effects. Each row defines a separate robustness exercise. “District-Year Effects” are estimated as district-year fixed effects in column (1) and as district-year-generation fixed effects in columns (2)-(4). Standard errors clustered at the district-level in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01
Table B8: Impact of early DSL adoption on more cognitive-intensive occupations: Sample selection

<table>
<thead>
<tr>
<th>Sample Definition</th>
<th>Employment Growth</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (1)</td>
<td>Young (2)</td>
<td>Old (3)</td>
<td>Between (4)</td>
</tr>
<tr>
<td><strong>Panel A: 1999-2014</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.240***</td>
<td>0.482***</td>
<td>-0.065</td>
<td>0.546**</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.154)</td>
<td>(0.193)</td>
<td>(0.287)</td>
</tr>
<tr>
<td>Native-born Males Only</td>
<td>0.223***</td>
<td>0.446***</td>
<td>0.074</td>
<td>0.372**</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.143)</td>
<td>(0.144)</td>
<td>(0.208)</td>
</tr>
<tr>
<td>Young: born after 1970</td>
<td>0.714***</td>
<td>-0.048</td>
<td>0.789**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.182)</td>
<td>(0.242)</td>
<td>(0.371)</td>
<td></td>
</tr>
<tr>
<td>Young: born after 1965</td>
<td>0.612***</td>
<td>-0.171</td>
<td>0.783***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.157)</td>
<td>(0.201)</td>
<td>(0.303)</td>
<td></td>
</tr>
<tr>
<td>Young: born after 1955</td>
<td>0.573***</td>
<td>-0.298</td>
<td>0.871**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(0.233)</td>
<td>(0.355)</td>
<td></td>
</tr>
<tr>
<td>Young: Aged &lt; 35 in each year</td>
<td>0.612***</td>
<td>0.059</td>
<td>0.553***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.139)</td>
<td>(0.139)</td>
<td>(0.203)</td>
<td></td>
</tr>
<tr>
<td>Young: Aged &lt; 40 in each year</td>
<td>0.529***</td>
<td>0.076</td>
<td>0.453**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.164)</td>
<td>(0.163)</td>
<td>(0.237)</td>
<td></td>
</tr>
<tr>
<td>Young: Aged &lt; 45 in each year</td>
<td>0.445***</td>
<td>0.159</td>
<td>0.286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.170)</td>
<td>(0.198)</td>
<td>(0.266)</td>
<td></td>
</tr>
<tr>
<td>Small Establishments Only</td>
<td>0.309***</td>
<td>0.466***</td>
<td>-0.128</td>
<td>0.594**</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.140)</td>
<td>(0.183)</td>
<td>(0.286)</td>
</tr>
<tr>
<td><strong>Panel B: 1999-2007</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>0.077*</td>
<td>0.223***</td>
<td>-0.138</td>
<td>0.361**</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.092)</td>
<td>(0.116)</td>
<td>(0.177)</td>
</tr>
<tr>
<td>Native-born Males Only</td>
<td>0.054</td>
<td>0.145*</td>
<td>0.037</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.092)</td>
<td>(0.105)</td>
<td>(0.171)</td>
</tr>
<tr>
<td>Young: born after 1970</td>
<td>0.449***</td>
<td>-0.070</td>
<td>0.518*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.191)</td>
<td>(0.289)</td>
<td></td>
</tr>
<tr>
<td>Young: born after 1965</td>
<td>0.298***</td>
<td>-0.168</td>
<td>0.465**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.118)</td>
<td>(0.183)</td>
<td></td>
</tr>
<tr>
<td>Young: born after 1955</td>
<td>0.203**</td>
<td>-0.155</td>
<td>0.358***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.115)</td>
<td>(0.167)</td>
<td></td>
</tr>
<tr>
<td>Young: Aged &lt; 35 in each year</td>
<td>0.118**</td>
<td>0.095</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.095)</td>
<td>(0.130)</td>
<td></td>
</tr>
<tr>
<td>Young: Aged &lt; 40 in each year</td>
<td>0.195**</td>
<td>0.030</td>
<td>0.165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.104)</td>
<td>(0.166)</td>
<td></td>
</tr>
<tr>
<td>Young: Aged &lt; 45 in each year</td>
<td>0.206**</td>
<td>0.091</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.111)</td>
<td>(0.174)</td>
<td></td>
</tr>
<tr>
<td>Small Establishments Only</td>
<td>0.129*</td>
<td>0.263**</td>
<td>-0.170</td>
<td>0.434**</td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.103)</td>
<td>(0.120)</td>
<td>(0.181)</td>
</tr>
</tbody>
</table>

Note: Sample of 2 cohorts, 120 occupations and 323 districts. Sample periods as defined in the table. Column (1) reports the estimated coefficient on interaction between the occupation cognitive intensity and district DSL access in equation (29) for a single generation of working-age employed individuals. Columns (2)-(3) report the estimated coefficients on interaction between the occupation cognitive intensity, generation dummies and district DSL access in equation (29) for the old and young generations. Column (4) reports the difference between the coefficients in columns (3) and (2). All regressions are weighted by the district population size in 1999 and include a set of baseline district-level controls, pretrend controls, occupation-year and generation-year fixed effects. Each row defines a separate sample selection exercise: (i) baseline sample restricted to only Germans ("Native-born"), (ii) different definitions of young workers based on year of birth or age cutoff in each year, and (iii) baseline sample restricted to workers employed in establishments below the 75th percentile of all establishment sizes ("Small Establishments Only"). Standard errors clustered at the district-level in parentheses.

