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Abstract

This paper considers the problem of making inferences about the effects of a program on multiple out-
comes when the assignment of treatment status is imperfectly randomized. By imperfect randomization
we mean that treatment status is reassigned after an initial randomization on the basis of characteristics
that may be observed or unobserved by the analyst. We develop a partial identification approach to this
problem that makes use of information limiting the extent to which randomization is imperfect to show
that it is still possible to make nontrivial inferences about the effects of the program in such settings.
We consider a family of null hypotheses in which each null hypothesis specifies that the program has
no effect on one of several outcomes of interest. Under weak assumptions, we construct a procedure for
testing this family of null hypotheses in a way that controls the familywise error rate — the probability
of even one false rejection — in finite samples. We develop our methodology in the context of a reanalysis
of the HighScope Perry Preschool program. We find statistically significant effects of the program on a
number of different outcomes of interest, including outcomes related to criminal activity for males and
females, even after accounting for the imperfectness of the randomization and the multiplicity of null
hypotheses.
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1 Introduction

This paper considers the problem of making inferences about the effects of a program on multiple outcomes
when assignment of treatment status is imperfectly randomized. By imperfect randomization we mean
that treatment status is reassigned after an initial randomization on the basis of characteristics that may
be observed or unobserved by the analyst. As noted by Heckman et al. (2010a), such post-randomization
reassignment of treatment status often occurs in real-world field experiments. Since these characteristics
may affect outcomes, differences in outcomes between the treated and untreated groups may be due to the

imperfectness of the randomization instead of the treatment itself.

We develop a partial identification approach to this problem that makes use of information limiting the
extent to which randomization is imperfect to show that it is still possible to make nontrivial inferences
about the effects of the program in such settings. We consider a family of null hypotheses in which each
null hypothesis specifies that the program has no effect on one of several outcomes of interest. Under weak
assumptions, we construct a procedure for testing this family of null hypotheses in a way that controls the

familywise error rate — the probability of even one false rejection — in finite samples.

Our methodology depends on a detailed understanding of the way in which treatment status was assigned.
For this reason, we develop it in the context of a specific application — a reanalysis of the HighScope Perry
Preschool program — and our assumptions are tightly connected to the specific way in which treatment status
was assigned in this program. We emphasize, however, that the underlying approach applies not only to this

program, but more generally to the analysis of other experiments with imperfect randomization.

The HighScope Perry Preschool program is an influential preschool intervention that targeted disadvan-
taged African-American youth in Ypsilanti, Michigan in the early 1960s. The reported beneficial long-term
effects of the program are a cornerstone in the argument for early childhood intervention in the United
States. Most analyses of the HighScope Perry Preschool program have failed to account for the limited sam-
ple size of the study, the multiplicity of null hypotheses being tested, as well as the way in which treatment
status in the program was imperfectly randomized. For an exposition of some of these criticisms, see, e.g.,
Herrnstein and Murray (1994), and Hanushek and Lindseth (2009). Two notable exceptions are Heckman
et al. (2010a) and, more recently, Heckman and Karapakula (2019), who both acknowledge these concerns
and address them in different ways than we do here. We postpone a detailed comparison of our approach
with theirs to Remarks 2.1 and 4.5 below, but emphasize that both approaches do not permit in the way
that we do here for post-randomization reassignment of treatment status on the basis of characteristics that
are unobserved by the analyst. In particular, as explained further in Section 2 below, a key part of the
intervention required families to be available for weekly home visits, and some families for whom this was
not possible were removed from the treatment group and placed in the control group. In our analysis, we
treat the availability of families for these weekly home visits as an unobserved characteristic that, impor-
tantly, may be related to potential outcomes. With our approach, we still find, like these other two studies,
statistically significant effects of the program on a wide variety of outcomes, including outcomes related to
criminal activity for males and females, and thereby contribute to the cumulative evidence of the favorable

effects of this intervention.

The remainder of the paper is organized in the following way. Section 2 describes the HighScope Perry



Preschool program, focusing on the way in which treatment status was reassigned after the initial random-
ization on the basis of characteristics both observed and unobserved by the analyst. Section 3 formally
describes our setup and assumptions, which are motivated by the description in the preceding section of the
way in which treatment status was assigned in the program. We present our testing procedures in Section
4. We first discuss the problem of testing a single (joint) null hypothesis, before considering the problem
of testing multiple null hypotheses. Section 5 presents the results of applying our methodology to the data

from the HighScope Perry Preschool program. Section 6 concludes.

