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Abstract

We use decision theory to confront uncertainty that is su¢ ciently broad to incorporate

�models as approximations.�We presume the existence of a featured collection of what we

call �structured models�that have explicit substantive motivations. The decision maker

confronts uncertainty through the lens of these models, but also views these models as

simpli�cations, and hence, as misspeci�ed. We extend min-max analysis under model

ambiguity to incorporate the uncertainty induced by acknowledging that the models used

in decision-making are simpli�ed approximations. Formally, we provide an axiomatic

rationale for a decision criterion that incorporates model misspeci�cation concerns.
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Come l�araba fenice:

che vi sia, ciascun lo dice;

dove sia, nessun lo sa.1

1 Introduction

The consequences of a decision may depend on exogenous contingencies and uncertain out-

comes that are outside the control of a decision maker. This uncertainty takes on many forms.

Economic applications typically feature risk, where the decision maker knows probabilities

but not necessarily outcomes. Statisticians and econometricians have long wrestled with how

to confront ambiguity over models or unknown parameters within a model. Each model is

itself a simpli�cation or an approximation designed to guide or enhance our understanding

of some underlying phenomenon of interest. Thus, the model, by its very nature, is mis-

speci�ed, but in typically uncertain ways. How should a decision maker acknowledge model

misspeci�cation in a way that guides the use of purposefully simpli�ed models sensibly? This

concern has certainly been on the radar screen of statisticians and control theorists, but it

has been largely absent in formal approaches to decision theory.2 Indeed, the statisticians

Box and Cox have both stated the challenge succinctly in complementary ways:

Since all models are wrong, the scientist must be alert to what is importantly

wrong. It is inappropriate to be concerned about mice when there are tigers

abroad. Box (1976).

... it does not seem helpful just to say that all models are wrong. The very

word �model� implies simpli�cation and idealization. The idea that complex

physical, biological or sociological systems can be exactly described by a few

formulae is patently absurd. The construction of idealized representations that

capture important stable aspects of such systems is, however, a vital part of

general scienti�c analysis and statistical models, especially substantive ones ...

Cox (1995).

While there are formulations of decision and control problems that intend to confront model

misspeci�cation, the aim of this paper is: (i) to develop an axiomatic approach that will

provide a rigorous guide for applications and (ii) to enrich formal decision theory when

applied to environments with uncertainty through the guise of models.

1�Like the Arabian phoenix: that it exists, everyone says; where it is, nobody knows.�A passage from a

libretto of Pietro Metastasio.
2 In Hansen (2014) and Hansen and Marinacci (2016) three kinds of uncertainty are distinguished based on

the knowledge of the decision maker, the most challenging being model misspeci�cation viewed as uncertainty

induced by the approximate nature of the models under consideration.
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In this paper, we explore formally decision making with multiple models, each of which

is allowed to be misspeci�ed. We follow Hansen and Sargent (2020) by referring to these

multiple models as �structured models.�These structured models are ones that are explicitly

motivated or featured, such as ones with substantive motivation or scienti�c underpinnings,

consistent with the use of the term �models� by Box and Cox. They may be based on

scienti�c knowledge relying on empirical evidence and theoretical arguments or on reveal-

ing parameterizations of probability models with parameters that are interpretable to the

decision maker. In posing decision problems formally, it is often assumed, following Wald

(1950), that the correct model belongs to the set of models that decision makers posit. The

presumption that a decision maker identi�es, among their hypotheses, the correct model

is often questionable �recalling the initial quotation, the correct model is often a decision

maker phoenix. We embrace, rather than push aside, the �models are approximations�per-

spective of many applied researchers, as articulated by Box, Cox and others. To explore

misspeci�cation formally, we introduce a potentially rich collection of probability distribu-

tions that depict possible representations of the data without formal substantive motivation.

We refer to these as �unstructured models.�We use such alternative models as a way to

capture how models could be misspeci�ed.3

This distinction between structured and unstructured is central to the analysis in this

paper and is used to distinguish aversion to ambiguity over models and aversion to potential

model misspeci�cation. At a decision-theoretic level, a proper analysis of misspeci�cation

concerns has remained elusive so far. Indeed, some of the few studies dealing with economic

agents confronting model misspeci�cation still assume that they are conventional expected

utility decision makers who treat model misspeci�cation as if it were model ambiguity, despite

being aware of a misspeci�cation issue.4 We extend the analysis of Hansen and Sargent (2020)

by providing an axiomatic underpinning for a corresponding decision theory along with a

representation of the implied preferences that can guide applications. In so doing, we show

an important connection with the analysis of subjective and objective rationality of Gilboa

et al. (2010).

Criterion This paper proposes a �rst decision-theoretic analysis of decision making under

model misspeci�cation. We consider a classic setup in the spirit of Wald (1950), but relative

to his seminal work we explicitly remove the assumption that the correct model belongs to

the set of posited models and we allow for nonneutrality toward this feature. More formally,

we assume that decision makers posit a set Q of structured (probabilistic) models q on

states, motivated by their information, but they are afraid that none of them is correct and

so face model misspeci�cation. For this reason, decision makers contemplate what we call

3Such a distinction is also present in earlier work by Hansen and Sargent (2007) and Hansen and Miao

(2018) but without speci�c reference to the terms �structured�and �unstructured.�
4See, e.g., Esponda and Pouzo (2016) and Fudenberg et al. (2017).
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unstructured models in ranking acts f , according to a conservative decision criterion5

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(1)

To interpret this problem, let

cQ (p) = min
q2Q

c (p; q)

where we presume that cQ(q) = 0 when q 2 Q. In this construction, cQ (p) is a (Hausdor¤)
distance between a model p and the posited compact set Q of structured models. This

distance is nonzero if and only if p is unstructured, that is, p =2 Q. More generally, p�s that
are closer to the set of structured models Q have a less adverse impact on the preferences,

as evident by rewriting (1) as:

V (f) = min
p2�

�Z
u (f) dp+ cQ (p)

�
This representation is a special case of the variational representation axiomatized by Mac-

cheroni et al. (2006). The unstructured models are statistical artifacts that allow the decision

maker to assess formally the potential consequences of misspeci�cation as captured by the

construction of cQ. In this paper we provide a formal interpretation of cQ as an index of

misspeci�cation fear: the lower the index, the higher the fear.6

A protective belt When c takes the entropic form �R(pjjq), with � > 0, criterion (1)

takes the form

min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(2)

proposed by Hansen and Sargent (2020). It is the most tractable version of criterion (1),

which for a singleton Q further reduces to a standard multiplier criterion a la Hansen and

Sargent (2001, 2008). By exchanging orders of minimization, we preserve this tractability

and provide a revealing link to this earlier research,

min
q2Q

�
min
p2�

�Z
u (f) dp+ �R(pjjq)

��
(3)

The inner minimization problem gives rise to the minimization problem featured by Hansen

and Sargent (2001, 2008) to confront the potential misspeci�cation of a given probability

model q.7 Unstructured models lack the substantive motivation of structured models, yet

in (1) they act as a protective belt against model misspeci�cation. The importance of

5Throughout the paper � denotes the set of all probabilities (Section 2.1).
6To ease terminology, we often refer to �misspeci�cation�rather than �model misspeci�cation.�
7The Hansen and Sargent (2001, 2008) formulation of preferences builds on extensive literature in control

theory starting with Jacobson (1973)�s deterministic robustness criterion and a stochastic extension given by

Petersen et al. (2000), among several others.
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their role is proportional (as quanti�ed by �) to their proximity to the set Q, a measure of

their plausibility in view of the decision maker information. The outer minimization over

structured models is the counterpart to the Wald (1950) and the more general Gilboa and

Schmeidler (1989) max-min criterion.

Our analysis provides a decision-theoretic underpinning for incorporating misspeci�cation

concerns in a distinct way from ambiguity aversion. Observe that misspeci�cation fear is

absent when the index minq2Q c (p; q) equals the indicator function �Q of the set of structured

models Q, that is,

min
q2Q

c (p; q) =

(
0 if p 2 Q
+1 else

In this case, which corresponds to � = +1 in (2), criterion (1) takes a max-min form:

V (f) = min
q2Q

Z
u (f) dq (4)

This max-min criterion thus characterizes decision makers who confront model misspeci�-

cation but are not concerned by it, so are misspeci�cation neutral (see Section 4.1). The

criterion in (1) may thus be viewed as representing decision makers who use a more pruden-

tial variational criterion (1) than if they were to max-minimize over the set of structured

models which they posited. In particular, the farther away an unstructured model is from

the set Q (so the less plausible it is), the less it is weighted in the minimization.

Axiomatics We use the entropic case (2) to outline our axiomatic approach. Start with

a singleton Q = fqg. Decision makers, being afraid that the reference model q might not
be correct, contemplate also unstructured models p 2 � and rank acts f according to the

multiplier criterion

V�;q (f) = min
p2�

�Z
u (f) dp+ �R(pjjq)

�
(5)

Here the positive scalar � is interpreted as an index of misspeci�cation fear. When decision

makers posit a nonsingleton set Q of structured models, but are concerned that none of them

is correct, then the multiplier criterion (5) gives only an incomplete dominance relation:

f %� g () V�;q (f) � V�;q (g) 8q 2 Q (6)

With (6), decision makers can safely regard f better than g. This type of ranking has,

however, little traction because of the incomplete nature of %�. Nonetheless, the burden
of choice will have decision makers to select between alternatives, be they rankable by %�

or not. A cautious way to complete the binary relation %� is given by the preference %
represented by (2), or equivalently by (3), that is,

V�;Q (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(7)
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This criterion thus emerges in our analysis as a cautious completion of a multiplier dominance

relation %�. Suitably extended to a general preference pair (%�;%), this approach permits
to axiomatize criterion (1) as the representation of the behavioral preference % and the

unanimity criterion

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

as the representation of the incomplete dominance relation %�.

2 Preliminaries

2.1 Mathematics

Basic notions We consider a non-trivial event �-algebra � of subsets of a state space S.

We denote by B0 (�) the space of �-measurable simple functions ' : S ! R, endowed with
the supnorm k k1. The dual of B0 (�) can be identi�ed with the space ba (�) of all bounded
�nitely additive measures on (S;�).

We denote by � the set of probabilities in ba (�) and endow � and any of its subsets

with the weak* topology. In particular, �� denotes the subset of � formed by the countably

additive probability measures. Given a subset Q in �, we denote by �(Q) the collection

of all probabilities p which are absolutely continuous with respect to Q, that is, if A 2 �
and q (A) = 0 for all q 2 Q, then p (A) = 0. Moreover, �� (q) denotes the set of elements

of �� which are absolutely continuous with respect to a single q 2 ��, i.e., �� (q) =

fp 2 �� : p� qg. Unless otherwise speci�ed, throughout all the subsets of � are to be

intended non-empty.

The (convex analysis) indicator function �C : � ! [0;1] of a convex subset C of � is

de�ned by

�C (p) =

(
0 if p 2 C
+1 else

Throughout we adopt the convention 0 � �1 = 0.

The e¤ective domain of f : C ! (�1;1], denoted by dom f , is the set fp 2 C : f (p) <1g
where f takes on a �nite value. The function f is:

(i) grounded if the in�mum of its image is 0, i.e., infp2C f (p) = 0;

(ii) strictly convex if, given any distinct p; q 2 C, we have f (�p+ (1� �) q) < �f (p) +

(1� �) f (q) for all � 2 (0; 1) such that �p+ (1� �) q 2 dom f .

Divergences and statistical distances Given a non-empty subset Q of �, a function

c : ��Q! [0;1] is a divergence (for the set Q) if
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(i) the sections cq : � ! [0;1] are grounded, lower semicontinuous and convex for each
q 2 Q;

(ii) the function cQ : � ! [0;1] de�ned by cQ (�) = minq2Q c (�; q) is well de�ned,
grounded, lower semicontinuous and convex;

(iii) c�1Q (0) = Q, that is, cQ (p) = 0 if and only if p 2 Q.

A divergence c that satis�es the distance property

c (p; q) = 0() p = q (8)

is called statistical distance (for the set Q).8 In particular, cQ (p) is now an Hausdor¤

statistical distance between p and Q.

The next lemma provides a simple condition for a function c : � � Q ! [0;1] to be a
statistical distance.

Lemma 1 Let Q be a compact and convex subset of �. A jointly lower semicontinuous and

convex function c : � � Q ! [0;1] is a statistical distance if and only if it satis�es the
distance property (8).

Given a continuous strictly convex function � : [0;1) ! [0;1) such that � (1) = 0 and
limt!1 � (t) =t =1, de�ne a �-divergence D� : ���� ! [0;1] by

D� (pjjq) =

8<:
R
�

�
dp

dq

�
dq if p 2 �� (q)

1 otherwise

Here we adopt the conventions 0=0 = 0 and ln 0 = �1.9 The most important example of
a divergence is the relative entropy given by � (t) = t ln t� t+ 1 and denoted by R (pjjq).10

Another important example is the Gini relative index given by the quadratic function � (t) =

(t� 1)2 =2 and denoted by �2 (pjjq).
A �-divergence D� : ���� ! [0;1] is jointly lower semicontinuous and convex.11 Next

we show that, when suitably restricted, it is a statistical distance, an important property for

our purposes.

Lemma 2 Let Q be a compact and convex subset of ��. A restricted �-divergence D� :

��Q! [0;1] is a statistical distance.
8By a �statistical distance� we do not restrict ourselves to a metric and in particular, given p; q 2 Q,

c (p; q) is not necessarily equal to c (q; p).
9The function dp=dq is any version of the Radon-Nikodym derivative of p with respect to q.
10Given the conventions 0=0 = 0 � �1 = 0, it holds � (0) = 0 ln 0� 0 + 1 = 0 � �1+ 1 = 1.
11See Chapter 1 of Liese and Vajda (1987). We refer to this book for properties of �-divergences.
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A �-divergence is an instance of a (universal) statistical distance c : � � �� ! [0;1]
whose restriction to each compact and convex subset Q of �� is a statistical distance for Q.

Finally, given a coe¢ cient � 2 (0;1], the function

�D� : ��Q! [0;1]

is also a statistical distance. Indeed, when � =1 we have

(1)D� (pjjq) = �fqg (p) =

(
0 if p = q

1 else

because of the convention 0 � 1 = 0.

2.2 Decision theory

Setup We consider a generalized Anscombe and Aumann (1963) setup where a decision

maker chooses among uncertain alternatives described by (simple) acts f : S ! X, which

are �-measurable simple (i.e., �nite valued) functions from a state space S to a consequence

space X. This latter set is assumed to be a non-empty convex subset of a vector space (for

instance, X is the set of all simple lotteries de�ned on a prize space). The triple

(S;�; X) (9)

forms an (Anscombe-Aumann) decision framework.

Let us denote by F the set of all acts. Given any consequence x 2 X, we denote by

x 2 F also the constant act that takes value x. Thus, with a standard abuse of notation, we

identify X with the subset of constant acts in F . Given a function u : X ! R, we denote
by Imu its image. Observe that u � f 2 B0 (�) when f 2 F .