* p < 0.1, ** p < 0.05, *** p < 0.01
Table B9: Impact of early DSL adoption on the number of trainees in more cognitive-intensive occupations

<table>
<thead>
<tr>
<th>Dependent variable: Training Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Panel A: 1999-2014</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0.415*</td>
</tr>
<tr>
<td>0.237</td>
</tr>
<tr>
<td>Panel B: 1999-2007</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0.305</td>
</tr>
<tr>
<td>0.247</td>
</tr>
<tr>
<td>Panel C: 1996-1999</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-0.093</td>
</tr>
<tr>
<td>0.044</td>
</tr>
</tbody>
</table>

Note. Sample of 120 occupations and 323 districts. Sample periods as defined in the table. Table reports the estimated coefficient on interaction between the occupation cognitive intensity and district DSL access in equation (29) for a single generation of working-age individuals whose employment status is a trainee or intern in each year. All regressions are weighted by the district population size in 1999 and include a set of baseline district-level controls as well as occupation-year fixed effects. Standard errors clustered at the district-level in parentheses. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$
Figure B6: Impact of early DSL adoption on employment in more cognitive-intensive occupations: Old and Young generations

(a) Relative employment response for each generation

(b) Between-generation response difference

Note. Estimation of equation (29) in the sample of 2 cohorts, 120 occupations and 323 districts. Dependent variable: log employment. The left panel reports $\beta^g_t$ for old and young generations, and the right panel reports $\beta^{young}_t - \beta^{old}_t$. All regressions are weighted by the district population size in 1999 and include occupation-time and cohort-time fixed-effects. Baseline controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share, district age composition, and the dependent variable pretrend growth in 1995-1999. Bars are the associated 90% confidence interval implied by the standard error clustered at the district level.

Figure B7: Impact of early DSL adoption on payroll in more cognitive-intensive occupations: Old and Young generations

(a) Relative payroll response for each generation

(b) Between-generation response difference

Note. Estimation of equation (29) in the sample of 2 cohorts, 120 occupations and 323 districts. Dependent variable: log employment. The left panel reports $\beta^g_t$ for old and young generations, and the right panel reports $\beta^{young}_t - \beta^{old}_t$. All regressions are weighted by the district population size in 1999 and include occupation-time and cohort-time fixed-effects. Baseline controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant employment share, district age composition, and the dependent variable pretrend growth in 1995-1999. Bars are the associated 90% confidence interval implied by the standard error clustered at the district level.
C.5 Changes in mean age and employment share across occupations in the United States

This section investigates the correlation between changes in the mean age of an occupation and its employment share in the United States over different time periods. We use the U.S. Census data downloaded from IPUMS international for 1960, 1970, 1980, 1990, 2000, 2010, and 2015. It contains individual-level occupation information for males aged 16-64 years old in the nine 2-digit ISCO occupation used to construct the aggregate trends reported in Section 6.1. For each occupation \( o \), we compute the change in the average age of its workers between years \( t \) and \( t_0 \), \( \Delta \bar{A}_{o,t} \equiv \bar{A}_{o,t} - \bar{A}_{o,t_0} \) and the change in the employment share in the same period, \( \Delta e_{o,t} \equiv e_{o,t} - e_{o,t_0} \). We then compute the correlation between \( \Delta \bar{A}_{o,t} \) and \( \Delta e_{o,t} \) across the nine occupations weighted by their employment share in 1960.

Table B10 shows that, in line with Figure 5, the expanding occupations in recent periods attracted young individuals, leading to reductions in the average age of its workers. However, this was not the case in previous periods. Between 1960 and 1990, the correlation between changes in average age and employment share were much weaker. In fact, our results show that this correlation was positive in 1960-1980.
Table B10: Changes in mean age and employment share across occupations, United States

<table>
<thead>
<tr>
<th>Period</th>
<th>Corr($\Delta A_{o,t}, \Delta e_{o,t}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2015</td>
<td>-0.53</td>
</tr>
<tr>
<td>1990-2010</td>
<td>-0.63</td>
</tr>
<tr>
<td>1980-2000</td>
<td>-0.60</td>
</tr>
<tr>
<td>1970-1990</td>
<td>-0.03</td>
</tr>
<tr>
<td>1960-1980</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*Note.* For each period, the table reports the correlation between $\Delta A_{o,t}$ and $\Delta e_{o,t}$ across the nine 2-digit ISCO occupations (weighted by their employment share in 1960). For each occupation and period, $\Delta A_{o,t}$ is the change in the mean age and $\Delta e_{o,t}$ is the change in employment share. Sample of males 16-64 years old in the United States.

Appendix D  Numerical Analysis

This appendix discusses in detail the parameterization of the model. Section D.1 presents the theoretical impulse response functions for the relative employment of different worker generations. Section D.2 describes the procedure to select the parameters that match the theoretical and empirical impulse response functions. In Section D.3, we use the parametrized model to quantitatively evaluate the dynamic adjustment to cognitive-biased technological innovations.

D.1 Impulse response functions of relative employment by generation

As a first step to parametrize our theory using the empirical impulse response functions in Section 6, we derive the theoretical responses of generation-specific relative employment. To this end, we consider the same one-time permanent change in $A_{t=0}$. We define older generations as those born before period $t = -x$ and younger generations as those born at period $t = -x$. In period $t \geq 0$, the relative high-tech employment of these worker generations are given by

$$e_{t}^{\text{old}} = \frac{\int_{l}^{1} s_{0}(i)di}{\int_{0}^{l} s_{0}(i)di} \quad \text{and} \quad e_{t}^{\text{young}} = \frac{\bar{x}_0 e^{-\delta t} \int_{l}^{1} s_{0}(i)di + \delta \int_{0}^{l} e^{\delta(\tau-t)} \int_{l}^{1} s_{\tau}(i)di d\tau}{\bar{x}_0 e^{-\delta t} \int_{0}^{l} s_{0}(i)di + \delta \int_{0}^{l} e^{\delta(\tau-t)} \int_{0}^{l} s_{\tau}(i)di d\tau}$$

where $\bar{x}_0 \equiv 1 - e^{-\delta x}$ is the population share of the young generation at $t = 0$.

For both worker groups, the technology-skill assignment is identical and determined by the threshold $l$. Notice that all workers of the old generations have the pre-shock skill distribution, $s_{0}(i)$. However, the skill distribution of young generations combines the pre-shock distribution, $s_{0}(i)$, and the post-shock lotteries, $s_{\tau}(i)$. The overlapping generation structure of the model implies that the relative share of workers in the young generation with the pre-shock skill distribution decays at the constant rate $\delta$.

We allow the young group to include workers born before the shock (since $x \geq 0$). This circumvents the challenge of identifying the cohorts that start adjusting their skills after the shock, which arises because, in practice, technologies may not be adopted instantaneously and young workers may still invest on skills after entering the labor force (in the form of vocational training or on-the-job learning). It is also possible to allow part of the workers
born before the shock to adjust their skills at \( t = 0 \). In this case, rather than \( s_0(i) \), the initial skill distribution would be a mix of \( s_0(i) \) and \( \tilde{s}_0(i) \). This extension does not alter our main qualitative insights, but reduces the magnitude of the short-to-long adjustment in the economy.