2 Empirical Setting

2.1 HighScope Perry Preschool Program

The HighScope Perry Preschool program was a prominent early childhood intervention conducted at the
Perry elementary school in Ypsilanti, Michigan during the early 1960s. Beginning at age three and lasting
for two years, treatment consisted of a 2.5-hour preschool program on weekdays during the school year
supplemented by weekly home visits from teachers. The preschool curriculum was organized around the
principle of active learning, guiding students through key learning experiences with open-ended questions.
Social and emotional skills were also fostered. See Heckman et al. (2013). The purpose of the weekly home
visits was to involve the parents in the learning process. Further details about the program are described in
Schweinhart et al. (1993).

Program eligibility was determined by the child’s Stanford-Binet 1Q score and a measure of the family’s
socio-economic status. The measure of socio-economic status used was constructed as a weighted linear
combination of father’s skill level and educational attainment and the number of rooms per person in the
family’s home. With a few exceptions, those with Stanford-Binet IQ scores less than 70 or greater than
85 were excluded from the program. Likewise, with a few exceptions, those with a sufficiently high socio-

economic status were excluded from the program.

The study enrolled a total of five cohorts over the years 1962-1965; two cohorts were admitted in the first
year and one in each subsequent year. The first cohort is exceptional in that treated children only received
one year of treatment beginning at age four. Altogether 123 children from 104 families were admitted to the

program. Siblings are distributed among families as follows: 82 singletons, 17 pairs, 1 triple and 1 quadruple.

Follow-up interviews were conducted yearly from 3 to 15 years old. Additional interviews were conducted
in three waves that cover persons in age intervals centered at ages 19, 27, and 40 years. Program attrition
remained low through age 40. Indeed, over 91% of the participants were accounted for in the final survey.
Moreover, two-thirds of those who did not were dead. Interviews covered a variety of outcomes. See
Schweinhart et al. (1993) and Heckman et al. (2010a) for further discussion. For the purposes of our analysis,
we focus on outcomes that have attracted considerable attention in the literature on the HighScope Perry
Preschool program: 1Q, achievement test scores, educational attainment, criminal behavior, and employment

at three different stages of the life cycle.



Figure 1: Graphical Description of the Randomization Procedure
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Notes: T and C refer to treatment and control groups respectively. Blue circles represent males. Pink circles represent females.

2.2 Randomization Procedure

Our methodology relies on a detailed understanding of the randomization procedure. According to Schwein-

hart et al. (1993), treatment status was assigned for each cohort of children in the following way:

Step 1: Younger siblings of earlier program participants were assigned the same treatment status as

their elder siblings.

Step 2: Remaining participants were ranked according to their Stanford-Binet IQ scores at study entry.
Those with the same Stanford-Binet 1Q scores were ordered at random with all orderings equally likely.

Two groups were defined by the odd-ranked and even-ranked participants.

Step 3: Some participants were exchanged between the two groups in order to “balance” gender and

the socio-economic status scores while keeping Stanford-Binet 1Q scores roughly constant.
Step 4: The two groups defined in this way were labeled treatment and control with equal probability.

Step 5: Some participants with single mothers who were working and unavailable for the weekly home

visits were moved from the treatment group to the control group.

This procedure is depicted graphically in Figure 1. The rationale for assigning younger siblings of earlier
program participants to the same treatment status as their elder siblings was to avoid “spillovers” within a
family, that might weaken the estimated treatment effect. For our purposes, it is most important to note

that Step 5 depends on a characteristic we do not observe — whether the family has a single mother who



is working and unavailable for the weekly home visits — but was observed and used by those determining
treatment status (at least for families who were offered treatment). To the extent that the availability of the
mother is related to the outcomes of interest, it is important to account for this feature of the randomization

procedure in analyzing experimental outcomes.

Note that by symmetry we may without loss of generality interchange Steps 3 and 4 of the randomization
procedure without affecting the distribution of treatment status. Thus, the randomization procedure may

be described equivalently as follows:

Step 1’: Younger siblings of earlier program participants were assigned the same treatment status as

their elder siblings.

Step 2': Remaining participants were ranked according to their Stanford-Binet IQ) scores at study
entry. Those with the same Stanford-Binet 1Q score were ordered at random with all orderings equally

likely. Two groups were defined by the odd-ranked and even-ranked participants.
Step 3’: The two groups defined in this way were labeled treatment and control with equal probability.