A preference % is a binary relation on F that satis�es the so-called basic conditions (cf.

Gilboa et al., 2010), i.e., it is:

(i) re�exive and transitive;

(ii) monotone: if f; g 2 F and f (s) % g (s) for all s 2 S, then f % g;

(iii) continuous: if f; g; h 2 F , the sets f� 2 [0; 1] : �f + (1� �) g % hg and f� 2 [0; 1] : h % �f + (1� �) gg
are closed;

(iv) non-trivial : there exist f; g 2 F such that f � g.

Moreover, a preference % is unbounded if, for each x; y 2 X with x � y, there exist

z; z0 2 X such that
1

2
z +

1

2
y % x � y % 1

2
x+

1

2
z0
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Bets are binary acts that play a key role in decision theory. Formally, given any two prizes

x � y, a bet on an event A is the act xAy de�ned by

xAy (s) =

(
x if s 2 A
y else

In words, a bet on event A is a binary act that yields a more preferred consequence if A

obtains.

Comparative uncertainty aversion As in Ghirardato and Marinacci (2002), given two

preferences %1 and %2 on F , we say that %1 is more uncertainty averse than %2 if, for each
consequence x 2 X and act f 2 F ,

f %1 x =) f %2 x

In words, a preference is more uncertainty averse than another one if, whenever this prefer-

ence is �bold enough�to prefer an uncertain alternative over a sure one, so does the other

one.

Decision criteria A complete preference % on F is variational if it is represented by a

decision criterion V : F ! R given by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
(10)

where the a¢ ne utility function u is non-constant and the index of uncertainty aversion

c : � ! [0;1] is grounded, lower semicontinuous and convex. In particular, given two
unbounded variational preferences %1 and %2 on F that share the same u, but di¤erent

indexes c1 and c2, we have that %1 is more uncertainty averse than %2 if and only if c1 � c2

(see Maccheroni et al., 2006, Propositions 6 and 8).

When the function c has the entropic form c (p; q) = �R (pjjq) with respect to a reference
probability q 2 ��, criterion (10) takes the multiplier form

V�;q (f) = min
p2�

�Z
u (f) dp+ �R(pjjq)

�
analyzed by Hansen and Sargent (2001, 2008).12 If, instead, the function c has the indicator

form �C , with C compact and convex, criterion (10) takes the max-min form

V (f) = min
p2C

Z
u (f) dp

axiomatized by Gilboa and Schmeidler (1989).

All these criteria are here considered in their classical interpretation, so Waldean for the

max-min criterion, in which the elements of � are interpreted as models.
12Strzalecki (2011) provides the behavioral assumptions that characterize multiplier preferences among

variational preferences.
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3 Models and preferences

3.1 Models

The consequences of the acts among which decision makers have to choose depend on ex-

ogenous states that are outside their control. They know that states obtain according to

a probabilistic model described by a probability measure in �, the so-called true or cor-

rect model. If decision makers knew the true model, they would confront only risk, which

is the randomness inherent to the probabilistic nature of the model. Our decision makers,

unfortunately, may not know the true model. Yet, they are able to posit a set of structured

probabilistic models Q, based on their information (which might well include existing scien-

ti�c theories, say economic or physical), that form a set of alternative hypotheses regarding

the true model. It is a classical assumption, in the spirit of Wald (1950), in which Q is a set

of posited hypotheses about the probabilistic behavior of a, natural or social, phenomenon

of interest.

A classical decision framework is described by a quartet:

(S;�; X;Q) (11)

in which a set Q of models is added to a standard decision framework (9). The true model

might not be in Q, that is, the decision makers information may be unable to pin it down.

Throughout the paper we assume that decision makers know this limitation of their informa-

tion and so confront model misspeci�cation.13 This is in contrast with Wald (1950) and most

of the subsequent decision-theoretic literature, which assumes that decision makers either

know the true model and so face risk or, at least, know that the true model belongs to Q

and so face model ambiguity.14

In what follows we assume that Q is a compact and convex subset of ��. As usual,

convexity signi�cantly simpli�es the analysis. Yet, conceptually it is not an innocuous prop-

erty: a hybrid model that mixes two structured models can only have a less motivation

than either of them. Decision criterion (1), however, accounts for the lower appeal of hybrid

models when c (p; q) is also convex in q (as, for instance, when c is a �-divergence). To see

why, observe that minp2�
�R

u (f) dp+ c (p; q)
	
is, for each act f , convex in q. In turn, this

implies that hybrid models negatively a¤ect criterion criterion (1). This negative impact of

mixing thus features an �aversion to model hybridization�attitude, behaviorally captured by

axiom A.7. Remarkably, (2) the relative entropy criterion turns out to be neutral to model

hybridization. In this important special case, the assumption of convexity of Q is actually

without any loss of generality (as Appendix A.1.3 clari�es).

13Aydogan et al. (2018) propose an experimental setting that reveals the relevance of model misspeci�cation

for decision making.
14The model ambiguity (or uncertainty) literature is reviewed in Marinacci (2015).
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Convexity of Q can be also justi�ed in a robust Bayesian interpretation of our analysis

that regards Q as the set of the so-called predictive distributions, which are combinations of

�primitive�models (typically extreme points of Q) weighted according to alternative priors

over them. For instance, if the primitive models describe states through i.i.d. processes, the

elements of Q describe them via exchangeable processes that combine primitive models and

priors (as in the Hewitt and Savage, 1955, version of the de Finetti Representation Theorem).

Under this interpretation, the p�s are introduced to provide a protective shield for each of

the predictive distributions constructed from the alternative priors that are considered.

3.2 Preferences

We consider a two-preference setup, as in Gilboa et al. (2010), with a mental preference %�

and a behavioral preference %.

De�nition 1 A preference % is ( subjectively) rational if it is:

a. complete;

b. risk independent: if x; y; z 2 X and � 2 (0; 1), then x � y implies �x + (1� �) z �
�y + (1� �) z.

The behavioral preference % governs the decision maker choice behavior and so it is

natural to require it to be complete because, eventually, the decision maker has to choose

between alternatives (burden of choice). It is subjectively rational because, in an �argu-

mentative� perspective, the decision maker cannot be convinced that it leads to incorrect

choices. Risk independence ensures that % is represented on the space of consequences X

by an a¢ ne utility function u : X ! R, for instance an expected utility functional when X
is the set of simple lotteries. So, risk is addressed in a standard way and we abstract from

non-expected utility issues.

The mental preference %� on F represents the decision maker �genuine�preference over

acts, so it has the nature of a dominance relation for the decision maker. As such, it might

well not be complete because of the decision maker inability to compare some pairs of acts.

De�nition 2 A preference %� is a dominance relation (or is objectively rational) if it is:

a. c-complete: if x; y 2 X, then x %� y or y %� x;

b. weak c-independent: if f; g 2 F , x; y 2 X and � 2 (0; 1),

�f + (1� �)x %� �g + (1� �)x =) �f + (1� �)y %� �g + (1� �)y

10



c. convex: if f; g; h 2 F and � 2 (0; 1),

f %� h and g %� h =) �f + (1� �) g %� h

If f %� g we say that f dominates g (strictly if f �� g). The dominance relation is,
axiomatically, a variational preference which is not required to be complete.15 It is objectively

rational because the decision maker can convince others of its reasonableness, for instance

through arguments based on scienti�c theories (a case especially relevant for our purposes).

Momentarily, axiom A.3 will further clarify its nature.

Along with the classical decision framework (11), the preferences %� and % form a two-

preference classical decision environment

(S;�; X;Q;%�;%) (12)

The next two assumptions, which we take from Gilboa et al. (2010), connect the two

preferences %� and %.

A.1 Consistency. For all f; g 2 F ,
f %� g =) f % g

Consistency asserts that, whenever possible, the mental ranking informs the behavioral one.

The next condition says that the decision maker opts, by default, for a sure alternative x

over an uncertain one f , unless the dominance relation says otherwise.

A.2 Caution. For all x 2 X and all f 2 F ,

f 6%� x =) x % f

Unlike the previous assumptions, the next two are peculiar to our analysis. They both

link Q to the two preferences %� and % of the decision maker. We begin with the dominance
relation %�. Here we write f Q

= g when q (f = g) = 1 for all q 2 Q, i.e., f and g are equal

almost everywhere according to each structured model.

A.3 Objective Q-coherence. For all f; g 2 F ,

f
Q
= g =) f �� g

and %� is complete when Q is a singleton.

15Convexity is stronger than uncertainty aversion a la Schmeidler (1989), which merely requires that f �� g
implies �f + (1� �) g %� g. Yet, under completeness of %� convexity and uncertainty aversion coincide (see,
e.g., Lemma 56 of Cerreia-Vioglio et al., 2011).
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This axiom �rst provides a preferential translation of the special status of structured models

over unstructured ones: if they all regard two acts to be almost surely identical, the decision

maker �genuine�preference %� follows suit and ranks them indi¤erent.

The axiom also disciplines the incompleteness of %� by requiring that model ambiguity,
i.e., a nonsingleton Q, is what underlies it. When Q is a singleton, the two preferences

%� and % agree and yet, because of model misspeci�cation, satisfy only a weak form of

independence. In other words, in our approach model misspeci�cation may cause violations

of the independence axiom for the dominance relation. Later in the paper, Section 4.2 will

further discuss this important feature of our analysis.

To introduce the second assumption, recall that a rational preference % admits an a¢ ne
utility function u : X ! R because it satis�es risk independence. This permits to de�ne,
given a model p 2 �, a consequence xpf 2 X for each act f via the equality

u(xpf ) =

Z
u (f) dp

We can interpret xpf as the certainty equivalent of act f if p were the correct model. This no-

tion of certainty equivalent permits to relate the posited set of models Q with the behavioral

preference %, here assumed to be rational.

A.4 Subjective Q-coherence. For all f 2 F and all x 2 X, we have

x �� xpf =) x � f

if and only if p 2 Q.

In words, p 2 � is a structured model, so belongs to Q, if and only if decision makers take
it seriously, that is, they never choose an act f that would be strictly dominated if p were

the correct model. Such a salience of p for the decision makers�preference is the preferential

footprint of a structured model, which decision makers take seriously under consideration

because of its informational, possibly scienti�c, status (as opposed to an unstructured model,

which decision makers regard as a statistical artifact).

4 Representation with given structured information

We now show how the assumptions on the mental and behavioral preferences permit to

characterize criterion (1) for a given set Q, that is, for a DM�s given structured information.

To this end, we say that a divergence c : � �Q ! [0;1] is uniquely null if, for all (p; q) 2
��Q, the sets c�1p (0) and c�1q (0) are at most singletons. For instance, statistical distances

are easily seen to be uniquely null because of the distance property (8).

We are now ready to state our �rst representation result.

12



Theorem 1 Let (S;�; X;Q;%�;%) be a two-preference classical decision environment, where
(S;�) is a standard Borel space. The following statements are equivalent:

(i) %� is an unbounded dominance relation and % is a rational preference that are both

Q-coherent and jointly satisfy consistency and caution;

(ii) there exist an onto a¢ ne function u : X ! R and a divergence c : � � Q ! [0;1],
with dom cQ � �(Q), such that, for all acts f; g 2 F ,

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

(13)

and

f % g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
(14)

If, in addition, c is uniquely null, then c : � � Q ! [0;1] can be chosen to be a statistical
distance.

This result identi�es, in particular, the main preferential assumptions underlying a rep-

resentation of the type

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(15)

for the preference %. While this representation is of interest for a general divergence with
respect to a set Q, it is of particular interest when c : ��Q! [0;1] is a statistical distance.
In this case, the partial ordering %� is more easily interpreted. Though a technical condition
of �unique nullity�is imposed to pin down statistical distances, our representation arguably

has more general applicability and captures the preferential underpinning of criterion (15).

The Hausdor¤ statistical distance minq2Q c (p; q) between p and Q is strictly positive if

and only if p is an unstructured model, i.e., p =2 Q. In particular, the more distant from Q

is an unstructured model, the more it is penalized as re�ected in the minimization problem

that criterion (15) features.

A misspeci�cation index A behavioral preference % represented by (15) is variational

with index minq2Q c (p; q). So, if two unbounded preferences %1 and %2 represented by (15)
share the same u but feature di¤erent statistical distancesminq2Q c1 (p; q) andminq2Q c2 (p; q),

then %1 is more uncertainty averse than %2 if and only if

min
q2Q

c1 (p; q) � min
q2Q

c2 (p; q)

13



In the present �classical�setting we interpret this comparative result as saying that the lower

is minq2Q c (p; q), the higher is the fear of misspeci�cation. We thus regard the function

p 7! min
q2Q

c (p; q) (16)

as an index of aversion to model misspeci�cation and we call it, for short, a misspeci�cation

index. The lower is this index, the higher is the fear of misspeci�cation.

Speci�cations and computability Two speci�cations of our representation are notewor-

thy. First, when c is the entropic statistical distance �R(pjjq), with � 2 (0;1], we have the
following important special case of our representation

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
(17)

which gives tractability to our decision criterion under model misspeci�cation. Speci�cally,

for � 2 (0;1),16

min
p2�

�Z
u (f) dp+ �min

q2Q
R(pjjq)

�
= min

q2Q
�� log

Z
e�

u(f):
� dq (18)

This result is well known when Q is a singleton, that is, when (17) is a standard multiplier

criterion.17

A second noteworthy special case of our representation is the Gini criterion

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
�2(pjjq)

�
:

Remarkably, we have

min
p2�

�Z
u (f) dp+ �min

q2Q
�2(pjjq)

�
= min

q2Q

�Z
u (f) dq � 1

2�
Varq (u (f))

�
for all acts f for which the max-min mean-variance (in utils) criterion on the r.h.s. is

monotone. So, the Gini criterion is a monotone version of the max-min mean-variance

criterion.

As to computability, in the important case when criterion (1) features a �-divergence,

like the speci�cations just discussed, we need only to know the set Q to compute it, no

integral with respect to unstructured models is needed. This is proved in the next result, a

consequence of a duality formula of Ben-Tal and Teboulle (2007).18

16When � =1, we have minp2�
�R
u (f) dp+ �minq2QR(pjjq)

	
= minq2Q

R
u (f) dq.

17See Appendix A.1.3 for the simple proof of (18).
18Here �� denotes the Fenchel conjugate of �.
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Proposition 1 Given Q � �� and � > 0, for each act f 2 F it holds

V (f) = min
p2�

�Z
u (f) dp+ �min

q2Q
D�(pjjq)

�
= � inf

q2Q
sup
�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
for all u : X ! R.

The r.h.s. formula computes criterion (1) for �-divergences by using only integrals with

respect to structured models. This formula substantially simpli�es computations and thus

con�rms the analytical tractability of the previous speci�cations.