**Relative employment of old generation.** We show below that the change in the relative employment of old generations is

\[
\Delta \log e_t^{\text{old}} \approx \frac{\eta}{\theta + \kappa \eta} \frac{1}{e_H} \left( 1 - \frac{\psi}{\chi} (1 - e^{-\lambda t}) \right) (\theta - 1) \Delta \log A, \tag{D.1}
\]

where \( e_H \) is the high-tech employment share at \( t = 0^- \).

Among old generations, the increase in the relative productivity of high-tech production induces the reallocation of workers towards high-tech production whenever \( \theta > 1 \). The expression indicates that this positive effect on relative high-tech employment becomes weaker over time. This follows from the expansion of high-\( i \) skills among younger generations, which displaces old workers with marginal skills from high-tech production – i.e., those with skills \( i \in (l_0, l_{\infty}) \). Importantly, expression (D.1) shows that the magnitude of the increase in relative employment of older generations is decreasing in the degree of technology-skill specificity (i.e., increasing in \( \eta \)).

**Relative employment of young generation.** Turning to the employment response among young generations, we show below that

\[
\Delta \log e_t^{\text{young}} \approx \Delta \log e_t^{\text{old}} + \frac{\psi}{\chi} \frac{1 - e^{-\lambda t}}{1 - (1 - \tilde{x}_0) e^{-\delta t}} (\theta - 1) \Delta \log A. \tag{D.2}
\]

This expression indicates that the evolution of the allocation of young workers has two components. The first term captures the change in technology-skill assignment and, since it is the only determinant of the relative employment of old generations, it can be approximated by \( \Delta \log e_t^{\text{old}} \). The second term captures the change in the skill investment decision of incoming cohorts. At each point in time, this term is positive as young workers distort skill investment towards high-\( i \) skills that became more valuable in high-tech production. We can also show that the between-generation difference grows shortly after the shock. Importantly, expression (D.1) indicates that the between-generation difference in the response of relative employment is decreasing in the skill investment cost (i.e., it is increasing in \( \psi \)).

**D.1.1 Proof of equations (D.1)–(D.2)**

**Proof of equation (D.1).** We first use a first-order approximation to write the log-change in relative high-tech employment in terms of changes in the high-tech employment share:

\[
\Delta \log \left( e_t^{\text{old}} \right) = \log \left( \frac{e_t^{\text{old}}}{e_0^{\text{old}}} \right) \approx \frac{1}{(1 - e_{H,\infty}) e_{H,\infty}} \left( e_{H,t}^{\text{old}} - e_{H,0}^{\text{old}} \right)
\]

where \( e_{H,t}^{\text{old}} = \int s_0(i) di \).
Since \( \Delta \left( \frac{1}{(1-e_{H,∞})e_{H,∞}} \right) (e_{H,t}^{old} - e_{H,0}^{old}) \) is a second order term, we get the approximation:

\[
\Delta \log \left( e_t^{old} \right) \approx \frac{1}{(1-e_{H,0})e_{H,0}} \left( e_{H,t}^{old} - e_{H,0}^{old} \right)
\]

We have that

\[
e_{H,t}^{old} - e_{H,0}^{old} = \int_{l_t}^{1} s_0(i)di - \int_{l_0}^{1} s_0(i)di
\]

By approximating these expressions around \( l \),

\[
e_{H,t}^{old} - e_{H,0}^{old} \approx -s_0(l)l \left( \Delta \log(l_∞) + \hat{l} \right)
\approx (s_0(l)l)\eta \Delta \log(\omega_t)
\approx (s_0(l_0-l_0^-) \eta \Delta \log(\omega_t)
\approx (1-e_{H,0^-}) \eta \Delta \log(\omega_t)
\]

where the third equality follows from the fact that \( \Delta (s_0(l)l) \Delta \log(\omega_t) \) is a second order term, and the last equality follows from normalizing the initial skill distribution to be uniform (which implies \( s_0(l_0^-)l_0^- = 1 - e_{H,0^-} \)).

Combining the two expressions,

\[
\Delta \log \left( e_t^{old} \right) \approx \frac{1}{e_{H,0^-}} \eta \Delta \log(\omega_t)
\]

Using the demand expression in (2),

\[
\Delta \log \left( e_t^{old} \right) \approx \frac{1}{e_{H,0^-}} \eta \left( -\frac{1}{\theta - 1} \log y_t + \Delta \log A \right)
\]

Using the expression for the evolution of \( y_t \) in Proposition 1,

\[
\Delta \log \left( e_t^{old} \right) \approx \frac{1}{e_{H,0^-}} \frac{\eta}{\theta + \kappa \eta} \left( -1 - \kappa \eta - \frac{\psi}{\lambda} (\theta - 1)(1 - e^{-\lambda t}) + (\theta + \kappa \eta) \right) \Delta \log A
\]

\[
\Delta \log \left( e_t^{old} \right) \approx \frac{1}{e_{H,0^-}} \frac{\eta}{\theta + \kappa \eta} \left( 1 - \frac{\psi}{\lambda} (1 - e^{-\lambda t}) \right) (\theta - 1) \Delta \log A,
\]

which is identical to (D.1).
**Proof of equation (D.2).** We first use a first-order approximation to write the log-change in relative high-tech employment in terms of changes in the high-tech employment share:

\[
\log \left( \frac{e_{t}^{\text{young}}}{e_{0}^{\text{young}}} \right) - \log \left( \frac{e_{t}^{\text{old}}}{e_{0}^{\text{old}}} \right) \approx \frac{1}{1 - e_{H,\infty}} \left( \frac{e_{t}^{\text{young}} - e_{0}^{\text{young}}}{e_{H,\infty}} - \frac{e_{t}^{\text{old}} - e_{0}^{\text{old}}}{e_{H,\infty}} \right)
\]

\[
= \frac{1}{(1 - e_{H,\infty})e_{H,\infty}} \left( (e_{t}^{\text{young}} - e_{t}^{\text{old}}) - (e_{0}^{\text{young}} - e_{0}^{\text{old}}) \right)
\]

where the last equality follows from the fact that before the shock old and young make identical choices, \( e_{H,0}^{\text{young}} = e_{H,0}^{\text{old}} \).