Step 4’: Some participants were exchanged between the treatment and control groups in order to
“balance” gender and socio-economic status score while keeping Stanford-Binet 1Q score roughly con-

stant.

Step 5’: Some participants with single mothers who were working and unavailable for the weekly home

visits were moved from the treatment group to the control group.

This observation will be useful below when modeling the distribution of treatment status.

Remark 2.1. Heckman and Karapakula (2019) interpret “balance” in Step 3 to be defined in terms of
Hotelling’s multivariate two-sample t-squared statistic being less than some threshold. They also discipline
Step 5 by assuming that there were (at most) a certain number of participants with single, working mothers
for whom special accommodations could be made for the weekly home visits, and that the analyst chose
which families to accommodate at random. Both the threshold and the number of participants for whom
special accommodations could be made are treated as unknown, but can be partially identified from the
observed data. For testing procedures that exploit this different model of the way in which treatment status
was determined, we refer the reader to Heckman and Karapakula (2019). We emphasize, however, that our
approach below allows, in particular, that single, working mothers were unavailable for these weekly home

visits for reasons that may be important in that they are related to potential outcomes. H

3 Setup and Assumptions

3.1 Setup

We index outcomes of interest by k£ € K, families by j € J and siblings in the jth family by i € I;. Denote
by Y; ; 1(0) the kth (potential) outcome of the ith sibling in the jth family if the jth family were not treated



and by Y; ; (1) the kth (potential) outcome of the ith sibling in the jth family if the jth family were treated.
Let D; be the treatment status of the jth family. Denote by Z; ; the vector of observed characteristics of
the ith sibling in the jth family used in determining treatment status and by U, ; the vector of unobserved
characteristics of the ith sibling in the jth family used in determining treatment status. In our empirical
analysis,

Z;j = (G, SES;, 1Q; ;, W ;) ,

where G ; is the gender of the ith sibling in the jth family, SES, ; is the measure of socio-economic status
of the jth family, 1Q; ; is the Stanford-Binet IQ score at study entry of the ith sibling in the jth family, and
Wi ; is the cohort or wave of the ith sibling in the jth family. In this notation, the kth observed outcome of
the ith sibling in the jth family is

Yijk = D;Yij k(1) + (1= D;)Yi;x(0) .

Recall that only the characteristics of the eldest sibling in each family matter for determining treatment

status. We will therefore drop the dependence on ¢ and henceforth simply write Z; in place of Z;~ ; where
ix W ..
i arg {renlr; i

In light of the description of the randomization procedure in Section 2.2, we interpret U; ; as an indicator
of whether the ith sibling in the jth family has a single mother who (at the date of enrollment of the eldest
sibling) was working and unavailable for weekly home visits. Since this variable does not depend on 4, we
will henceforth drop the dependence on ¢ and simply write U;. Further define MW to be an indicator for
whether the jth family has a single mother who (at the date of enrollment of the eldest sibling) was working.
Although this variable is not used directly in the assignment of treatment status, we must, of course, have
U; = 0 whenever MW; = 0.

It is useful to introduce the following shorthand notation. Define

D

(Dj:jel)
Z = (Zj:jel)
u = (
MW = (

For d € supp(D) and k € K, further define

Y. = (}/Lj’;cZZ'EIj,jEJ)
Yk(d) = (Yviyj’k(dj):iEijEJ).

Denote by P the distribution of

((Yi(d) : d € supp(D), k € K), D, Z,U, MW) ,



which is assumed to lie in a class of distributions €2, i.e.,
((Yx(d) : d € supp(D),k € K),D,Z,U MW) ~P € Q.
The assumptions we impose on {2 are presented in Section 3.2 below. For k € K|, let
wi = {P € Q:Yy(d) does not depend on d} .
In this notation, our goal is to test the family of null hypotheses
Hp:Pewgforke K (1)

in a way that controls in finite samples the familywise error rate — the probability of even one false rejection.

More formally, let Ky(P) denote the set of true null hypotheses, i.e.,
Ko(P)={ke K :Pecuw},

and define
FWERp = P{reject > 1 hypothesis Hy, with k € Ko(P)} .

In this notation, our goal is to test the family of null hypotheses (1) in a way that satisfies
FWERp <aforall Pe (2)

for some pre-specified value of o € (0, 1).