4.1 Interpretation of the decision criterion

In the Introduction we outlined a �protective belt�interpretation of decision criterion (15),

i.e.,

V (f) = min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
To elaborate, we begin by observing that the misspeci�cation index (16) has the following

bounds

0 � min
q2Q

c (p; q) � �Q (p) 8p 2 � (19)

where �Q is the indicator function of the set Q of structured models. So, fear of misspeci-

�cation is absent when the misspeci�cation index is �Q �e.g., when � = +1 in (17) � in

which case criterion (15) takes a Wald (1950) max-min form

V (f) = min
q2Q

Z
u (f) dq (20)

This max-min criterion characterizes a decision maker who confronts model misspeci�-

cation but is not concerned by it. In other words, this Waldean decision maker is a natural

candidate to be (model) misspeci�cation neutral. The next limit result further corroborates

this insight by showing that, when the fear of misspeci�cation vanishes, the decision maker

becomes Waldean.19

Proposition 2 For each act f 2 F , we have

lim
�"1

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

q2Q

Z
u (f) dq

These observations, via bounds and limits, call for a proper decision-theoretic analysis of

misspeci�cation neutrality. To this end, note that structured models may be incorrect, yet

useful as Box (1976) famously remarked. This motivates the next notion. Recall that act

xAy, with x � y, represents a bet on event A.
19To ease matters, we state the result in terms of criterion (17). A general version can be easily established

via an increasing sequence of misspeci�cation indexes, with cnQ � cn+1Q for each n and lim cnQ (p) =1 for each

p 62 Q. For example, cnQ (p) = �nminq2QD� (pjjq) where �n " 1.
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De�nition 3 A preference % is bet-consistent if, given any x � y,

q (A) � q (B) 8q 2 Q =) xAy % xBy

for all events A;B 2 �.

Under bet-consistency, a decision maker may fear model misspeci�cation yet regards

structured models as good enough to choose to bet on events that they unanimously rank

as more likely. Preferences that are bet-consistent can be classi�ed as exhibiting a relatively

mild form of fear of model misspeci�cation. The following result shows that an important

class of preferences, which includes the ones represented by criterion (17), are bet-consistent.

Proposition 3 If � 2 (0;1) and c = �D�, then a preference % represented by (15) is

bet-consistent.

Next we substantially strengthen bet-consistency by considering all acts, not just bets.

De�nition 4 A rational preference % on F is (model) misspeci�cation neutral ifZ
u (f) dq �

Z
u (g) dq 8q 2 Q =) f % g

for all acts f; g 2 F .

In this case, a decision maker trusts models enough so to follow them when, if correct,

they would unanimously rank pairs of acts. Fear of misspeci�cation thus plays no role in

the decision maker preference, so it is decision-theoretically irrelevant. For this reason, the

decision maker attitude toward model misspeci�cation can be classi�ed as neutral. The next

result shows that this may happen if and only if the decision maker adopts the max-min

criterion (20).

Proposition 4 A preference % represented by criterion (15) is misspeci�cation neutral if

and only if it is represented by the max-min criterion (20).

This result provides the sought-after decision-theoretic argument for the interpretation of

the max-min criterion as the special case of decision criterion (15) that corresponds to aver-

sion to model ambiguity, with no fear of misspeci�cation. As remarked in the Introduction, it

suggests that a decision maker using such a criterion may be viewed as a decision maker who,

under model ambiguity, would max-minimize over the set of structured models which she

posited but that, for fear of misspeci�cation, ends up using the more prudential variational

criterion (15). Unstructured models lack the informational status of structured models, yet

in the criterion (15) they act as a �protective belt�against model misspeci�cation.
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Note that under this interpretation of criterion (15), the special multiplier case of a sin-

gleton Q = fqg corresponds to a decision maker who, with no fear of misspeci�cation, would
adopt the expected utility criterion

R
u (f) dq. In other words, a singleton Q corresponds to

an expected utility decision maker who fears misspeci�cation.

Summing up, in our analysis decision makers adopt the max-min criterion (20) if they

either confront only model ambiguity (an information trait) or are averse to model ambiguity

(a taste trait) with no fear of model misspeci�cation.

4.2 Interpretation of the dominance relation

As just argued, the singleton Q = fqg special case

min
p2�

�Z
u (f) dp+ c (p; q)

�
(21)

of decision criterion (15) is an expected utility criterion under fear of misspeci�cation (of the

unique posited q). Via the relation

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (22)

the representation theorem thus clari�es the interpretation of %� as a dominance relation
under model misspeci�cation by showing that it amounts to uniform dominance across all

structured models with respect to criterion (21).

It is easy to see that strict dominance amounts to (22), with strict inequality for some

q 2 Q. This observation raises a question: is there a notion of dominance that corresponds
to strict inequality for all q 2 Q? To address this question, we introduce a strong dominance
relation by writing f ��� g if, for all acts h; l 2 F ,

(1� �) f + �h �� (1� �) g + �l

for all small enough � 2 [0; 1].20 By taking h = f and l = g, we have the basic implication

f ��� g =) f �� g

Strong dominance is a strengthening of strict dominance in which the decision maker can

convince others �beyond reasonable doubt.� The next characterization corroborates this

interpretation and, at the same time, answers the previous question in the positive.21

Proposition 5 Let c : � � Q ! [0;1] be a divergence, u : X ! R an onto and a¢ ne

function and %� an unbounded dominance relation represented by (22). For all acts f; g 2 F ,
we have f ��� g if and only if there exists " > 0 such that

min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
+ " 8q 2 Q

20Strong dominance has been introduced by Cerreia-Vioglio et al. (2020).
21Up to an " that ensures a needed uniformity of the strict inequality across structured models.
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This characterization shows that �� and ��� agree on consequences and, more impor-
tantly, that

f ��� g =) min
p2�

�Z
u (f) dp+ c (p; q)

�
> min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

In turn, this easily implies

f ��� g =) f � g (23)

We can diagram the relationships among the di¤erent dominance notions as follows:

��� =) �� 6=) �
+ +
� =) %

An instance when

f �� g =) f � g (24)

may fail is the max-min criterion (20).

We close by discussing misspeci�cation neutrality, which in view of Proposition 4 is

characterized by the misspeci�cation index minq2Q c (p; q) = �Q (p).

Lemma 3 Let c be a statistical distance c : ��Q! [0;1]. We have minq2Q c (p; q) = �Q (p)

if and only if, for each q 2 Q, c (p; q) =1 for all p =2 Q.

In words, misspeci�cation neutrality is characterized by a statistical distance that max-

imally penalizes unstructured models, which end up playing no role. From a statistical

distance angle, this con�rms that misspeci�cation neutrality is the attitude of a decision

maker who confronts model misspeci�cation, but does not care about it (and so has no use

for unstructured models).

This angle becomes relevant here because it shows that, under misspeci�cation neutrality,

the representation (22) of the dominance relation becomes

f %� g () min
q02Q

�Z
u (f) dq0 + c

�
q0; q

��
� min

q02Q

�Z
u (g) dq0 + c

�
q0; q

��
8q 2 Q

Unstructured models play no role here. Next we show that also statistical distances play no

role, so representation (22) further reduces to

f %� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q (25)

when the dominance relation satis�es the independence axiom. This means, inter alia, that

fear of model misspeci�cation may cause violations of the independence axiom for such a

relation, thus providing a new rationale for violations of this classic axiom.

All this is shown by the next result, which is the version for our setting of the main result

of Gilboa et al. (2010).
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Proposition 6 Let (S;�; X;Q;%�;%) be a two-preference classical decision environment.
The following statements are equivalent:

(i) %� is an unbounded dominance relation that satis�es independence and % is a rational
preference that are both Q-coherent and jointly satisfy consistency and caution;

(ii) there exist an onto a¢ ne function u : X ! R and a statistical distance c : � � Q !
[0;1], with c (p; q) = �fqg (p) for all (p; q) 2 ��Q, such that (13) and (14) hold, i.e.,

f %� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q

and

f % g () min
p2�

Z
u (f) dp � min

p2�

Z
u (g) dp

Under independence, the dominance relation %� thus takes a misspeci�cation neutral
form, while the preference % is represented by the max-min criterion.

5 Representation with varying structured information

So far, we carried out our analysis for a given set Q of structured models. Indeed, a two-

preference classical decision environment (12) should be more properly written as�
S;�; X;Q;%�Q;%Q

�
with the dependence of preferences on Q highlighted. Decision environments, however, may

share common state and consequence spaces, but di¤er on the posited sets of structured

models because of di¤erent information that decision makers may have. It then becomes

important to ensure that decision makers use decision criteria that, across such environments,

are consistent.

To address this issue, in this section we consider a family��
S;�; X;Q;%�Q;%Q

�	
Q2Q

of classical decision environments that di¤er in the set Q of posited models and we introduce

axioms on the family
n
%�Q
o
Q2Q

that connect these environments. In keeping with what

assumed so far, Q is the collection of compact and convex subsets of ��.

A.5 Monotonicity (in model ambiguity). If Q0 � Q then, for all f; g 2 F ,

f %�Q g =) f %�Q0 g
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According to this axiom, if the �structured�information underlying a set Q is good enough

for the decision maker to establish that an act dominates another one, a better information

which decreases model ambiguity can only con�rm such judgement. Its reversal would be,

indeed, at odds with the objective rationality spirit of the dominance relation.

Next we consider a separability assumption.

A.6 Q-separability : For all f; g 2 F ,

f %�q g 8q 2 Q =) f %�Q g

In words, an act dominates another one when it does, separately, through the lenses of

each structured model. In this axiom the incompleteness of %�Q arises as that of a Paretian
order over the, complete but possibly misspeci�cation averse, preferences %�q determined by
the elements of Q.

These two assumptions, paired with the ones of Theorem 1, guarantee that all dominance

relations %�Q agree on X. We can thus just write %�, dropping the subscript Q. To state the
next axiom, we need a last piece of notation: we denote by xf;q the certainty equivalent of

act f for preference %�q .

A.7 Model hybridization aversion. Given any q; q0 2 ��,

�xf;q + (1� �)xf;q0 %� xf;�q+(1��)q0

for all � 2 (0; 1) and all f 2 F .

According to this axiom, the decision maker dislike, ceteris paribus, facing a hybrid

structured model �q+ (1� �) q0 that, by mixing two structured models q and q0, could only
have a less substantive motivation (cf. Section 3.1).

We close with a continuity axiom.

A.8 Lower semicontinuity. For all x 2 X and all f 2 F , the set fq 2 �� : x %� xf;qg is
closed.

We can now state the extension of Theorem 1 to families of decision environments.

Theorem 2 Let ��
S;�; X;Q;%�Q;%Q

�	
Q2Q

be a family of two-preference classical decision environments. The following statements are

equivalent:

(i)
n
%�Q
o
Q2Q

is monotone, Q-separable, lower semicontinuous, averse to model hybridiza-

tion and, for each Q 2 Q, the preferences %�Q and %Q satisfy the hypotheses of Theorem
1;
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(ii) there exist an onto a¢ ne function u : X ! R and a jointly lower semicontinuous and
convex statistical distance c : � ��� ! [0;1], with dom cQ � �(Q) for all Q 2 Q,
such that, for all acts f; g 2 F ,

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

(26)

and

f %Q g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
(27)

Moreover, u is unique up to a positive a¢ ne transformation and, given u, c is unique.

This theorem ensures that the decision maker uses consistently criterion (1) across de-

cision environments. In particular, the same statistical distance function is used (e.g., the

relative entropy). Moreover, axioms A.5-A.7 further clarify the nature of structured models

and their connection with the dominance relation.

Besides its broader scope, this theorem improves Theorem 1 on two counts. First, it

features a statistical distance without the need of a unique nullity condition. Second, it

contains a sharp uniqueness part. The cost of these improvements is a less parsimonious

setting in which the set Q is permitted to vary across the collection Q of compact and

convex subsets of ��.

6 Admissibility

A two-preference classical decision problem is a septet�
F; S;�; X;Q;%�Q;%Q

�
(28)

where F � F is a non-empty choice set formed by the acts among which a decision maker

has actually to choose, %�Q and %Q are preferences represented by (26) and (27).
Given a compact and convex set Q in ��, the decision maker chooses the best act in F

according to %Q. In particular, the value function v : Q ! (�1;1] is given by

v (Q) = sup
f2F

min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
(29)

Yet, it is the dominance relation %�Q that permits to introduce admissibility.

De�nition 5 An act f 2 F is (weakly) admissible if there is no act g 2 F that (strongly)

strictly dominates f .

21



To relate this notion to the usual notion of admissibility,22 observe that g ��Q f amounts
to

min
p2�

�Z
u (g) dp+ c (p; q)

�
� min

p2�

�Z
u (f) dp+ c (p; q)

�
8q 2 Q

with strict inequality for some q 2 Q. We are thus purposefully de�ning admissibility in

terms of the structured models Q, not the larger class of models �, with a model-by-model

adjustment for misspeci�cation that makes our notion di¤erent from the usual one.

The next result relates optimality and admissibility.

Proposition 7 Consider a decision problem (28).

(i) Optimal acts are weakly admissible. They are admissible provided (24) holds.

(ii) Unique optimal acts are admissible.

Optimal acts (if exist) might not be admissible because the max-min nature of decision

criterion (15) may lead to violations of (24). Yet, the last result ensures that they belong to

the collection of weakly admissible acts

F �Q =
�
f 2 F : @g 2 F; g ���Q f

	
Next we build on this property to establish a comparative statics exercise across decision

problems (28) that di¤er on the posited set Q of structured models.

Proposition 8 We have
Q � Q0 =) v (Q) � v

�
Q0
�

and

v (Q) = max
f2F �Q

min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
provided the sup in (29) is achieved.

Smaller sets of structured models are, thus, more valuable. Indeed, in decision problems

that feature a larger set of structured models � so, a more discordant information � the

decision maker exhibits, ceteris paribus, a higher fear of misspeci�cation:

Q � Q0 =) min
q2Q

c (p; q) � min
q2Q0

c (p; q)

In turn, this easily implies v (Q) � v (Q0).

The decision maker thus dislikes information discordance. In a �nite state space,23 infor-

mation discordance is maximal, so information is inconclusive, when Q = �. Indeed, by the

22See, e.g., Ferguson (1967) p. 54.
23 In�nite state spaces require some technicalities.
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distance property (8) we have minq2Q c (p; q) = 0 for all p 2 � if and only if Q = �. So, the

simplex case represents maximal misspeci�cation fear, given any c (so, any attitude toward

model misspeci�cation). Criterion (15) then takes an extreme statewise max-minimization

form

V (f) = min
s2S

u (f (s))

which embodies a form of the precautionary principle that, here, thus emerges out of inconclu-

sive information (e.g., based on inconclusive scienti�c knowledge). In contrast, information

discordance is absent when Q is a singleton.

7 A divergence twist

In our analysis a notion of set divergence naturally arises. Speci�cally, denoting by Q the

collection of all compact and convex subsets of ��, say that a function C : ��Q ! [0;1]
is a set divergence if

(i) C (�; Q) : �! [0;1] is grounded, lower semicontinuous and convex for each Q 2 Q;

(ii) C (p;Q) = 0 if and only if p 2 Q.