Using the definition of employment shares for each generation,

\[
e_{t}^{\text{young}} - e_{t}^{\text{old}} \approx \frac{1}{1 - (1 - \tilde{x}_{0})e^{-\delta t}} \left( \tilde{x}_{0}e^{-\delta t} \int_{l_{t}}^{1} s_{0}(i) di + \delta \int_{0}^{t} e^{\delta(t - \tau)} \int_{l_{t}}^{1} \tilde{s}_{\tau}(i) d\tau \right) - \int_{l_{t}}^{1} s_{0}(i) di
\]

\[
\approx \frac{1}{1 - (1 - \tilde{x}_{0})e^{-\delta t}} \left( \delta \int_{0}^{t} e^{\delta(t - \tau)} \int_{l_{t}}^{1} (\tilde{s}_{\tau}(i) - s_{0}(i)) d\tau \right)
\]

Thus,

\[
\log \left( \frac{e_{t}^{\text{young}}}{e_{0}^{\text{young}}} \right) - \log \left( \frac{e_{t}^{\text{old}}}{e_{0}^{\text{old}}} \right) \approx \frac{1}{1 - e_{H,\infty}} \frac{1}{1 - (1 - \tilde{x}_{0})e^{-\delta t}} \left( \delta \int_{0}^{t} e^{\delta(t - \tau)} \int_{l_{t}}^{1} (\tilde{s}_{\tau}(i) - s_{0}(i)) d\tau \right)
\]

We now consider the following approximation:

\[
\int_{l_{t}}^{1} (\tilde{s}_{\tau}(i) - s_{0}(i)) di \approx \int_{l}^{1} s(i)(\tilde{s}_{\tau}(i) - s_{0}(i)) di
\]

Then, we derive \( s_{0}(i) \) using the expression for the stationary skill distribution

\[
s_{0}(i) = \frac{\tilde{s}(i) a(i) \varphi_{l_{t}}^{\psi}(\omega_{0} - \sigma(i)) \varphi_{l_{t}}^{\psi} \Pi_{l_{t}}^{\psi}}{\int_{0}^{l_{t}} \tilde{s}(j) a(j) \varphi_{l_{t}}^{\psi} dj + \int_{0}^{1} \tilde{s}(j) a(j) \varphi_{l_{t}}^{\psi}(\omega_{0} - \sigma(j)) \varphi_{l_{t}}^{\psi} dj}
\]

\[
\Rightarrow \quad s_{0}(i) \approx - \left( \Pi_{l_{t}}^{\psi} - \int_{l}^{1} s(j) dj \right) \frac{\psi}{\rho + \delta} \Delta \log(\omega)
\]

Using the third part of Theorem 1,

\[
\int_{l_{t}}^{1} (\tilde{s}_{\tau}(i) - s_{0}(i)) di \approx e_{H,\infty} (1 - e_{H,\infty}) \left( \psi \hat{q}_{\tau} + \frac{\psi}{\rho + \delta} \Delta \log(\omega) \right)
\]

\[
= e_{H,\infty} (1 - e_{H,\infty}) \psi (\hat{q}_{\tau} + \Delta \log(q))
\]
We now apply this expression into (D.3):

$$
\log\left(\frac{e_{t}^{\text{young}}}{e_{0}^{\text{young}}}\right) - \log\left(\frac{e_{t}^{\text{old}}}{e_{0}^{\text{old}}}\right) \approx \frac{\psi}{1 - (1 - \tilde{x}_0)e^{-\delta t}} \left( \delta \int_0^t e^{\delta(t-\tau)} (\tilde{q}_\tau + \Delta \log(q)) d\tau \right) \\
\approx \frac{\psi}{1 - (1 - \tilde{x}_0)e^{-\delta t}} \left( \delta \int_0^t e^{\delta(t-\tau)} \tilde{q}_0 e^{-\lambda \tau} d\tau + (1 - e^{-\delta t})\Delta \log(q) \right) \\
\approx \frac{\psi}{1 - (1 - \tilde{x}_0)e^{-\delta t}} \left( \frac{\delta}{\lambda - \delta} (e^{-\delta t} - e^{-\lambda t})\tilde{q}_0 + (1 - e^{-\delta t})\Delta \log(q) \right)
$$

Notice that Proposition 1 implies that

$$
\Delta \log(q) = \frac{1}{\chi} (\theta - 1) \Delta \log A \\
\Delta \log(q_0) = \frac{1}{\chi} \left( 1 + \frac{\lambda - \delta}{\delta} \right) (\theta - 1) \Delta \log A \\
\tilde{q}_0 = \Delta \log(q_0) - \Delta \log(q) = \frac{1}{\chi} \frac{\lambda - \delta}{\delta} (\theta - 1) \Delta \log A
$$

Thus,

$$
\log\left(\frac{e_{t}^{\text{young}}}{e_{0}^{\text{young}}}\right) - \log\left(\frac{e_{t}^{\text{old}}}{e_{0}^{\text{old}}}\right) \approx \frac{\psi}{\chi} \frac{1}{1 - (1 - \tilde{x}_0)e^{-\delta t}} \left( (e^{-\delta t} - e^{-\lambda t}) + (1 - e^{-\delta t}) \right) (\theta - 1) \log A \\
\approx \frac{\psi}{\chi} \frac{1 - e^{-\lambda t}}{1 - (1 - \tilde{x}_0)e^{-\delta t}} (\theta - 1) \Delta \log A,
$$

which is equivalent to (D.2).

### D.2 Parameterization by impulse response matching

We now describe how to parametrize our theory to match the empirical impulse response functions in Section 6. To this end, we map the \( H \) technology in our theory to the set of production activities performed by cognitive-intensive occupations. We calibrate our theory in two steps. In the first step, we exogenously specify a subset of parameters and functions in the theory. We set the discount rate to match an annual interest rate of 2\%, \( \rho = 0.02 \). We calibrate the elasticity of substitution across cognitive and non-cognitive intensive occupations to \( \theta = 3 \). Finally, for all welfare calculations, we specify welfare-weights \( r e^{-rt} \) with \( r = \rho + \delta \) so that the social discounting of future generations is identical to the discounting of worker’s future utility.