Before proceeding to a formal description of our testing procedure, it is useful to model the distribution
of D. Let D be a vector of treatment assignments produced from Steps 1’-3" above, i.e., according to the

initial randomization before any reassignment of treatment status. Let
6 : {0, 1} x supp(Z,U) — {0,1}!

be the rule used to exchange participants from the treatment group to the control group in Steps 4’ and 5.

It is helpful to decompose § into two functions in the following way. Let
61 : {0,111 x supp(Z) — {0, 1}

be the rule used to exchange participants from the treatment group to the control group in Step 4’. In an
analogous fashion, let
82 : {0,111 5 supp(U) — {0, 1}

be the rule used to move participants with single mothers who were working and unavailable for the weekly
home visits from the treatment group to the control group in Step 5. In this notation, D can be written as

the composition of two functions:



Remark 3.1. By requiring that our testing procedure satisfy criterion (2), all of the null hypotheses rejected
by our procedure are false with probability at least 1 — a. The recent literature on multiple testing has
considered error rates less stringent than the familywise error rate (see, e.g., Romano, Shaikh and Wolf,
2010). One example is the m-familywise error rate — the probability of m or more false rejections for some
m > 1. Another example is the false discovery proportion —the ratio of false rejections to total rejections
(defined to be zero when there are no rejections at all)—where P{FDP > ~} for some vy € [0, 1), and here
FDP is the false discovery proportion. With such error rates, one is only guaranteed that, with probability
at least 1 — o, “most” of the null hypotheses rejected by the procedure are false. However, such procedures
may have much greater ability to detect false null hypotheses. This feature may be especially valuable when
the number of null hypotheses under consideration is very large. See Romano and Shaikh (2006a), Romano
and Shaikh (2006b) and Romano et al. (2008) for a discussion of some procedures for control of such error
rates. We do not pursue such error rates here because in our application the number of null hypotheses

under consideration is relatively small. B

3.2 Assumptions

In this section, we describe the assumptions we impose on 2. These assumptions are connected tightly to
our description of the randomization procedure in Section 2.2. We first state our assumptions formally and

then relate them briefly to our description of the way in which treatment status was assigned.

Some of our assumptions are most succinctly stated in terms of groups of transformations. Here, we use
the term group as it is used in mathematics. See, e.g., Dummit and Foote (1999) or any other standard
reference. To this end, let G be the set of permutations of |J| elements. This set forms a group under the

usual composition of functions. Define the action of g € G on |J|-dimensional vectors v by

gv = (Vg(1)s - - Vg(1))) -

Let H = {—1,1}/”]. This set forms a group under component-wise multiplication. Define the action of h € H
on |J|-dimensional vectors v by the rule that the jth element of hv equals v; if h; =1 and 1 —v; if h; = —1.
For z € supp(Z), let

H. ={h € H:hj = hj; whenever w; = w;} .

Here, w; is the component of z corresponding to the wave in which the eldest sibling in the jth family was
enrolled in the program. In other words, H, is the subgroup of H that is constant across families whose
treatment status was determined in the same wave. Using this notation, we may now state the assumptions

that will underlie our analysis.

Assumption 3.1. For any P € , (Y (d) : d € supp(D),k € K) 1L D|Z,U under P.
Assumption 3.2. For any g € G, 41(gd, gz) = gd1(d, 2).

Assumption 3.3. For any h € H,, hd;(d, z) = 01(hd, 2).

Assumption 3.4. The jth component of d2(d, u) equals zero if d; = 1 and u; = 1; otherwise, jth component

of d(d, u) equals d;.



Assumption 3.5. For any P € ), U; = 0if MW; =0 w.p.1. under P.

Our first assumption simply states that our description of the way in which treatment status was assigned
in Section 2.2 is accurate in the sense that the only variables used to determine treatment status that affect
potential outcomes are Z and U. Hence, potential outcomes are independent of treatment status conditional
on Z and U. Assumption 3.2 is a mild equivariance restriction that will be satisfied provided that the way in
which treatment status is reassigned in Step 4’ does not depend on the order of the participants themselves.
Informally, it says that “ordering of participants doesn’t matter.” Assumption 3.3 further imposes a mild
symmetry requirement on the way in which treatment status is reassigned in Step 4’. Informally, it says
that “the ‘odd’ and ‘even’ labels don’t matter.” Assumption 3.4 simply defines the function d2 so that it
agrees with Step 5’ in the description of the randomization procedure in Section 2.2, i.e., participants in the
treatment group with single mothers who were working and unavailable for the weekly home visits are moved
to the control group. Finally, Assumption 3.5 imposes the logical restriction that U; and MW; described
in Section 3.1, i.e., U; = 0 whenever MW; = 0. In other words, for a family to have a single mother who
is working and unavailable for the weekly home visits, it must obviously be the case that the family has a

single mother who is working.