If, for each Q 2 Q, we consider a lower semicontinuous and convex statistical distance
c : � � Q ! [0;1], by Lemma 1 we can de�ne a set divergence by setting C (p;Q) =
minq2Q c (p; q). In particular, C (p; fqg) = c (p; q). This is the Hausdor¤-type set diver-

gence that characterizes our decision criterion (1). Yet, for a generic set divergence C, not

necessarily pinned down by an underlying statistical distance c, our criterion generalizes to

VQ (f) = min
p2�

�Z
u (f) dp+ C (p;Q)

�
Since C (p;Q) � �Q (p) for all p 2 �, this variational criterion still represents a preference
that is more uncertainty averse than the max-min one (4). Though the analysis of this

general criterion is beyond the scope of this paper, this brief discussion should help to put

our exercise in a better perspective.

8 Conclusion

Quantitative researchers use models to enhance their understanding of economic phenomena

and to make policy assessments. In essence, each model tells its own quantitative story. We

refer to such models as �structured models.�Typically, there are more than just one such

type of model, with each giving rise to a di¤erent quantitative story. Statistical and eco-

nomic decision theories have addressed how best to confront the ambiguity among structured
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models. Such structured models are, by their very nature, misspeci�ed. Nevertheless, the

decision maker seeks to use such models in sensible ways. This problem is well recognized by

applied researchers, but it is typically not part of formal decision theory. In this paper, we

extend decision theory to confront model misspeci�cation concerns. In so doing, we recover

a variational representation of preferences that includes penalization based on discrepancy

measures between �unstructured alternatives�and the set of structured probability models.

A Proofs and related analysis

In the appendix, we provide the proofs of our main results plus some ancillary results.

Appendix A.1 contains all the results pertaining statistical �-divergences and distances.

Appendix A.3 contains the proofs of our representation results (Theorems 1 and 2). Appendix

A.4 contains the proofs of the remaining results.

A.1 Preamble

A.1.1 Proof of Lemma 1

We substantially need to prove that the function cQ : � ! [0;1], de�ned by cQ (p) =
minq2Q c(p; q), is well de�ned, grounded, lower semicontinuous and convex. This fact follows

from the following version of a well known result (see, e.g., Fiacco and Kyparisis, 1986).

Lemma 4 Let Q be a compact and convex subset of �. If c : � � Q ! [0;1] is a jointly
lower semicontinuous and convex function such that there exist �p 2 � and �q 2 Q such that

c (�p; �q) = 0, then cQ : �! [0;1] de�ned by

cQ (p) = min
q2Q

c (p; q) 8p 2 �

is well de�ned, grounded, lower semicontinuous and convex.

Proof Since c is lower semicontinuous and Q is non-empty and compact, cQ is well de�ned.

Moreover, we have that 0 � c (�p; �q) � cQ (�p) � 0, proving that cQ is grounded. We next

show that cQ is lower semicontinuous. Consider ~U = fp 2 � : cQ (p) > �g where � 2 R. If
~U is empty, then it is open. Otherwise, consider �p 2 ~U . It follows that

(�p; q) 2
��
p0; q0

�
2 ��Q : c

�
p0; q0

�
> �

	
= �U 8q 2 Q

Since c is jointly lower semicontinuous, then �U is open in the product topology. Thus, for

each q 2 Q there exist two neighborhoods Uq and Vq such that

(�p; q) 2 Uq � Vq � �U
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Since q 2 Vq for all q 2 Q, we have that fVqgq2Q is an open cover of Q. Since Q is compact,

it admits a �nite subcover fVqig
n
i=1. De�ne the open set U = \ni=1Uqi . Since �p 2 Uq for

all q 2 Q, note that �p 2 U . Consider p 2 U and q0 2 Q. It follows that q0 2 Vqi for some

i 2 f1; :::; ng. This implies that (p; q0) 2 Uqi � Vqi � �U . We can conclude that c (p; q0) > �.

Since p and q0 were arbitrarily chosen in U and Q, we have that cQ (p) = minq02Q c (p; q0) > �

for all p 2 U , proving that �p 2 U � ~U and so lower semicontinuity of cQ.

If p1; p2 2 �, then de�ne q1; q2 2 Q to be such that

c (p1; q1) = min
q2Q

c (p1; q) = cQ (p1) and c (p2; q2) = min
q2Q

c (p2; q) = cQ (p2)

Consider � 2 (0; 1). De�ne p� = �p1 + (1� �) p2 and q� = �q1 + (1� �) q2 2 Q. Since c is
jointly convex, it follows that

cQ (p�) = min
q2Q

c (p�; q) � c (p�; q�) � �c (p1; q1) + (1� �) c (p2; q2)

= �cQ (p1) + (1� �) cQ (p2)

proving convexity. �

Proof of Lemma 1We �rst prove the �If�part. We need to prove that c is a divergence that
satis�es (8). In particular, we need to show that cQ and cq are well de�ned, grounded, lower

semicontinuous and convex for all q 2 Q. As for cq, since c is jointly lower semicontinuous
and convex, so is cq and we only need to prove that cq is grounded. Since c � 0 satis�es

(8), we have that cq (q) = c (q; q) = 0, proving that cq � 0 is grounded. By Lemma 4

and since Q is compact and convex and c is jointly lower semicontinuous and convex and

such that c (q; q) = 0 for all q 2 Q, then cQ : � ! [0;1] is well de�ned, grounded, lower
semicontinuous and convex. Finally, since c satis�es (8), note that cQ (p) = 0 if and only if

c (p; q) = 0 for some q 2 Q if and only if p = q for some q 2 Q if and only if p 2 Q.
As for the �Only if�part, it is trivial since a statistical distance function, by de�nition,

satis�es (8). �

A.1.2 Proof of Lemma 2

We actually prove a more complete result.24 A piece of notation: we write p � Q if there

exists a control measure q 2 Q such that p � q.25

24Though a routine result, for the sake of completeness, we provide a proof since we did not �nd one

allowing S to be in�nite (see Topsoe, 2001, p. 178 for the �nite case).
25A probability q 2 Q is a control measure of Q if q0 � q for all q0 2 Q. When Q is a compact and convex

subset of ��, Q has a control measure (see, e.g., Maccheroni and Marinacci, 2001). Such a measure might

not be unique, yet any two control measures of Q are equivalent. So, the notion p � Q is well de�ned and

independent of the chosen control measure.
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Lemma 5 Let Q be a compact and convex subset of ��. A restricted �-divergence D� :

��Q! [0;1] is a statistical distance. Moreover,

(i) if q 2 Q, then D� (�jjq) : �! [0;1] is strictly convex;

(ii) if p 2 �� and p � Q, then D� (pjj�) : Q! [0;1] is strictly convex.

Proof It is well known that on ���� the function D� is jointly lower semicontinuous and

convex and satis�es the property

D� (pjjq) = 0 () p = q

By Lemma 1, it follows that D� : � � Q ! [0;1] is a statistical distance. We next prove
points (i) and (ii).

(i). Consider q 2 Q. Let p0; p00 2 � and � 2 (0; 1) be such that p0 6= p00 andD� (�p
0 + (1� �) p00jjq) <

1. If eitherD� (p
0jjq) orD� (p

00jjq) are not �nite, we trivially conclude thatD� (�p
0 + (1� �) p00jjq) <

1 = �D� (p
0jjq)+(1� �)D� (p

00jjq). Let us then assume that both D� (p
0jjq) and D� (p

00jjq)
are �nite. By de�nition of D� and since �� (q) is convex, this implies that p0; p00 2 �� (q)

as well as �p0 + (1� �) p00 2 �� (q). Since p0 and p00 are distinct, we have that dp0=dq and

dp00=dq take di¤erent values on a set of strictly positive q-measure: call it ~S. Since � is

strictly convex, it follows that

�

�
�
dp0

dq
(s) + (1� �) dp

00

dq
(s)

�
< ��

�
dp0

dq
(s)

�
+ (1� �)�

�
dp00

dq
(s)

�
8s 2 ~S

By de�nition of D�, this implies that

D�

�
�p0 + (1� �) p00jjq

�
=

Z
S
�

�
d [�p0 + (1� �) p00]

dq
(s)

�
dq

=

Z
S
�

�
�
dp0

dq
(s) + (1� �) dp

00

dq
(s)

�
dq

=

Z
~S
�

�
�
dp0

dq
(s) + (1� �) dp

00

dq
(s)

�
dq

+

Z
Sn ~S

�

�
�
dp0

dq
(s) + (1� �) dp

00

dq
(s)

�
dq

< �

Z
S
�

�
dp0

dq
(s)

�
dq + (1� �)

Z
S
�

�
dp00

dq
(s)

�
dq

= �D�

�
p0jjq

�
+ (1� �)D�

�
p00jjq

�
We conclude that D� (�jjq) : �! [0;1] is strictly convex.
(ii). Before starting, we make three observations.

a. Since Q is a non-empty, compact and convex subset of ��, note that there exists

�q 2 Q such that q � �q for all q 2 Q. Since p � Q, we have that p � �q. This implies also

that q � p for all q 2 Q.
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b. If q � p, then (dp=dq)�1 is well de�ned almost everywhere (with respect to either p

or q) and can be chosen (after de�ning arbitrarily the function over a set of zero measure)

to be the Radon-Nikodym derivative dq=dp.

c. Since � is strictly convex, if we de�ne �? : (0;1)! [0;1) by �? (x) = x� (1=x) for all

x > 0, then also �? is strictly convex. By point b, if p 2 �� and q 2 Q are such that p � q

and we de�ne _p = dp=dq, then q (f _p = 0g) = 0 = p (f _p = 0g) and

D� (pjjq) =
Z
S
�

�
dp

dq

�
dq =

Z
f _p=0g

�

�
dp

dq

�
dq +

Z
f _p>0g

�

�
dp

dq

�
dq

=

Z
f _p>0g

�

0B@ 1�
dp
dq

��1
1CA dq =

Z
f _p>0g

�?
�
dq

dp

�
dp

dq
dq

=

Z
f _p>0g

�?
�
dq

dp

�
dp

We can now prove the statement. Let q0; q00 2 Q and � 2 (0; 1) be such that q0 6= q00

and D� (pjj�q0 + (1� �) q00) <1. If either D� (pjjq0) or D� (pjjq00) are not �nite, we trivially
conclude that D� (pjj�q0 + (1� �) q00) < 1 = �D� (pjjq0) + (1� �)D� (pjjq00). Let us then
assume that both D� (pjjq0) and D� (pjjq00) are �nite. By de�nition of D�, we can conclude

that p � q0 and p � q00. By point a, this yields that q0 � p � q00 and p � �q0 + (1� �) q00.
Since q0 and q00 are distinct, we have that dq0=dp and dq00=dp take di¤erent values on a set of

strictly positive p-measure: call it ~S. By point c, we have that

p

��
dp

d [�q0 + (1� �) q00] = 0
��

= p

��
dp

dq0
= 0

��
= p

��
dp

dq00
= 0

��
= 0

Thus, by point c and since dq0=dp and dq00=dp take di¤erent values on a set of strictly positive

p-measure, there exists a p-measure 1 set ~S such that

D�

�
pjj�q0 + (1� �) q00

�
=

Z
~S
�?
�
d [�q0 + (1� �) q00]

dp

�
dp

< �

Z
~S
�?
�
dq0

dp

�
dp+ (1� �)

Z
~S
�?
�
dq00

dp

�
dp

= �D�

�
pjjq0

�
+ (1� �)D�

�
pjjq00

�
proving point (ii).

A.1.3 Non-convex set of structured models

Let us consider two decision makers who adopt criterion (17), the �rst one posits a, possibly

non-convex, set of structured models Q and the second one posits its closed convex hull coQ.

So, the second decision maker considers also all the mixtures of structured models posited
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by the �rst decision maker. Next we show that their preferences over acts actually agree.

It is thus without loss of generality to assume that the set of posited structured models is

convex, as it was assumed in the main text. Before doing so we prove formula (18). Observe

that given a compact subset Q � ��, be that convex or not, we have

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

p2�
min
q2Q

�Z
u (f) dp+ �R (pjjq)

�
= min

q2Q
min
p2�

�Z
u (f) dp+ �R (pjjq)

�
= min

q2Q
��1�

�Z
�� (u (f)) dq

�
where �� (t) = �e�

1
�
t for all t 2 R where � > 0.

Proposition 9 If Q � �� is compact, then for each f 2 F

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

p2�

�Z
u (f) dp+ � min

q2coQ
R (pjjq)

�
Proof First observe that coQ � ��. Indeed, since Q is a compact subset of ��, the

set function � : � ! [0; 1], de�ned by � (E) = minq2Q q (E) for all E 2 � is an exact

capacity which is continuous at S. This implies that Q � core � � ��, yielding that

coQ � core � � ��. Given what we have shown before we can conclude that

min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
= min

q2Q
��1�

�Z
�� (u (f)) dq

�
= ��1�

�
min
q2Q

�Z
�� (u (f)) dq

��
= ��1�

�
min
q2coQ

�Z
�� (u (f)) dq

��
= min

q2coQ
��1�

�Z
�� (u (f)) dq

�
= min

p2�

�Z
u (f) dp+ � min

q2coQ
R (pjjq)

�
proving the statement. �

A.2 Proof of Proposition 1

The result follows from the following lemma. Here, as usual, � is extended to R by setting
� (t) = +1 if t =2 [0;+1). In particular, �� is non-decreasing.

Lemma 6 For each Q � �� and each � > 0,

inf
p2�

�Z
u (f) dp+ � inf

q2Q
D�(pjjq)

�
= � inf

q2Q
sup
�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
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for all u : X ! R and all f : S ! X such that u � f is bounded and measurable.

Proof By Theorem 4.2 of Ben-Tal and Teboulle (2007), for each q 2 �� it holds

inf
p2�

�Z
�dp+D�(pjjq)

�
= sup

�2R

�
� �

Z
�� (� � �) dq

�
for all � 2 L1 (q). Then, if u � f is bounded and measurable, from u � f 2 L1 (q) for all

q 2 ��, it follows that, for all � > 0,

inf
p2�

�Z
u (f) dp+ �D�(pjjq)

�
= � inf

p2�

�Z
u (f)

�
dp+D�(pjjq)

�
= � sup

�2R

�
� �

Z
��
�
� � u (f)

�

�
dq

�
for all � > 0, as desired. �

Proof of Proposition 1 In view of the last lemma, it is enough to observe that, if f : S ! X

is simple and measurable, then u � f is simple and measurable for all u : X ! R. �

A.3 Representation results

The proof of Theorem 1 is based on four key steps. We �rst provide a representation for an

unbounded and objectively Q-coherent dominance relation %� (Appendix A.3.1). Second,
we provide a representation for a pair of binary relations (%�;%) which satisfy all of the
assumptions of Theorem 1 with the exception of subjective Q-coherence (Appendix A.3.2).