We also specify functional forms for the productivity of skill types in the two technologies. We abstract from differences in non-cognitive productivity across skills by normalizing \( \alpha(i) \equiv 1 \). This implies that, for any given worker generation, employment and payroll responses are both driven by the degree of technology-skill specificity in the economy.\(^{41}\) In addition, we

\(^{41}\)The function form of \( \alpha(i) \) controls how labor earnings respond to changes in the employment composition across technologies – for a discussion, see Adão (2016). Alternative specifications of \( \alpha(i) \) can thus be used to match responses in relative earnings for different worker generations.
assume that $\sigma(i)$ takes the form of a logistic function:

$$\sigma(i) = \frac{e^{\sigma(i-l)}}{1 + e^{\sigma(i-l)}}$$

where $l$ is the assignment threshold in the initial stationary equilibrium. This specification is a tractable manner of capturing technology-skill specificity in the economy. It implies that the equilibrium exists for any $\sigma > 0$ since the relative productivity is bounded. Also, by setting the midpoint of the function to $l$, the parameter $\sigma$ controls the elasticity of $\sigma(i)$ for the marginal skill types in the initial equilibrium (i.e., $i$ close to $l$). Thus, $\sigma$ specifies the magnitude of technology-skill specificity, $1/\eta$.

In the second step, we use the estimated responses of Section 6 to calibrate ($\delta, \sigma, \psi$). In doing so, we select the distribution of innate ability to normalize the initial skill distribution to be uniform: $s_0(i) \equiv 1$.\footnote{In this calibration, we select the distribution of innate ability distribution, $\tilde{\varepsilon}(i)$, to generate a uniform distribution of skills in the initial equilibrium: $s_0(i) \equiv 1$. In our theory, this normalization is innocuous since it does not affect changes in the skill distribution for a given change in $q$ conditional on setting $\eta$ to match the short-run employment change.} We formally present the parametrization procedure next, along with an analysis of the model fit. For all parameters, we assume that the shock starts with the roll-out of broadband internet in 2003. We then select parameters to match the estimates for the period of 2008 to 2014 in which we find statistically significant response in the relative payroll and relative employment of cognitive-intensive occupations.

**Generation size: $\delta$ and $\tilde{x}_0$.** We first set $\tilde{x}_0$ to match the 60% share of young workers in the national population in 1997. We then select $\delta$ to match the incline of 25 p.p. in the share of young workers in population between 1997 and 2014. Specifically, we select $x$ and $\delta$ such that

$$\hat{\delta} = \frac{1}{2014-1997} \log(0.40/0.15)$$

$$x = -\frac{1}{\delta} \log 0.4.$$

We obtain $\delta = 0.0574$. This says that the expected work life of a worker after turning 40 years is 18 further years.

**Rate of convergence: $\lambda$.** Proposition 1 implies that it is possible to write the impulse response function of relative output as

$$\Delta \log(y_t) = \alpha_0 + \alpha_1 e^{-\lambda t}$$

where $\alpha_0 > 0$, $\alpha_1 < 0$, and $\lambda > 0$.

We select the parameter $\lambda$ to match the growth in the estimates response of relative payroll of more cognitive-intensive occupations:

$$\hat{\lambda} = \arg \min_{\lambda} \sum_{t=2008}^{2014} \left[ (\hat{\beta}^y_t - \hat{\beta}^y_{2007}) - \alpha_1 e^{-\lambda(t-2007)} \right]^2$$

(D.4)

where $\hat{\beta}^y_t$ are the estimated coefficient reported in Panel B of Figure 6.

The minimization problem in (D.4) yields $\hat{\lambda} = 0.135$. Figure C1 shows the fit of the calibrated model.
Cost of skill investment: $\psi$. Theorem 1 implies that

$$\kappa \eta = \psi \hat{\alpha} - \theta$$  \hspace{1cm} (D.5)

where

$$\alpha = \delta \left[ \left( \frac{\rho}{2} + \hat{\lambda} \right)^2 - \left( \frac{\rho}{2} \right)^2 - \delta (\rho + \delta) \right]^{-1}. \hspace{1cm} (D.6)$$

Using expression (D.2), we have that

$$\Delta \log e^\text{young}_t - \Delta \log e^\text{old}_t = \frac{\psi}{\chi} \frac{1 - e^{-\lambda t}}{1 - (1 - x_0) e^{-\delta t}} (\theta - 1) \Delta \log A.$$  \hspace{1cm} (D.7)

From Proposition 1,

$$(\theta - 1) \Delta \log (A) = \Delta \log (y_t) \left( \frac{1 + \kappa \eta}{\theta + \kappa \eta} + \frac{\psi \theta - 1}{\chi \theta + \kappa \eta} \left( 1 - e^{-\lambda t} \right) \right)^{-1} \hspace{1cm} (D.7)$$

where $\chi = (\theta + \kappa \eta) (\rho + \delta) + \psi$.

Combining these two expressions, we get that

$$\frac{\Delta \log e^\text{young}_t - \Delta \log e^\text{old}_t}{\Delta \log y_t} = \frac{1 - e^{-\lambda t}}{1 - (1 - x_0) e^{-\delta t}} \left( \frac{1 + \kappa \eta \chi}{\theta + \kappa \eta} + \frac{\theta - 1}{\chi \theta + \kappa \eta} \left( 1 - e^{-\lambda t} \right) \right)^{-1}. \hspace{1cm} (D.8)$$

Using the expression for $\kappa \eta$ in (D.5),

$$\frac{\Delta \log e^\text{young}_t - \Delta \log e^\text{old}_t}{\Delta \log y_t} = \frac{1 - e^{-\lambda t}}{1 - (1 - x_0) e^{-\delta t}} \left( \rho + \delta \right) \frac{1 + \psi \hat{\alpha} - \theta}{\psi} + 1 - \frac{\theta - 1}{\psi \hat{\alpha}} e^{-\lambda t} \right)^{-1}. \hspace{1cm} (D.8)$$

We then define the function:

$$F^\psi (\psi, t) \equiv \frac{1 - e^{-\hat{\lambda} t}}{1 - (1 - \hat{x}_0) e^{-\hat{\delta} t}} \left( \rho + \hat{\delta} \right) \frac{1 + \psi \hat{\alpha} - \theta}{\psi} + 1 - \frac{\theta - 1}{\psi \hat{\alpha}} e^{-\hat{\lambda} t} \right)^{-1}. \hspace{1cm} (D.8)$$

To calibrate $\psi$, we first our calibrated values of $(\lambda, \delta, \rho)$ to compute $\alpha$ using (D.6). Our baseline calibration implies that $\hat{\alpha} = 3.484$. We then select the parameter $\psi$ to match the ratio of the between-generation employment response and the payroll response:

$$\hat{\psi} = \arg \min_\psi \sum_{t=2008}^{2014} \left[ \hat{\beta}^\text{young}_t - \hat{\beta}^\text{old}_t \right]^2 \hspace{1cm} (D.8)$$

where $\hat{\beta}_t^\text{young}$ are the estimated coefficients reported in Panel B of Figure 6, and $\hat{\beta}_t^\text{young} - \hat{\beta}_t^\text{old}$ is the between-generation employment response obtained with the estimated coefficients reported in Panel A of Figure 6.

The minimization problem in (D.8) yields $\hat{\psi} = 0.345$. Figure C2 shows the fit of the calibrated model.
Technology-skill specificity: $\eta$. The combination of (D.1) and (D.7) implies that

$$
\frac{\Delta \log e^{old}_t}{\Delta \log y_t} \approx \frac{\eta}{e_{H,0-1} 1 + \kappa \eta + \frac{\psi}{\lambda}(\theta - 1)(1 - e^{-\lambda t})}.
$$

Using the expression for $\kappa \eta$ in (D.5),

$$
\frac{\Delta \log e^{old}_t}{\Delta \log y_t} \approx \frac{1 - \frac{(\theta - 1)(1 - e^{-\lambda t})}{a(\rho + \delta) + 1}}{e_{H,0-1} 1 + \psi \alpha - \theta + \frac{(\theta - 1)(1 - e^{-M})}{a(\rho + \delta) + 1}}.
$$

We then define

$$
F^\eta(\eta, t) \equiv \frac{\eta}{e_{H,0-1} 1 + \hat{\psi} \hat{\alpha} - \theta + \frac{(\theta - 1)(1 - e^{-\hat{\lambda} t})}{\hat{\delta}(\rho + \delta) + 1}}.
$$

where $(\hat{\delta}, \hat{\lambda}, \hat{\psi})$ are the calibrated parameters above and $e_{H,0-}$ is the initial share of employment in cognitive-intensive occupations.

We select the parameter $\eta$ to match the ratio of the employment response of old workers and the payroll response:

$$
\hat{\eta} = \arg \min_{\eta} \sum_{t=2008}^{2014} \left[ \frac{\hat{\beta}^{old}_t}{\hat{\beta}^y_t} - F^\eta(\eta, t) \right]^2
$$

(D.9)

$\hat{\beta}^y_t$ are the estimated coefficients reported in Panel B of Figure 6, and $\hat{\beta}^{old}_t$ are the estimated coefficients reported in Panel A of Figure 6.

The negative point estimates reported in Panel A of Figure 6 imply that the minimization problem in (D.9) yields $\hat{\eta} < 0$. Since the employment response of old generations is small and nonsignificant, we assume that they are identical to zero, which yields $\hat{\eta} = 0$. Hence, we calibrate $\eta = 0.01$ and evaluate the model predictions under alternative specifications of this parameter.
Figure C1: Calibration of $\lambda$

Note. Blue dots represent the point estimates reported in Panel B of Figure 6. Black solid curve represents the best fit line with $\lambda = 0.135$ obtained from the solution of (D.4).

Figure C2: Calibration of $\psi$

Note. Blue dots represent the point estimates of $\hat{\beta}_{\text{young}_t} - \hat{\beta}_{\text{old}_t}$ using the estimates reported in Figures 6. Black solid curve corresponds to $F^\psi(\hat{\psi}, t)$ with $\hat{\psi} = 0.354$ obtained from the solution of (D.8).
D.3 Dynamic Adjustment to cognitive-biased technological innovations

We now present the theoretical impulse response functions in our parametrized model. As in Section 7, we evaluate a shock to $A$ that leads to an increase in the employment share in cognitive-intensive occupations from 20% to 50%. Figure C3 presents the predicted impulse response functions of labor market outcomes.

Consider first the response at $t = 0$. Given that our theory abstracts from several additional sources of dynamics, it would be wrong to interpret the impact adjustment as happening instantaneously in reality. We view this short-run response as capturing changes over the time window encompassing dynamic forces triggered by other variables that are likely to move faster than the distribution of skills (e.g., physical capital). In other words, we prefer to interpret the “length” of the impact adjustment as related to the time that it takes for such faster moving variables to converge to the new long-run equilibrium. Results show that there is a substantial increase in the relative cognitive-intensive output in the short-run. This large response is a consequence of the large magnitude of the shock. This becomes clear when we take into account that relative employment almost does not change at impact because of the high technology-skill specificity (i.e., $\eta \approx 0$). The combination of the large increase in relative output and the small increase in relative employment translates into large changes in lifetime inequality.

Our results also indicate that the responses in all outcomes change substantially over time (measured in terms of worker generations, $1/\delta \approx 18$ yrs). Over the course of the two generations following the shock, the responses in relative output doubles in magnitude due to the reallocation of workers across technologies. Such a reallocation is entirely driven by incoming generations of young workers. This pattern is a consequence of the change in the skill distribution across generations. The bottom right panel shows that the initial spike in lifetime inequality induces young workers to invest in high-$i$ skills allocated to cognitive-intensive occupations. This gives rise to substantial skill heterogeneity across generations. As young generations replace old generations, the economy’s skill distribution becomes more biased towards high-$i$ types, leading to a large decline in the present value of the relative wage in cognitive-intensive occupations (which recedes by more than 30% over the course of two generations).

Appendix E Additional Results

E.1 Microfoundation of the Production Functions in (4)–(5)

Consider two firms: high-tech ($k = H$) and low-tech ($k = L$). Assume that the output of firm $k$ at time $t$ aggregates per-worker output $x_{kt}(i)$,

$$X_{kt} = \int_{0}^{1} x_{kt}(i)s_{kt}(i)di,$$

where $s_{kt}(i)$ is the quantity demanded of workers of type $i$ at time $t$ by firm $k$.