Third, we provide two results regarding variational preferences which will help isolate the

set of structured models Q in the main representation (Appendix A.3.3). Finally, we merge

these three steps to prove our �rst representation result (Appendix A.3.4). The proof of

Theorem 2 instead is presented as one result and it relies on some of the aforementioned

results. In what follows, given a function c : � � Q ! [0;1], where Q is a compact and

convex subset of ��, we say that c is a weak divergence (for the set Q) if it satis�es the �rst

two properties de�ning a divergence.

A.3.1 A Bewley-type representation

The next result is a multi-utility (variational) representation for unbounded dominance re-

lations.

Lemma 7 Let %� be a binary relation on F , where (S;�) is a standard Borel space. The
following statements are equivalent:

(i) %� is an unbounded dominance relation which satis�es objective Q-coherence;
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(ii) there exist an onto a¢ ne function u : X ! R and a weak divergence c : ��Q! [0;1]
such that dom c (�; q) � �(Q) for all q 2 Q and

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

(30)

To prove this result, we need to introduce one mathematical object. Let �� be a binary
relation on B0 (�). We say that �� is convex niveloidal if and only if �� is a preorder that
satis�es the following �ve properties:

1. For each '; 2 B0 (�) and for each k 2 R

' ��  =) '+ k ��  + k

2. If '; 2 B0 (�) and fkngn2N � R are such that kn " k and '� kn ��  for all n 2 N,
then '� k ��  ;

3. For each '; 2 B0 (�)
' �  =) ' ��  

4. For each k; h 2 R and for each ' 2 B0 (�)

k > h =) '+ k �� '+ h

5. For each '; ; � 2 B0 (�) and for each � 2 (0; 1)

' �� � and  �� � =) �'+ (1� �) �� �

Lemma 8 If %� is an unbounded dominance relation, then there exists an onto a¢ ne func-
tion u : X ! R such that

x %� y () u (x) � u (y) (31)

Proof Since %� is a non-trivial preorder on F that satis�es c-completeness, continuity and

weak c-independence, it is immediate to conclude that %� restricted to X satis�es weak

order, continuity and risk independence.26 By Herstein and Milnor (1953), it follows that

there exists an a¢ ne function u : X ! R that satis�es (31). Since %� is a non-trivial preorder
26To prove that %� satis�es risk independence, it su¢ ces to deploy the same technique of Lemma 28 of

Maccheroni et al. (2006) and observe that %� is a complete preorder on X. This yields that

x �� y =) 1

2
x+

1

2
z �� 1

2
y +

1

2
z 8z 2 X

By Theorem 2 of Herstein and Milnor (1953) and since %� satis�es continuity, we can conclude that %�

satis�es risk independence.
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on F that satis�es monotonicity, we have that %� is non-trivial on X. By Lemma 59 of
Cerreia-Vioglio et al. (2011) and since %� is non-trivial on X and satis�es unboundedness,

we can conclude that u is onto. �

Since u is a¢ ne and onto, note that fu (f) : f 2 Fg = B0 (�). In light of this observation,

we can de�ne a binary relation �� on B0 (�) by

' ��  () f %� g where u (f) = ' and u (g) =  (32)

Lemma 9 If %� is an unbounded dominance relation, then ��, de�ned as in (32), is a well
de�ned convex niveloidal binary relation. Moreover, if %� is objectively Q-coherent, then
'

Q
=  implies ' ��  .

Proof We begin by showing that �� is well de�ned. Assume that f1; f2; g1; g2 2 F are

such that u (fi) = ' and u (gi) =  for all i 2 f1; 2g. It follows that u (f1 (s)) = u (f2 (s))

and u (g1 (s)) = u (g2 (s)) for all s 2 S. By Lemma 8, this implies that f1 (s) �� f2 (s) and
g1 (s) �� g2 (s) for all s 2 S. Since %� is a preorder that satis�es monotonicity, this implies
that f1 �� f2 and g1 �� g2. Since %� is a preorder, if f1 %� g1, then

f2 %� f1 %� g1 %� g2 =) f2 %� g2

that is, f1 %� g1 implies f2 %� g2. Similarly, we can prove that f2 %� g2 implies f1 %� g1. In
other words, f1 %� g1 if and only if f2 %� g2, proving that �� is well de�ned. It is immediate
to prove that �� is a preorder. We next prove properties 1�5.

1. Consider '; 2 B0 (�) and k 2 R. Assume that ' ��  . Let f; g 2 F and x; y 2 X be

such that u (f) = 2', u (g) = 2 , u (x) = 0 and u (y) = 2k. Since u is a¢ ne, it follows

that

u

�
1

2
f +

1

2
x

�
=
1

2
u (f) +

1

2
u (x) = ' ��  

=
1

2
u (g) +

1

2
u (x) = u

�
1

2
g +

1

2
x

�
proving that 1

2f +
1
2x %�

1
2g +

1
2x. Since %� satis�es weak c-independence and u is

a¢ ne, we have that 12f +
1
2y %�

1
2g +

1
2y, yielding that

'+ k =
1

2
u (f) +

1

2
u (y) = u

�
1

2
f +

1

2
y

�
�� u

�
1

2
g +

1

2
y

�
=
1

2
u (g) +

1

2
u (y) =  + k

2. Consider '; 2 B0 (�) and fkngn2N � R such that kn " k and ' � kn ��  for all
n 2 N. We have two cases:
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(a) k > 0. Consider f; g; h 2 F such that

u (f) = ', u (g) = '� k and u (h) =  

Since k > 0 and kn " k, there exists �n 2 N such that kn > 0 for all n � �n. De�ne
�n = 1 � kn=k for all n 2 N. It follows that �n 2 [0; 1] for all n � �n. Since u is

a¢ ne, for each n � �n

u (�nf + (1� �n) g) = �nu (f) + (1� �n)u (g) = '� kn ��  = u (h)

yielding that �nf + (1� �n) g %� h for all n � �n. Since %� satis�es continuity
and �n ! 0, we have that g %� h, that is,

'� k = u (g) �� u (h) =  

(b) k � 0. Since fkngn2N is convergent, fkngn2N is bounded. Thus, there exists h > 0
such that kn + h > 0 for all n 2 N. Moreover, kn + h " k + h > 0. By point 1, we
also have that '� (kn + h) = ('� kn)�h ��  �h for all n 2 N. By subpoint a,
we can conclude that ('� k)� h = '� (k + h) ��  � h. By point 1, we obtain
that '� k ��  .

3. Consider '; 2 B0 (�) such that ' �  . Let f; g 2 F be such that u (f) = ' and

u (g) =  . It follows that u (f (s)) � u (g (s)) for all s 2 S. By Lemma 8, this implies
that f (s) %� g (s) for all s 2 S. Since %� satis�es monotonicity, this implies that
f %� g, yielding that ' = u (f) �� u (g) =  .

4. Consider k; h 2 R and ' 2 B0 (�). We �rst assume that k > h and k = 0. By point

3, we have that ' = ' + k �� ' + h. By contradiction, assume that ' 6�� ' + h. It

follows that ' �� ' + h, yielding that I = fw 2 R : ' �� '+ wg is a non-empty set
which contains 0 and h. We next prove that I is an unbounded interval, that is, I = R.
First, consider w1; w2 2 I. Without loss of generality, assume that w1 � w2. By point

3 and since w1; w2 2 I, we have that for each � 2 (0; 1)

' �� '+ w1 �� '+ (�w1 + (1� �)w2) �� '+ w2 �� '

proving that ' �� ' + (�w1 + (1� �)w2), that is, �w1 + (1� �)w2 2 I. Next, we

observe that I \ (�1; 0) 6= ; 6= I \ (0;1). Since h 2 I and h < 0, we have that

I \ (�1; 0) 6= ;. Since I is an interval and 0; h 2 I, we have that h=2 2 I. By

point 1 and since ' �� ' + h=2, we have that ' � h=2 �� ('+ h=2) � h=2 = ',

proving that 0 < �h=2 2 I \ (0;1). By de�nition of I, note that if w 2 In f0g,
then ' + w �� '. By point 1 and since w=2 2 I and �� is a preorder, we have that
('+ w) + w=2 �� ' + w=2 �� ', that is, 32w;

1
2w 2 I. Since I is an interval, we have
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that either
�
3
2w;

1
2w
�
� I if w < 0 or

�
1
2w;

3
2w
�
� I if w > 0. This will help us in

proving that I is unbounded from below and above. By contradiction, assume that

I is bounded from below and de�ne m = inf I. Since I \ (�1; 0) 6= ;, we have that
m < 0. Consider fwngn2N � I \ (�1; 0) such that wn # m. Since

�
3
2wn;

1
2wn

�
� I for

all n 2 N, it follows that m � 3
2wn for all n 2 N. By passing to the limit, we obtain

that m � 3
2m < 0, a contradiction. By contradiction, assume that I is bounded from

above and de�ne M = sup I. Since I \ (0;1) 6= ;, we have that M > 0. Consider

fwngn2N � I\ (0;1) such that wn "M . Since
�
1
2wn;

3
2wn

�
� I for all n 2 N, it follows

that M � 3
2wn for all n 2 N. By passing to the limit, we obtain that M � 3

2M > 0,

a contradiction. To sum up, I is a non-empty unbounded interval, that is, I = R.
This implies that ' �� ' + w for all w 2 R. In particular, select w1 = k'k1 + 1 and
w2 = �k'k1 � 1. Since �� is a preorder, we have that '+ w1 �� '+ w2. Moreover,

'+w1 � 1 > �1 � '+w2. By point 3, this implies that '+w1 �� 1 �� �1 �� '+w2.
Since �� is a preorder and '+w1 �� '+w2, we can conclude that 1 �� �1. Note also
that there exist x; y 2 X such that u (x) = 1 and u (y) = �1. By Lemma 8, this implies
that x �� y. By de�nition of �� and since u (x) = 1 �� �1 = u (y), we also have that

y %� x, a contradiction. Thus, we proved that if k > h and k = 0, then '+k �� '+h.
Assume simply that k > h. This implies that 0 > h � k and ' �� ' + (h� k). By
point 1, we can conclude that '+ k �� '+ (h� k) + k = '+ h.

5. Consider '; ; � 2 B0 (�) and � 2 (0; 1). Assume that ' �� � and  �� �. Let
f; g; h 2 F be such that u (f) = ', u (g) =  and u (h) = �. By assumption and

de�nition of ��, we have that f %� h and g %� h. Since %� satis�es convexity and
u is a¢ ne, this implies that �f + (1� �) g %� h, yielding that �' + (1� �) =

�u (f) + (1� �)u (g) = u (�f + (1� �) g) �� u (h) = �.

Points 1�5 prove the �rst part of the statement. Finally, consider '; 2 B0 (�). Note

that there exist a partition fAigni=1 of S and f�ig
n
i=1 and f�ig

n
i=1 in R such that

' =
nX
i=1

�i1Ai and  =
nX
i=1

�i1Ai

Note that fs 2 S : ' (s) 6=  (s)g = [i2f1;:::;ng:�i 6=�iAi. Since '
Q
=  , we have that q (Ai) = 0

for all q 2 Q and for all i 2 f1; :::; ng such that �i 6= �i. Since u is unbounded, de�ne

fxigni=1 � X to be such that u (xi) = �i for all i 2 f1; :::; ng. Since u is unbounded, de�ne
fyigni=1 � X to be such that yi = xi for all i 2 f1; :::; ng such that �i = �i and u (yi) = �i

otherwise. De�ne f; g : S ! X by f (s) = xi and g (s) = yi for all s 2 Ai and for all

i 2 f1; :::; ng. It is immediate to see that f Q
= g as well as u (f) = ' and u (g) =  . Since %�

is objectively Q-coherent, we have that f �� g, yielding that ' ��  and proving the second
part of the statement. �
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The next three results (Lemmas 10 and 11 as well as Proposition 10) will help us rep-

resenting ��. This paired with Lemma 8 and Proposition 11 will yield the proof of Lemma
7.

Lemma 10 Let �� be a convex niveloidal binary relation. If  2 B0 (�), then U ( ) =

f' 2 B0 (�) : ' ��  g is a non-empty convex set such that:

1.  2 U ( );

2. if ' 2 B0 (�) and fkngn2N � R are such that kn " k and '� kn 2 U ( ) for all n 2 N,
then '� k 2 U ( );

3. if k > 0, then  � k 62 U ( );

4. if '1 � '2 and '2 2 U ( ), then '1 2 U ( );

5. if k � 0 and '2 2 U ( ), then '2 + k 2 U ( ).

Proof Since �� is re�exive, we have that  2 U ( ), proving that U ( ) is non-empty and
point 1. Consider '1; '2 2 U ( ) and � 2 (0; 1). By de�nition, we have that '1 ��  and
'2 ��  . Since �� satis�es convexity, we have that �'1+(1� �)'2 ��  , proving convexity
of U ( ). Consider ' 2 B0 (�) and fkngn2N � R such that kn " k and '� kn 2 U ( ) for all
n 2 N. It follows that ' � kn ��  for all n 2 N, then ' � k ��  , that is, ' � k 2 U ( ),
proving point 2. If k > 0, then 0 > �k and  =  + 0 ��  � k, that is,  � k 62 U ( ),

proving point 3. Consider '1 � '2 such that '2 2 U ( ), then '1 �� '2 and '2 ��  ,
yielding that '1 ��  and, in particular, '1 2 U ( ), proving point 4. Finally, to prove point
5, it is enough to set '1 = '2 + k in point 4. �

Before stating the next result, we de�ne few properties that will turn out to be useful

later on. A functional I : B0 (�)! R is:

1. a niveloid if I (')� I ( ) � sups2S (' (s)�  (s)) for all '; 2 B0 (�);

2. normalized if I (k) = k for all k 2 R;27

3. monotone if for each '; 2 B0 (�)

' �  =) I (') � I ( )

4. �� consistent if for each '; 2 B0 (�)

' ��  =) I (') � I ( )

27With the usual abuse of notation, we denote by k both the real number and the constant function taking

value k.
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5. concave if for each '; 2 B0 (�) and � 2 (0; 1)

I (�'+ (1� �) ) � �I (') + (1� �) I ( )

6. translation invariant if for each ' 2 B0 (�) and k 2 R

I ('+ k) = I (') + k

Lemma 11 Let �� be a convex niveloidal binary relation. If  2 B0 (�), then the functional
I : B0 (�)! R, de�ned by

I (') = max fk 2 R : '� k 2 U ( )g 8' 2 B0 (�)

is a concave niveloid which is �� consistent and such that I ( ) = 0. Moreover, we have

that:

1. The functional �I = I �I (0) is a normalized concave niveloid which is �� consistent.

2. If �� satis�es
 

Q
=  0 =)  ��  0

then

 
Q
=  0 =) I = I 0 and �I = �I 0

Proof Consider ' 2 B0 (�). De�ne C' = fk 2 R : '� k 2 U ( )g. Note that C' is non-
empty. Indeed, if we set k = �k'k1�k k1, then we obtain that '�k = '+k'k1+k k1 �
0 + k k1 �  2 U ( ). By property 4 of Lemma 10, we can conclude that ' � k 2 U ( ),
that is, k 2 C'. Since U ( ) is convex, it follows that C' is an interval. Since ' 2 B0 (�),
note that there exists k̂ 2 R such that  � '� k̂. It follows that  �� '� k̂. In particular,
we can conclude that  �� ' �

�
k̂ + "

�
for all " > 0. This yields that C' is bounded from

above. Finally, assume that fkngn2N � C' and kn " k. By property 2 of Lemma 10, we can
conclude that k 2 C'. To sum up, C' is a non-empty bounded from above interval of R that
satis�es the property

fkngn2N � C' and kn " k =) k 2 C' (33)

The �rst part yields that sup fk 2 R : '� k 2 U ( )g = supC' 2 R is well de�ned. By

(33), we also have that supC' 2 C', that is, supC' = maxC', proving that I is well

de�ned. Next, we prove that I is a concave niveloid. We �rst show that I is monotone

and translation invariant. By Proposition 2 of Cerreia-Vioglio et al. (2014), this implies

that I is a niveloid. Rather than proving monotonicity, we prove that I is �� consistent.28

28Since if '1 � '2, then '1 �� '2, it follows that �� consistency implies monotonicity.
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Consider '1; '2 2 B0 (�) such that '1 �� '2. By the properties of �� and de�nition of I ,
we have that

'1 � I ('2) �� '2 � I ('2) and '2 � I ('2) 2 U ( )

and, in particular, '2�I ('2) ��  . Since �� is a preorder, this implies that '1�I ('2) ��

 , that is, '1 � I ('2) 2 U ( ) and I ('2) 2 C'1 , proving that I ('1) � I ('2). We next

prove translation invariance. Consider ' 2 B0 (�) and k 2 R. By de�nition of I , we can
conclude that

('+ k)� (I (') + k) = '� I (') 2 U ( )

This implies that I (') + k 2 C'+k and, in particular, I ('+ k) � I (') + k. Since k and

' were arbitrarily chosen, we have that

I ('+ k) � I (') + k 8' 2 B0 (�) ;8k 2 R

This yields that I ('+ k) = I (') + k for all ' 2 B0 (�) and for all k 2 R.29

We move to prove that I is concave. Consider '1; '2 2 B0 (�) and � 2 (0; 1). By

de�nition of I , we have that

'1 � I ('1) 2 U ( ) and '2 � I ('2) 2 U ( )

Since U ( ) is convex, we have that

(�'1 + (1� �)'2)� (�I ('1) + (1� �) I ('2))
= � ('1 � I ('1)) + (1� �) ('2 � I ('2)) 2 U ( )

yielding that �I ('1)+(1� �) I ('2) 2 C�'1+(1��)'2 and, in particular, I (�'1 + (1� �)'2) �
�I ('1) + (1� �) I ('2).

Finally, since  2 U ( ), note that 0 2 C and I ( ) � 0. By de�nition of I , if

I ( ) > 0, then  � I ( ) 2 U ( ), a contradiction with property 3 of Lemma 10.
1. It is routine to check that �I is a normalized concave niveloid which is �� consistent.
2. Clearly, we have that if  ��  0, then U ( ) = U ( 0), yielding that I = I 0 and, in

particular, I (0) = I 0 (0) as well as �I = �I 0 . The point trivially follows. �

Proposition 10 Let �� be a binary relation on B0 (�). The following statements are equiv-
alent:

(i) �� is convex niveloidal;
29Observe that if ' 2 B0 (�) and k 2 R, then �k 2 R and

I (') = I (('+ k)� k) � I ('+ k)� k

yielding that I ('+ k) � I (') + k.
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(ii) there exists a family of concave niveloids fI�g�2A on B0 (�) such that

' ��  () I� (') � I� ( ) 8� 2 A (34)

(iii) there exists a family of normalized concave niveloids
�
�I�
	
�2A on B0 (�) such that

' ��  () �I� (') � �I� ( ) 8� 2 A (35)

Proof (iii) implies (i). It is trivial.

(i) implies (ii). Let A = B0 (�). We next show that

'1 �� '2 () I ('1) � I ('2) 8 2 B0 (�)

where I is de�ned as in Lemma 11 for all  2 B0 (�). By Lemma 11, we have that I is

�� consistent for all  2 B0 (�). This implies that

'1 �� '2 =) I ('1) � I ('2) 8 2 B0 (�)

Vice versa, consider '1; '2 2 B0 (�). Assume that I ('1) � I ('2) for all  2 B0 (�). Let
 = '2. By Lemma 11, we have that

I'2 ('1) � I'2 ('2) = 0

yielding that '1 � '1 � I'2 ('1) 2 U ('2). By point 4 of Lemma 10, this implies that

'1 2 U ('2), that is, '1 �� '2.
(ii) implies (iii). Given a family of concave niveloids fI�g�2A, de�ne �I� = I�� I� (0) for

all � 2 A. It is immediate to verify that �I� is a normalized concave niveloid for all � 2 A.
It is also immediate to observe that

I� ('1) � I� ('2) 8� 2 A () �I� ('1) � �I� ('2) 8� 2 A

proving the implication. �

Remark 1 Given a convex niveloidal binary relation �� on B0 (�), we call canonical (resp.,
canonical normalized) the representation fI g 2B0(�) (resp.,

�
�I 
	
 2B0(�)) obtained from

Lemma 11 and the proof of Proposition 10. By the previous proof, clearly, fI g 2B0(�) and�
�I 
	
 2B0(�) satisfy (34) and (35) respectively.

The next result clari�es what the relation is between any representation of �� and the
canonical ones. This will be useful in establishing an extra property of

�
�I 
	
 2B0(�) in

Corollary 1.
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Lemma 12 Let �� be a convex niveloidal binary relation. If B is an index set and fJ�g�2B
is a family of normalized concave niveloids such that

' ��  () J� (') � J� ( ) 8� 2 B

then for each  2 B0 (�)

I (') = inf
�2B

(J� (')� J� ( )) 8' 2 B0 (�) (36)

and
�I (') = inf

�2B
(J� (')� J� ( )) + sup

�2B
J� ( ) 8' 2 B0 (�) (37)

Proof Fix ' 2 B0 (�) and  2 B0 (�). By de�nition, we have that

I (') = max fk 2 R : '� k 2 U ( )g

Since fJ�g�2B represents �
� and each J� is translation invariant, note that for each k 2 R

'� k 2 U ( ) () '� k ��  () J� ('� k) � J� ( ) 8� 2 B
() J� (')� k � J� ( ) 8� 2 B () J� (')� J� ( ) � k 8� 2 B
() inf

�2B
(J� (')� J� ( )) � k

Since ' � I (') 2 U ( ), this implies that I (') = inf�2B (J� (')� J� ( )). Since ' and
 were arbitrarily chosen, (36) follows. Since �I = I � I (0), we only need to compute

�I (0). Since each J� is normalized, we have that �I (0) = � inf�2B (J� (0)� J� ( )) =
� inf�2B (�J� ( )) = sup�2B J� ( ), proving (37). �

Corollary 1 If �� is a convex niveloidal binary relation, then �I0 � �I for all  2 B0 (�).

Proof By Lemma 12 and Remark 1 and since each �I 0 is a normalized concave niveloid, we
have that

�I0 (') = inf
 02B0(�)

�
�I 0 (')� �I 0 (0)

�
+ sup
 02B0(�)

�I 0 (0) = inf
 02B0(�)

�I 0 (') � �I (') 8' 2 B0 (�)

for all  2 B0 (�), proving the statement. �

The next result will be instrumental in providing a niveloidal multi-representation of %�

when jQj � 2. In order to discuss it, we need a piece of terminology. We denote by V the

quotient space B0 (�) =M whereM is the vector subspace
n
' 2 B0 (�) : '

Q
= 0

o
. Recall that

the elements of V are equivalence classes [ ] with  2 B0 (�) where  0;  00 2 [ ] if and only
if  

Q
=  0

Q
=  00.
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Proposition 11 If (S;�) is a standard Borel space and jQj � 2, then there exists a bijection
f : V ! Q.

Proof We begin by observing that:

jca (�)j � jca+ (�)� ca+ (�)j = jca+ (�)j = j(0;1)���j = j��j

The �rst inequality holds because the map g : ca (�) ! ca+ (�) � ca+ (�), de�ned by

� 7! (�+; ��), is injective. Since � is non-trivial, ca+ (�) is in�nite and a bijection justifying

the �rst equality exists by Theorem 1.4.5 of Srivastava (1998). As to the second equality,

the map g : ca+ (�) n f0g ! (0;1) � ��, de�ned by � 7! (� (S) ; �=� (S)), is a bijection

and so jca+ (�) n f0gj = j(0;1)���j; by Theorem 1.3.1 of Srivastava (1998), jca+ (�)j =
jca+ (�) n f0gj = j(0;1)���j. As to the last equality, by Theorem 1.4.5 and Exercise

1.5.1 of Srivastava (1998), being j(0;1)j = j(0; 1)j � j��j, we have j��j � j(0;1)���j =
j(0; 1)���j � j�� ���j = j��j, yielding that j(0;1)���j = j��j.

We conclude that jca (�)j � j��j, that is, there exists an injective map g : ca (�)! ��.

Since Q is a compact and convex subset of ��, there exists �q 2 Q such that q � �q for all

q 2 Q. We de�ne h : V ! ca (�) by

h ([ ]) (A) =

Z
A
 d�q 8A 2 �

Note that h is well de�ned. For, if  0 2 [ ], that is,  Q
=  0, then  

�q
=  0, yielding thatR

A  d�q =
R
A  

0d�q for all A 2 �. Similarly, h ([ ]) = h ([ 0]) implies that  
�q
=  0. Since

q � �q for all q 2 Q, this implies that  
Q
=  0 and [ ] = [ 0], proving h is injective. This

implies that ~f = g�h is a well de�ned injective function from V to ��. Clearly, we have that

j��j �
��� ~f (V )��� � j[0; 1]j. Since (S;�) is a standard Borel space and Q is convex and jQj � 2,

we also have that j[0; 1]j � j��j � jQj � [0; 1]. This implies that jV j =
��� ~f (V )��� = jQj, proving

the statement. �

Proof of Lemma 7 (ii) implies (i). It is trivial.

(i) implies (ii). Since %� is objectively Q-coherent, if jQj = 1, that is Q = f�qg, then
%� is complete. By Maccheroni et al. (2006) and since %� is unbounded, it follows that
there exists an onto and a¢ ne u : X ! R and a grounded, lower semicontinuous and convex
c�q : �! [0;1] such that V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c�q (p)

�
8f 2 F

represents %�. If we de�ne c : ��Q! [0;1] by c (p; q) = c�q (p) for all (p; q) 2 ��Q, then
we have that c is a weak divergence. By Lemma 15 and since %� is objectively Q-coherent,
it follows that c (p; q) = 1 for all p 2 �n�(Q) and for all q 2 Q, proving the implication.
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Assume jQj > 1. By Lemma 8, there exists an onto a¢ ne function u : X ! R which

represents %� on X. By Lemma 9, this implies that we can consider the convex niveloidal
binary relation �� de�ned as in (32). By de�nition of �� and Proposition 10 (and its proof),
we have that

f %� g () u (f) �� u (g) () �I (u (f)) � �I (u (g)) 8 2 B0 (�)

where each �I is a normalized concave niveloid. As before, consider V = B0 (�) =M where

M is the vector subspace
n
' 2 B0 (�) : '

Q
= 0

o
. For each equivalence class [ ], select exactly

one  0 2 B0 (�) such that  0 2 [ ]. We denote this subset of B0 (�) by ~V . Clearly, we have
that

�I (u (f)) � �I (u (g)) 8 2 B0 (�) =) �I (u (f)) � �I (u (g)) 8 2 ~V

Vice versa, assume that �I (u (f)) � �I (u (g)) for all  2 ~V . Consider  ̂ 2 B0 (�). It

follows that there exists [ ] in V such that  ̂ 2 [ ]. Similarly, consider  0 2 ~V such that

 0 2 [ ]. It follows that  ̂
Q
=  0. By Lemmas 9 and 11 and since %� is objectively Q-

coherent, then �I ̂ =
�I 0 , yielding that �I ̂ (u (f)) � �I ̂ (u (g)). Since  ̂ was arbitrarily chosen

�I (u (f)) � �I (u (g)) for all  2 B0 (�). By construction, observe that there exists a

bijection ~f : ~V ! V . By Proposition 11, we have that there exists a bijection f : V ! Q.

De�ne �f = f � ~f . By Corollary 1, if we de�ne Îq = �I �f�1(q) for all q 2 Q, then we have that

Î �f(0) � Îq 8q 2 Q

and

f %� g () �I (u (f)) � �I (u (g)) 8 2 B0 (�) () �I (u (f)) � �I (u (g)) 8 2 ~V
() Îq (u (f)) � Îq (u (g)) 8q 2 Q

Since each Îq is a normalized concave niveloid, we have that for each q 2 Q there exists a

function cq : �! [0;1] which is grounded, lower semicontinuous, convex and such that

Îq (') = min
p2�

�Z
'dp+ cq (p)

�
8' 2 B0 (�)

If we de�ne c : ��Q! [0;1] by c (p; q) = cq (p) for all (p; q) 2 ��Q, then c satis�es the

�rst property de�ning a divergence and (30) holds. By Lemma 15 and (30) and since %� is
objectively Q-coherent, it follows that c (p; q) = 1 for all p 62 �n�(Q) and for all q 2 Q.

Finally, recall that

c (p; q) = sup
'2B0(�)

�
Îq (')�

Z
'dp

�
8q 2 Q;8p 2 �
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Consider q 2 Q and p 2 �n�(Q). It follows that there exists A 2 � such that q (A) = 0 for
all q 2 Q and p (A) > 0. By Lemma 9 and since %� is objectively Q-coherent, we have that
�1A �� 0 for all � 2 R. Since Î �f(0) � Îq all q 2 Q, we have that for each q 2 Q

c
�
p; �f (0)

�
= sup

'2B0(�)

�
Î �f(0) (')�

Z
'dp

�
� sup

'2B0(�)

�
Îq (')�

Z
'dp

�
= c (p; q) 8p 2 �

Since c
�
�; �f (0)

�
is grounded, lower semicontinuous and convex and �f (0) 2 Q, this implies

that cQ (�) = minq2Q c (�; q) = c
�
�; �f (0)

�
is well de�ned and shares the same properties,

proving that c is a weak divergence. �

A.3.2 A parametric representation

Lemma 13 Let (%�;%) be two binary relations on F , where (S;�) is a standard Borel space.
The following statements are equivalent:

(i) %� is an unbounded dominance relation satisfying objective Q-coherence and % is a

rational preference that jointly satisfy consistency and caution;

(ii) there exist an onto a¢ ne function u : X ! R and a weak divergence c : ��Q! [0;1]
such that dom c (�; q) � �(Q) for all q 2 Q and

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

as well as

f % g () min
p2�

�Z
u (f) dp+ cQ (p)

�
� min

p2�

�Z
u (g) dp+ cQ (p)

�
Proof (i) implies (ii). We proceed by steps. Before starting, we make one observation. By
Lemma 7 and since %� is an unbounded dominance relation which is objectively Q-coherent
there exist an onto a¢ ne function u : X ! R and a weak divergence c : ��Q! [0;1] such
that %� is objectively Q-coherent, it follows that dom c (�; q) � �(Q) for all q 2 Q and

f %� g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q

We are left to show that cQ : �! [0;1] is such that

f % g () min
p2�

�Z
u (f) dp+ cQ (p)

�
� min

p2�

�Z
u (g) dp+ cQ (p)

�
(38)

To prove this we assume that c is as in the proof of (i) implies (ii) in Lemma 7. This covers

both cases jQj = 1 and jQj > 1. In particular, for each q 2 Q de�ne Îq : B0 (�)! R by

Îq (') = min
p2�

�Z
'dp+ c (p; q)

�
8' 2 B0 (�)
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and recall that there exists q̂(= �f (0) when jQj > 1) such that c (�; q̂) � c (�; q), thus Îq̂ � Îq,

for all q 2 Q.