The output of workers of type $i$ depends on their skills to perform cognitive and noncognitive tasks, $\{a_{C}(i), a_{NC}(i)\}$, as well as how intensely each task is used in the firm’s production process:

$$x_{kt}(i) = a_{C}(i)^{\beta_{k}}a_{NC}(i)^{1-\beta_{k}},$$
where $\beta_k$ denotes the production intensity of firm $k$ on cognitive tasks.

In our model, *technology-skill specificity* arises whenever firms are heterogeneous in terms of task intensity and workers are heterogeneous in terms of their task bundle. To see this, suppose that firm $H$’s technology uses cognitive tasks more intensely than firm $L$’s technology, $\beta_H > \beta_L$, and that a worker of type $i$ is able to produce a higher cognitive-noncognitive task ratio than a worker of type $j$, $a_C(i)/a_{NC}(i) > a_C(j)/a_{NC}(j)$. In this case, $i$ has a higher relative output with the cognitive-intensive technology $H$ than $j$, $x_{Ht}(i)/x_{Lt}(i) > x_{Ht}(j)/x_{Lt}(j)$, and, therefore, type $i$ is more complementary to the cognitive-intensive technology $H$ than type $j$.

To map this setting to the production functions in (4)–(5), we assume that high-tech production is more intensive in cognitive tasks than low-tech production, $\beta_H > \beta_L$. We also assume that types differ in terms of their skill bundle and, without loss of generality, impose that high-$i$ types are relatively better in performing cognitive-intensive tasks.

1. High-tech technology $H$ uses cognitive tasks more intensely than Low-tech technology $L$: $\beta_H > \beta_L$.

2. Define $\sigma(i) \equiv \left( \frac{a_C(i)}{a_{NC}(i)} \right)^{\beta_H - \beta_L}$ and $\alpha(i) \equiv a_C(i)^{\beta_L} a_{NC}(i)^{1-\beta_L}$. Assume that high-$i$ types have higher cognitive-noncognitive task ratio: $\sigma(i)$ is increasing in $i$. 

Figure C3: Transitional dynamics to a cognitive-biased innovation at $t = 0$

Note. The figure reports the theoretical impulse response function with a shock calibrated to increase the employment share in cognitive-intensive occupations from 20% to 50% between stationary equilibria. Baseline calibration described in Appendix D.2.
E.2 Welfare Consequences of Adjustment Across Generations

This section investigates how calculations of the welfare consequences of technological shocks are affected by the speed of adjustment of labor market outcomes along the transition to the new equilibrium. In our theory, the transitional dynamics arise from the changes in the skill distribution. So, in order to evaluate its consequences, we consider a static version of our model in which we shut down any skill investment of young workers. However, we allow this static model to match labor market responses over one particular horizon. This exercise thus speaks directly to the risks of ignoring the adjustment across generations by focusing on estimates of the impact of new technologies on labor market outcomes over fixed time horizons.

To be more precise, we engage in the following thought experiment. Consider an economy subject to a one-time permanent shock $\Delta \log A$. Suppose that this economy behaves according to the theoretical predictions described in Section 3 with short- and long-run skill supply elasticity given by $\eta$ and $\psi$, respectively. We consider a researcher that relies on a static assignment model to analyze how this economy responds to the technological shock. Through the lens of our theory, this researcher considers a misspecified parametrization of the economy in which the long-run elasticity equals zero. This parametrization shuts down any dynamics in the economy because the skill distribution is the same for all generations. We assume that this researcher observes responses in labor market outcomes over a fixed horizon $t = T$. We focus on changes in lifetime inequality since this is the main endogenous outcome entering the welfare computations in Proposition 2. We consider two ways in which the researcher may decide to use the static model to match the observed inequality response, $\Delta \log q_T$. In the first approach, the researcher observes the true shock ($\Delta \log A^1 = \Delta \log A$), and selects $\eta^1$ to match $\Delta \log q_T$ with $\psi^1 = 0$. In the second, the researcher observes the true parameter ($\eta^2 = \eta$), and selects the size of the shock $\Delta \log A^2$ to match $\Delta \log q_T$ with $\psi^2 = 0$.

The following proposition shows that, despite matching inequality responses at time $T$, this researcher misses the economy’s transitional dynamics triggered by the evolution of the skill distribution across generations. This introduces biases in the evaluation of the welfare consequences of the technological innovation.

Proposition 4 Consider an economy in which $\eta$ and $\psi$ are positive. Assume that $\Delta \log A$ generates a change in lifetime inequality between $t = 0$ and $t = T$ of $\Delta \log q_T$. Consider predictions under two alternative static parametrizations of the model ($\psi^1 = \psi^2 = 0$).

1. Suppose $\Delta \log A^1 = \Delta \log A$ is known such that $\frac{\Delta \log(A)}{\Delta \log(q_T)} > \frac{\theta(\rho + \delta)}{\theta - 1}$. There exists $\eta^1$ that matches $\Delta \log q_T$ with an associated $T^1$ such that $\Delta \Omega^1 > \Delta \Omega$ and $\Delta \bar{U}^1 < \Delta \bar{U}$ if, and only if, $T < T^1$.

2. Suppose $\eta^2 = \eta$ is known. There exists $\Delta \log A^2$ that matches $\Delta \log q_T$ with an associated $T^2$ such that $\Delta \bar{\Omega}^2 > \Delta \bar{\Omega}$ and $\Delta \bar{U}^2 < \Delta \bar{U}$ if $T < T^2$.

Proof. See Appendix E.2.1. ■

This proposition shows that there are multiple ways in which researchers can use a static version of our model to match observed inequality responses over a fixed horizon. All versions ignore the transitional dynamics of labor market outcomes generated by changes in the skill distribution across generations. This introduces biases in the evaluation of the welfare consequences of new technologies. If the researcher only matches inequality responses in short horizons (i.e. $T$ is low), then she will think that inequality will remain high in the future. This makes her overpredict the present value of lifetime inequality, and underpredict
the average welfare gain. Alternatively, a researcher using the first approach would reach the opposite conclusions if she matches inequality responses in long horizons (i.e. \( T \) is high).