Step 1. % agrees with %� on X. In particular, u : X ! R represents %� and %.

Proof of the Step Note that %� and % restricted to X are continuous weak orders that satisfy

risk independence. Moreover, by the observation above, %� is represented by u. By Herstein
and Milnor (1953) and since % is non-trivial, it follows that there exists a non-constant and
a¢ ne function v : X ! R that represents % on X. Since (%�;%) jointly satisfy consistency,
it follows that for each x; y 2 X

u (x) � u (y) =) v (x) � v (y)

By Ghirardato et al. (2004), u and v are equal up to an a¢ ne and positive transformation,

hence the statement. We can set v = u. �

Step 2. There exists a normalized, monotone and continuous functional I : B0 (�)! R such
that

f % g () I (u (f)) � I (u (g))

Proof of the Step By Cerreia-Vioglio et al. (2011) and since % is a rational preference

relation, the statement follows. �

Step 3. I (') � infq2Q Îq (') for all ' 2 B0 (�).

Proof of the Step Consider ' 2 B0 (�). Since each Îq is normalized and monotone and

u is onto, we have that Îq (') 2 [infs2S ' (s) ; sups2S ' (s)] � Imu for all q 2 Q. Since

' 2 B0 (�), it follows that there exists f 2 F such that ' = u (f) and x 2 X such that

u (x) = infq2Q Îq ('). For each " > 0 there exists x" 2 X such that u (x") = u (x) + ".

Since infq2Q Îq (') = u (x), it follows that for each " > 0 there exists q 2 Q such that

Îq (u (f)) = Îq (') < u (x") = Îq (u (x")), yielding that f 6%� x". Since (%�;%) jointly satisfy
caution, we have that x" % f for all " > 0. By Step 2, this implies that

u (x) + " = u (x") = I (u (x")) � I (u (f)) = I (') 8" > 0

that is, infq2Q Îq (') = u (x) � I ('), proving the step. �

Step 4. I (') � infq2Q Îq (') for all ' 2 B0 (�).

Proof of the Step Consider ' 2 B0 (�). We use the same objects and notation of Step 3.

Note that for each q0 2 Q

Îq0 (u (f)) = Îq0 (') � inf
q2Q

Îq (') = u (x) = Îq0 (u (x))
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that is, f %� x. Since (%�;%) jointly satisfy consistency, we have that f % x. By Step 2,

this implies that

I (') = I (u (f)) � I (u (x)) = u (x) = inf
q2Q

Îq (')

proving the step. �

Step 5. I (') = minp2�
�R

'dp+ cQ (p)
	
for all ' 2 B0 (�).

Proof of the Step By Steps 3 and 4 and since Îq̂ � Îq for all q 2 Q, we have that

I (') = min
q2Q

Îq (') = Îq̂ (') 8' 2 B0 (�)

Since c (�; q̂) = cQ (�), it follows that for each ' 2 B0 (�)

I (') = Îq̂ (') = min
p2�

�Z
'dp+ c (p; q̂)

�
= min

p2�

�Z
'dp+ cQ (p)

�
proving the step. �

Thus, (38) follows from Steps 2 and 5, this completes the proof.

(ii) implies (i). It is routine. �

A.3.3 Two variational lemmas

The next two lemmas will be key in characterizing subjective and objective Q-coherence.

Lemma 14 Let % be a variational preference represented by V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
and let �p 2 �. If % is unbounded, then the following conditions are equivalent:

(i) c (�p) = 0;

(ii) x�pf % f for all f 2 F ;

(iii) for each f 2 F and for each x 2 X

x � x�pf =) x � f:

Proof We actually prove that (i)=)(ii)()(iii), with equivalence when % is unbounded.
(i) implies (ii). Let f 2 F . It is enough to observe that c (�p) = 0 implies

V
�
x�pf

�
= u

�
x�pf

�
=

Z
u (f) d�p+ c (�p) � min

p2�

�Z
u (f) dp+ c (p)

�
= V (f)
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yielding that x�pf % f .

(ii) implies (iii). Assume that x�pf % f for all f 2 F . Since % is complete and transitive,
it follows that if x � x�pf , then x � f .

(iii) implies (ii). By contradiction, suppose that there exists f 2 F such that f � x�pf .

Let xf 2 X be such that xf � f . This implies that xf � x�pf and so xf � f , a contradiction.

(ii) implies (i). Let % be unbounded. Assume that x�pf % f for all f 2 F , i.e., V (f) �R
u (f) d�p for all f 2 F . So, �p corresponds to a SEU preference that is more ambiguity averse

than %. By Lemma 32 of Maccheroni et al. (2006), we can conclude that c (�p) = 0. �

Lemma 15 Let % be a variational preference represented by V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
If Q is a compact and convex subset of �� and % is unbounded and such that

f
Q
= g =) f � g

then dom c � �(Q).

Proof Let p 2 �n�(Q). It follows that there exists A 2 � such that q (A) = 0 for all

q 2 Q as well as p (A) > 0. De�ne I : B0 (�) ! R by I (') = minp2�
�R

'dp+ c (p)
	

for all ' 2 B0 (�). Since u is unbounded, for each � 2 R there exists x� 2 X such that

u (x�) = �. Similarly, there exists y 2 X such that u (y) = 0. For each � 2 R de�ne

f� = x�Ay. By construction, we have that f�
Q
= y for all � 2 R. This implies that

I (�1A) = V (f�) = V (y) = I (0) = 0. By Maccheroni et al. (2006) and since u is unbounded,

we have that

c (p) = sup
'2B0(�)

�
I (')�

Z
'dp

�
� sup

�2R
fI (�1A)� �p (A)g =1

Since p was arbitrarily chosen, it follows that dom c � �(Q). �

A.3.4 Proof of Theorem 1

We only prove (i) implies (ii), the converse being routine. By Lemma 13, there exist an

onto and a¢ ne function u : X ! R and a weak divergence c : � � Q ! [0;1] such that
dom c (�; q) � �(Q) for all q 2 Q and %� is represented by

f %� g , min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (39)

and % is represented by V : F ! R de�ned by

V (f) = min
p2�

�Z
u (f) dp+ cQ (p)

�
(40)
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By Lemma 14 and since % is subjectively Q-coherent and %� and % coincide on X, we

conclude that c�1Q (0) = Q, proving the implication.

Next, assume that c is uniquely null. De�ne the correspondence � : Q� Q by

� (q) = fp 2 � : c (p; q) = 0g = argmin cq

Since cQ � cq for all q 2 Q and c�1Q (0) = Q, we have that � is well de�ned. Since cq is

grounded, it follows that � (q) 6= ; for all q 2 Q. Since c is uniquely null and cq is grounded,
we have that c�1q (0) is a singleton, that is,

c (p; q) = c
�
p0; q

�
= 0 =) p = p0

This implies that � (q) is a singleton, therefore � is a function. Since c�1Q (0) = Q, observe

that

[q2Q� (q) = [q2Q argmin cq = argmin cQ = Q

that is, � is surjective. Since c is uniquely null, we have that c�1p (0) is at most a singleton,

that is,

c (p; q) = c
�
p; q0

�
= 0 =) q = q0

yielding that � is injective. To sum up, � is a bijection. De�ne ~c : � � Q ! [0;1]
by ~c (p; q) = c

�
p;��1 (q)

�
for all (p; q) 2 � � Q. Note that ~c (�; q) is grounded, lower

semicontinuous, convex and dom ~c (�; q) � �(Q) for all q 2 Q. Next, we show that ~cQ = cQ.

Since cQ is well de�ned, for each p 2 � there exists qp 2 Q such that

~c (p;� (qp)) = c (p; qp) = min
q2Q

c (p; q) � c
�
p; q0

�
= ~c

�
p;�

�
q0
��

8q0 2 Q

Since � is a bijection, we have that ~c (p;� (qp)) � ~c (p; q) for all q 2 Q. Since p was arbitrarily
chosen, it follows that

cQ (p) = min
q2Q

c (p; q) = ~c (p;� (qp)) = min
q2Q

~c (p; q) = ~cQ (p) 8p 2 �

To sum up, ~cQ = cQ and ~c�1Q (0) = c�1Q (0) = Q. In turn, since cQ is grounded, lower

semicontinuous and convex, this implies that ~cQ is grounded, lower semicontinuous and

convex. Since � is a bijection, we can conclude that (39) holds with ~c in place of c and (40)

holds with ~cQ in place of cQ.

We are left to show that ~c (p; q) = 0 if and only if p = q. Since c�1q (0) is a singleton

for all q 2 Q and � is a bijection, if ~c (p; q) = 0, then c
�
p;��1 (q)

�
= 0, yielding that

p = �
�
��1 (q)

�
= q. On the other hand, ~c (q; q) = c

�
q;��1 (q)

�
= 0. We can conclude that

~c (p; q) = 0 if and only if p = q, proving that ~c is a statistical distance. �
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A.3.5 Proof of Theorem 2

We only prove (i) implies (ii), the converse being routine. We proceed by steps.

Step 1. %�Q agrees with %�Q0 on X for all Q;Q0 2 Q. In particular, there exists an a¢ ne
and onto function u : X ! R representing %�Q for all Q 2 Q.

Proof of the Step Let Q;Q0 2 Q be such that Q � Q0. Note that %�Q and %�Q0 , restricted
to X, satisfy weak order, continuity and risk independence. By Herstein and Milnor (1953)

and since %�Q and %�Q0 are non-trivial, there exist two non-constant a¢ ne functions uQ; uQ0 :
X ! R which represent %�Q and %�Q0 , respectively. Since

n
%�Q
o
Q2Q

is monotone, we have

that

uQ (x) � uQ (y) =) uQ0 (x) � uQ0 (y)

By Ghirardato et al. (2004), uQ and uQ0 are equal up to an a¢ ne and positive transformation.

Next, �x �q 2 Q. Set u = u�q. Given any other q 2 ��, consider �Q = co f�q; qg. By the previous
part, it follows that u �Q, uq and u�q are equal up to an a¢ ne transformation. Given that q

was arbitrarily chosen, we can set u = uq for all q 2 Q. Similarly, given a generic Q 2 Q,
select q 2 Q. Since Q � fqg, it follows that we can set u = uQ. Since each %�Q is unbounded
for all Q 2 Q, we have that u is onto. �

Step 2. For each q 2 �� there exists a normalized, monotone, translation invariant and

concave functional Iq : B0 (�)! R such that

f %�q g () Iq (u (f)) � Iq (u (g))

Moreover, there exists a unique grounded, lower semicontinuous and convex function cq :

�! [0;1] such that

Iq (') = min
p2�

�Z
'dp+ cq (p)

�
8' 2 B0 (�) (41)

Proof of the Step Fix q 2 ��. Since %�q is an unbounded dominance relation which is
complete, we have that %�q is a variational preference. By the proof of Theorem 3 and

Proposition 6 of Maccheroni et al. (2006), there exists a normalized, monotone, translation

invariant and concave functional Iq : B0 (�)! R such that

f %�q g () Iq (u (f)) � Iq (u (g))

Moreover, we have that there exists a unique grounded, lower semicontinuous and convex

function cq : �! [0;1] satisfying (41). �

46



De�ne c : � ��� ! [0;1] by c (p; q) = cq (p) for all (p; q) 2 � ���. De�ne the map

J : B0 (�)��� ! R by J ('; q) = Iq ('). Observe that, for all (p; q) 2 ����,

c (p; q) = cq (p) = sup
'2B0(�)

�
Iq (')�

Z
'dp

�
= sup

'2B0(�)

�
J ('; q)�

Z
'dp

�
(42)

Step 3. J is convex and lower semicontinuous in the second argument.

Proof of the Step Note that for each ' 2 B0 (�) and for each q 2 ��

J ('; q) = Iq (') = u (xf;q) where f 2 F is s.t. ' = u (f)

Fix ' 2 B0 (�) and t 2 R. By Step 1 and since
n
%�Q
o
Q2Q

is lower semicontinuous on ��,

the set

fq 2 �� : J ('; q) � tg = fq 2 �� : u (x) � u (xf;q)g = fq 2 �� : x %� xf;qg

is closed where x 2 X and f 2 F are such that u (x) = t as well as u (f) = '. Since ' and t

were arbitrarily chosen, this yields that J is lower semicontinuous in the second argument.

Fix ' 2 B0 (�), q; q0 2 �� and � 2 (0; 1). Since
n
%�Q
o
Q2Q

is averse to model hybridization

and u is a¢ ne,

J
�
'; �q + (1� �) q0

�
= u

�
xf;�q+(1��)q0

�
� u

�
�xf;q + (1� �)xf;q0

�
= �u (xf;q) + (1� �)u

�
xf;q0

�
= �J ('; q) + (1� �) J

�
'; q0

�
where f 2 F is such that u (f) = '. Since ', q, q0 and � were arbitrarily chosen, this yields

that J is convex in the second argument. �

Step 4. c is jointly lower semicontinuous and convex. Moreover, its q-sections are grounded,

lower semicontinuous and convex.

Proof of the Step By Step 3, the map (p; q) 7! J ('; q) �
R
'dp, de�ned over � � ��, is

jointly lower semicontinuous and convex. By (42) and the de�nition of c, we conclude that

c is jointly lower semicontinuous and convex. By Step 1, the rest of the statement follows.�

Step 5. For each Q 2 Q we have that f %�Q g if and only if f %�q g for all q 2 Q. In

particular, we have that

f %�Q g () min
p2�

�Z
u (f) dp+ c (p; q)

�
� min

p2�

�Z
u (g) dp+ c (p; q)

�
8q 2 Q (43)

Proof of the Step Fix Q 2 Q. Since
n
%�Q
o
Q2Q

is monotone, we have that

f %�Q g =) f %�q g 8q 2 Q
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Since
n
%�Q
o
Q2Q

is Q-separable, we can conclude that f %�Q g if and only if f %�q g for q 2 Q.
By Step 2 and the de�nition of c, this implies (43). �

Step 6. %�Q agrees with %Q on X for all Q 2 Q. Moreover, %Q is represented by the function
u of Step 1.