Such biases will be larger when the adjustment is slower due to the larger changes in the skill distribution along the transition. As shown in Section 4, this is the case whenever the skill supply elasticity is low in the short-run (i.e., \( \eta \) is low) but large in the long-run (i.e., \( \psi \) is large).

E.2.1 Proof of Proposition 4

We start by pointing out that, by the definition in Theorem 1, \( \lambda_1 = \lambda_2 = \delta \) because \( \psi_1 = \psi_2 = 0 \). Thus, Proposition 1 immediately implies that both parametrizations must satisfy the condition that

\[
\Delta \log(q_T) = \frac{\theta - 1}{(\theta + \kappa \eta) (\rho + \delta)} \Delta \log A^p
\]

(E.1)

where \( P = 1 \) for the first approach or \( P = 2 \) for the second approach.

Notice also that the combination of Theorem 1 and Proposition 2 implies that

\[
\Delta \bar{\Omega} = (\rho + \delta) \Delta \log(q_T) - (\rho + \delta) \hat{q}_0 \left( e^{-\lambda T} - 1 + \frac{\lambda}{r + \lambda} \right)
\]

and, therefore,

\[
\Delta \bar{\Omega} = (\rho + \delta) \Delta \log(q_T) \left( 1 + \frac{\frac{\lambda - \delta}{\rho} - \frac{r}{r + \lambda}}{1 + \frac{\lambda - \delta}{\rho} e^{-\lambda T}} \right).
\]

(E.2)

This expression implies that, because \( \lambda_1 = \lambda_2 = \delta \), both parametrizations entail

\[
\Delta \bar{\Omega}^P = (\rho + \delta) \Delta \log(q_T)
\]

(E.3)

for \( P = 1, 2 \).

We now use these expressions two establish the two parts of the proposition.

Part 1. In the first approach, we set \( \Delta \log A_1 = \Delta \log A \). So, by equation (E.1), we must set

\[
\kappa \eta_1 = \frac{\theta - 1}{\rho + \delta} \Delta \log(A) - \theta,
\]

which is positive as long as \( \frac{\Delta \log(A)}{\Delta \log(q_T)} > \frac{\theta (\rho + \delta)}{\theta - 1} \).

By taking the ratio between the expressions in (E.2) and (E.3),

\[
\frac{\Delta \bar{\Omega}^1}{\Delta \bar{\Omega}} > 1 \iff e^{-\lambda T} > \frac{r}{r + \lambda} \iff T < T^1 \equiv \frac{1}{\lambda} \log \left( \frac{r + \lambda}{r} \right).
\]

The expression of \( \Delta \bar{U} \) in Proposition 2 immediately implies that \( \Delta \bar{\Omega}^1 > \Delta \bar{\Omega} \iff \Delta \bar{U}^1 < \Delta \bar{U} \) whenever \( y_\infty > e_\infty \).

Part 2. In the second approach, we set \( \eta_2 = \eta \). So, by equation (E.1), we must set

\[
\Delta \log A^2 = \Delta \log(q_T) \frac{(\theta + \kappa \eta) (\rho + \delta)}{\theta - 1}.
\]
Expressions in (E.2) and (E.3) also hold in this case, so the same steps used above guarantee that $\Delta \Omega^2 > \Delta \Omega$ if, and only if, $T < T^1$. To establish the result, it is sufficient to show that $\Delta \log A^2 \leq \Delta \log A$ because, by Proposition 2, $\Delta \Omega^2 > \Delta \Omega$ and $\Delta \log A^2 \leq \Delta \log A$ imply that $\Delta \bar{U}^2 < \Delta \bar{U}$.

We now show that $\Delta \log A^2 \leq \Delta \log A$. By combining Proposition 1 and equation (E.1), we have that

$$\Delta \log A^2 = \left(\frac{\theta + \kappa \eta}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta}}\right) \left(1 + \frac{\lambda - \delta}{\delta} e^{-\lambda T}\right) \Delta \log A$$

and, therefore,

$$\Delta \log A^2 \leq \frac{(\theta + \kappa \eta)}{(\theta + \kappa \eta + \frac{\psi}{\rho + \delta})} \frac{\lambda}{\delta} \Delta \log A.$$

So, $\Delta \log A^2 \leq \Delta \log A$ if

$$F(\psi) \equiv \frac{(\theta + \kappa \eta)}{(\theta + \kappa \eta + \frac{\psi}{\rho + \delta})} \frac{\lambda(\psi)}{\delta} \leq 1$$

with $\lambda(\psi)$ defined in Theorem 1.

This condition always holds because $\lambda(0) = \delta$, $F(0) = 1$ and $\text{sign} \left( \frac{\partial F(\psi)}{\partial \psi} \right) < 0$. To see this, we use the expression for $\lambda(\psi)$ in Theorem 1 to show that

$$\text{sign} \left( \frac{\partial F(\psi)}{\partial \psi} \right) = \text{sign} \left( \frac{\partial \lambda(\psi)}{\partial \psi} \left( \theta + \kappa \eta + \frac{\psi}{\rho + \delta} \right) - \frac{\lambda}{\rho + \delta} \right)$$

$$= \text{sign} \left( \frac{1}{2\lambda + \rho} \frac{\delta}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta} - \frac{\lambda}{\rho + \delta}} \right)$$

$$= \text{sign} \left( \frac{1}{2\lambda + \rho} \left( \delta + \frac{\delta}{\rho + \delta} \frac{\psi}{\theta + \kappa \eta + \frac{\psi}{\rho + \delta} - \frac{\lambda}{\rho + \delta}} \right) \right)$$

$$= \text{sign} \left( \frac{1}{2\lambda + \rho} \left( \delta + \frac{1}{\rho + \delta} \left[ \left( \lambda + \frac{\rho}{2} \right)^2 - \left( \frac{\rho}{2} \right)^2 - \delta (\rho + \delta) \right] \right) - \frac{\lambda}{\rho + \delta} \right)$$

$$= \text{sign} \left( \frac{1}{2\lambda + \rho} \left[ \left( \lambda + \frac{\rho}{2} \right)^2 - \left( \frac{\rho}{2} \right)^2 \right] - \lambda \right)$$

$$= \text{sign} \left( \frac{\lambda + \rho}{2\lambda + \rho} - 1 \right).$$