Proof of the Step Fix Q 2 Q. Note that %�Q and %Q, restricted to X, satisfy weak order,
continuity and risk independence. By Herstein and Milnor (1953) and since %Q is non-

trivial, there exist a non-constant a¢ ne function vQ which represents %Q. By Step 1, %�Q is
represented by u. Since

�
%�Q;%Q

�
jointly satisfy consistency, it follows that for each x; y 2 X

u (x) � u (y) =) vQ (x) � vQ (y)

By Ghirardato et al. (2004), vQ and u are equal up to an a¢ ne and positive transformation.

So we can set vQ = u, proving the statement. �

Step 7. For each Q 2 Q we have that

f %Q g () min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
(44)

Moreover, the function cQ : �! [0;1], de�ned by cQ (p) = minq2Q c (p; q) for all p 2 �, is
well de�ned, grounded, lower semicontinuous and convex.

Proof of the Step Fix Q 2 Q. By Cerreia-Vioglio et al. (2011) and since %Q is a rational
preference relation, there exists a normalized, monotone and continuous functional IQ :

B0 (�)! R such that
f %Q g () IQ (u (f)) � IQ (u (g)) (45)

We next show that IQ (') � infq2Q Iq (') for all ' 2 B0 (�). Consider ' 2 B0 (�). Since each
Iq is normalized and monotone and u is onto, we have that Iq (') 2 [infs2S ' (s) ; sups2S ' (s)] �
Imu for all q 2 Q. Since ' 2 B0 (�), it follows that there exists f 2 F such that ' = u (f)

and x 2 X such that u (x) = infq2Q Iq ('). For each " > 0 there exists x" 2 X such that

u (x") = u (x) + ". Since infq2Q Iq (') = u (x), it follows that for each " > 0 there exists

q 2 Q such that Iq (u (f)) = Iq (') < u (x") = Iq (u (x")), yielding that f 6%�Q x". Since�
%�Q;%Q

�
jointly satisfy caution, we have that x" %Q f for all " > 0. By (45), this implies

that

u (x) + " = u (x") = IQ (u (x")) � IQ (u (f)) = IQ (') 8" > 0

that is, infq2Q Iq (') = u (x) � IQ ('). We next prove that IQ (') � infq2Q Iq (') for all

' 2 B0 (�). Consider ' 2 B0 (�). We use the same objects of before. Note that for each

q0 2 Q
Iq0 (u (f)) = Iq0 (') � inf

q2Q
Iq (') = u (x) = Iq0 (u (x))
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that is, f %�Q x. Since
�
%�Q;%Q

�
jointly satisfy consistency, we have that f %Q x. By (45),

this implies that

IQ (') = IQ (u (f)) � IQ (u (x)) = u (x) = inf
q2Q

Iq (')

proving that IQ = infq2Q Iq. By (43) and since c is jointly lower semicontinuous and convex,

we can conclude that

IQ (') = inf
q2Q

min
p2�

�Z
'dp+ c (p; q)

�
= min

q2Q
min
p2�

�Z
'dp+ c (p; q)

�
= min

p2�
min
q2Q

�Z
'dp+ c (p; q)

�
= min

p2�

�Z
'dp+min

q2Q
c (p; q)

�
8' 2 B0 (�)

By (45), this implies that (44) holds. Finally, by Lemma 4, we have that the function

p 7! minq2Q c (p; q) is well de�ned, grounded, lower semicontinuous and convex. �

Step 8. c�1Q (0) = Q for all Q 2 Q. Moreover, c (p; q) = 0 if and only if p = q.

Proof of the Step Fix Q 2 Q. Since %Q is subjectively Q-coherent, it follows that c�1Q (0) = Q.

In particular, when Q = fqg for some q 2 ��, we have that c (p; q) = 0 if and only if

cQ (p) = 0 if and only if p 2 Q if and only if p = q. �

Step 9. dom c (�; q) � �(Q) for all q 2 Q and for all Q 2 Q.

Proof of the Step By the previous part of the proof, we have that %�q coincides with %q on
F for all q 2 ��. By Lemma 15 and since %�q is objectively fqg-coherent, we can conclude
that dom c (�; q) � �(q) � �(Q) for all q 2 Q and for all Q 2 Q. �

Steps 4, 7, 8 and 9 prove that c is a statistical distance which is jointly lower semicon-

tinuous and convex such that dom c (�; q) � �(Q) for all q 2 Q and for all Q 2 Q, yielding
that dom cQ � �(Q) for all Q 2 Q. Steps 5 and 7 prove, respectively, (26) and (27). As for
uniqueness, assume that the function ~c : � ��� ! [0;1] is a statistical distance which is
jointly lower semicontinuous and convex and such that dom cQ � �(Q) for all Q 2 Q and

that satis�es (26) and (27). By Proposition 6 of Maccheroni et al. (2006), it follows that

~c (�; q) = c (�; q) for all q 2 ��, yielding that c = ~c. �

A.4 Other proofs

Proof of Proposition 2 First, note that minq2QR (pjjq) = 0 if and only if p 2 Q. Indeed,
we have that

min
q2Q

R (pjjq) = 0 () 9�q 2 Q s.t. R (pjj�q) = 0 () 9�q 2 Q s.t. p = �q
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De�ne �n = n for all n 2 N. For each n 2 N, we have �nminq2QR (pjjq) = 0 if and only if
p 2 Q. So, for each p 2 �,

lim
n
�nmin

q2Q
R (pjjq) =

(
0 if p 2 Q
1 if p 62 Q

Since �nminq2QR (pjjq) = 0 for each n 2 N if and only if p 2 Q, by Proposition 12 of

Maccheroni et al. (2006) we have

lim
n
min
p2�

�Z
u (f) dp+ �nmin

q2Q
R (pjjq)

�
= min

q2Q

Z
u (f) dq 8f 2 F

Finally, by (19), we have that for each f 2 F

min
q2Q

Z
u (f) dq � lim

n
min
p2�

�Z
u (f) dp+ �nmin

q2Q
R (pjjq)

�
� lim

�"1
min
p2�

�Z
u (f) dp+ �min

q2Q
R (pjjq)

�
� min

q2Q

Z
u (f) dq

yielding the statement. �

Proof of Proposition 3 Note that c (�; q) = �D� (�jjq) is Shur convex (with respect to q)
for all q 2 Q. Consider A;B 2 �. Assume that q (A) � q (B) for all q 2 Q. Let q 2 Q.

Consider x; y 2 X such that x � y. It follows thatZ
v (u (xAy)) dq �

Z
v (u (xBy)) dq

for each v : R ! R strictly increasing and concave. By Theorem 2 of Cerreia-Vioglio et al.

(2012) and since q was arbitrarily chosen, it follows that

min
p2�

�Z
u (xAy) dp+ �D� (pjjq)

�
� min

p2�

�Z
u (xBy) dp+ �D� (pjjq)

�
8q 2 Q

yielding that xAy %� xBy and, in particular, xAy % xBy. �

Proof of Proposition 4 We prove the �only if�, the converse being obvious. De�ne &� by
f &� g if and only if

R
u (f) dq �

R
u (g) dq for all q 2 Q. By hypothesis, the pair (&�;%)

satis�es consistency. Let f 6&� x. Then, there exists q 2 Q such that u(xqf ) =
R
u (f) dq <

u (x). Hence, x � xqf . Since c
�1
Q (0) = Q, by Lemma 14 we have x � f . So, the pair (&�;%)

satis�es default to certainty. By Theorem 4 of Gilboa et al. (2010), this pair admits the

representation

f &� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 Q

and

f % g () min
q2Q

Z
u (f) dq � min

q2Q

Z
u (g) dq
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Note that, in the notation of Gilboa et al. (2010), we have C = Q because C is unique up

to closure and convexity and Q is closed and convex. �

Proof of Proposition 5 For each q 2 Q de�ne Iq : B0 (�)! R by

Iq (') = min
p2�

�Z
u (') dp+ c (p; q)

�
Recall that f ��� g if and only if for each h; l 2 F there exists " > 0 such that

(1� �) f + �h �� (1� �) g + �l 8� 2 [0; "] (46)

Moreover, given f; g 2 F , de�ne k� = infs2S u (f (s)) and k� = sups2S u (g (s)).
�Only if.�Assume that f ��� g. Let "̂ > 0. Consider u (x) = k� � "̂ and u (y) = k� + "̂.

By de�nition, there exists " > 0 such that

(1� �) f + �x �� (1� �) g + �y 8� 2 [0; "]

Note that for each q 2 Q and for each � 2 [0; 1]

Iq (u ((1� �) f + �x)) = Iq ((1� �)u (f) + �u (x)) = Iq (u (f)� �u (f) + �u (x))
� Iq (u (f)� �k� + � (k� � "̂)) = Iq (u (f))� �"̂

and

Iq (u ((1� �) g + �y)) = Iq ((1� �)u (g) + �u (y)) = Iq (u (g)� �u (g) + �u (y))
� Iq (u (g)� �k� + � (k� + "̂)) = Iq (u (g)) + �"̂

It follows that for each q 2 Q and for each � 2 [0; "]

Iq (u (f))� Iq (u (g))� 2�"̂ � Iq (u ((1� �) f + �x))� Iq (u ((1� �) g + �y)) � 0

If we set � = " > 0, then Iq (u (f)) � Iq (u (g)) + 2""̂, proving the statement.

�If.� Let f; g 2 F . Assume there exists " > 0 such that Iq (u (f)) � Iq (u (g)) + " for

all q 2 Q. Without loss of generality, we can assume that � holds with strict inequality.30

Consider h; l 2 F . De�ne k? = infs2S u (h (s)) and k? = sups2S u (l (s)). De�ne also k
� =

sups2S u (f (s)) and k� = infs2S u (g (s)). Note that for each q 2 Q and for each � 2 [0; 1]

Iq (u ((1� �) f + �h)) = Iq ((1� �)u (f) + �u (h)) = Iq (u (f)� �u (f) + �u (h))
= Iq (u (f) + � (u (h)� u (f)))
� Iq (u (f) + � (k? � k�)) = Iq (u (f)) + � (k? � k�)

30 It is enough to replace " with "=2.
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and

Iq (u ((1� �) g + �l)) = Iq ((1� �)u (g) + �u (l)) = Iq (u (g)� �u (g) + �u (l))
= Iq (u (g) + � (u (l)� u (g)))
� Iq (u (g) + � (k

? � k�)) = Iq (u (g)) + � (k
? � k�)

It follows that for each q 2 Q and for each � 2 [0; 1]

Iq (u ((1� �) f + �h))� Iq (u ((1� �) g + �l)) � Iq (u (f)) + � (k? � k�)� Iq (u (g))� � (k? � k�)
� "+ �"̂

where "̂ = k? � k� � k? + k�. We have two cases:

1. "̂ � 0. In this case, Iq (u ((1� �) f + �h)) � Iq (u ((1� �) g + �l)) > 0 for all � 2 [0; 1]
and all q 2 Q, proving (46).

2. "̂ < 0. In this case, Iq (u ((1� �) f + �h)) � Iq (u ((1� �) g + �l)) > 0 for all � 2
[0;�"=2"̂] and all q 2 Q, proving (46).

This completes the proof of the result. �

Proof of Lemma 3 Given q 2 Q, if c (p; q) = 1 for all p =2 Q, then cQ (p) = 1 for all

p =2 Q. Since cQ (q) = 0 for all q 2 Q, we conclude that cQ (p) = �Q (p) for all p 2 �.
Conversely, for each q 2 Q we have c (p; q) � cQ (p) = �Q (p) =1 for all p =2 Q. �

Proof of Proposition 6 (i) implies (ii). By Proposition 2 of Cerreia-Vioglio (2016) and
since %� is unbounded, there exists a compact and convex set C � � and an a¢ ne and onto

map u : X ! R such that

f %� g ()
Z
u (f) dq �

Z
u (g) dq 8q 2 C (47)

and

f % g () min
q2C

Z
u (f) dq � min

q2C

Z
u (g) dq (48)

By Lemma 14 and since % is subjectively Q-coherent and %� and % coincide on X, we

can conclude that C = Q. If we set c : � � Q ! [0;1] to be c (p; q) = �fqg (p) for all

(p; q) 2 ��Q, then it is immediate to see that c is a statistical distance. By (47) and (48)

and since C = Q, (13) and (14) follow.

(ii) implies (i). It is trivial. �

Proof of Proposition 7 (i) Let f̂ 2 F be optimal. By (23), if there is g 2 F such that

g ���Q f̂ , then g �Q f̂ , a contradiction with f̂ being optimal. We conclude that f̂ is weakly
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admissible. A similar argument proves that there is no g 2 F such that g ��Q f̂ when (24)

holds.

(ii) Suppose f̂ 2 F is the unique optimal act, that is, f̂ �Q f for all f̂ 6= f 2 F . If g 2 F
is such that g ��Q f̂ , then g %Q f̂ . In turn, this implies g %Q f̂ �Q g, a contradiction. We

conclude that f̂ is admissible. �

Proof of Proposition 8 By Lemma 1, c restricted to ��Q (resp., ��Q0) is a statistical
distance function. Since Q � Q0, it follows that minq2Q c (p; q) � minq2Q0 c (p; q) for all

p 2 �. We thus have

min
p2�

�Z
u (f) dp+min

q2Q
c (p; q)

�
� min

p2�

�Z
u (f) dp+ min

q2Q0
c (p; q)

�
8f 2 F

yielding that v (Q) � v (Q0). Next, �x Q and assume that the sup in (29) is achieved. Let
�f 2 F be such that

min
p2�

�Z
u
�
�f
�
dp+min

q2Q
c (p; q)

�
= v (Q)

By contradiction, assume that �f 2 F=F �Q. By Proposition 5 and since �f 62 F �Q and �f 2 F ,

there exists g 2 F such that g ���Q �f , that is, there exists " > 0 such that

min
p2�

�Z
u (g) dp+ c (p; q)

�
� min

p2�

�Z
u
�
�f
�
dp+ c (p; q)

�
+ " 8q 2 Q

This implies that

v (Q) � min
p2�

�Z
u (g) dp+min

q2Q
c (p; q)

�
= min

p2�
min
q2Q

�Z
u (g) dp+ c (p; q)

�
� inf

q2Q
min
p2�

�Z
u (g) dp+ c (p; q)

�
� inf

q2Q
min
p2�

�Z
u
�
�f
�
dp+ c (p; q)

�
+ "

� min
p2�

min
q2Q

�Z
u
�
�f
�
dp+ c (p; q)

�
+ " = min

p2�

�Z
u
�
�f
�
dp+min

q2Q
c (p; q)

�
+ "

= v (Q) + "

a contradiction. �
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