4 Testing Procedures

In Section 4.2 below, we develop methods for testing a single (joint) null hypothesis of the form
H;:Pecwg, (3)

where

wy, = ﬂwk

kel

for L C K, in a way that controls the usual probability of a Type I error at level a. In Section 4.3, we extend
these methods to test the family of null hypotheses (1) so that it satisfies (2).

Our methods for testing (3) in a way that controls the usual probability of a Type I error will be based on
the general principle behind randomization tests of exploiting certain symmetries in the distribution of the
observed data. Here, by a symmetry in the distribution of the observed data we mean that there is a group
of transformations of the observed data that leave its distribution unchanged whenever the null hypothesis
is true. When this is the case, it is possible to construct a test of the null hypothesis that controls the usual
probability of a Type I error in finite samples. Perhaps the most familiar example of a randomization test
is a permutation test, which may be used to test the null hypothesis that two i.i.d. samples from possibly
distinct distributions are in fact from the same underlying distribution, but, as explained in Section 15.2 of
Lehmann and Romano (2005), the principle applies more generally. In our case, we will exploit symmetries
in the distribution of treatment status that follow from the way in which treatment status was assigned
in the HighScope Perry Preschool program. These symmetries are formalized in Lemma 4.1 in Section 4.1

below.



4.1 A Useful Lemma

In order to describe the symmetries in the distribution of the observed data that we will exploit formally,
we require some further notation. For (z,u) € supp(Z,U), let G, be the subgroup of G that only contains
g € G such that

9() =i = (2j,u5) = (2, uy) .

In particular, ¢ € Gz will therefore act on a |J|-dimensional binary vector of treatment statuses by
permuting treatment status among those families with the same observed and unobserved characteristics
(defined by the characteristics of the eldest child in the case of families with multiple children). For (z,u) €
supp(Z,U), let

H,,={uh:heH,},

where the jth element of uh equals h; if u; = 0 and 1 if u; = 1. The action of h € H, ,, on |J|-dimensional
vectors v is defined as it was for H and H,. In particular, h € Hz yy will therefore act on a |J|-dimensional
binary vector of treatment statuses by possibly “fipping” treatment status for all families whose treatment
status was determined in the same wave except for those with single mothers who were working and unavail-
able for the weekly home visits (at the date of enrollment of the eldest sibling). Using this notation, we may

now state the lemma.

Lemma 4.1. Let g € Gz and h € Hz . Suppose D is distributed as described in Section 3. Then, the

following statements hold:
(i) If Assumptions 3.2 and 3./ hold, then
98(D,Z,U0)|Z2,U L §(D, Z,U)|Z,U . (4)
(ii) If Assumptions 3.3 and 3./ hold, then
ws(D,2,U)|2,U L §(D,Z,U)|Z,U . (5)
(iii) If Assumptions 3.2-3.4 hold, then
hgd(D, Z,U)|2,U £ §(D,Z,U)|Z,U . (6)
PROOF: In order to establish (i), first note that by definition of D and G z,U, we have that
gD|Z,U L D|Z,U . (7)
Next, note for any ¢’ € G, we have that

6(g'd,g'z,g'u) = 062(61(9'd, g'2),g'u)
- 52 (9/51 (d7 Z)? g/u)
= 9/62(61(d7 Z)?”)

10



= ¢'6(d,z,u), (8)

where the first and fourth equalities follow from the definition of §, the second equality follows from As-
sumption 3.2, and the third equality follows from Assumption 3.4. Finally, for any A C {0,1}/’I, note
that

P{gs(D,7,U) € A|Z,U} = P{s(¢D,92,9U) € A|Z,U}
P{6(yD,2Z,U) € A|Z,U}
P{6(D,z,U) € A|Z,U} ,

where the first equality follows from (8), the second follows from the definition of Gz 7, and the third from
(7)-

In order to establish (ii), first choose h*(h') € H, for each h’ € H, ,, such that uh*(h') = 1’. Next, note
that by the definition of D and Hz, we have that

h*(h)D|Z,U £ D|Z,U . (9)

Further observe that Assumption 3.4 implies for any h’' € H, ,, that

W8 (d, w) = 85 (h* (R')d, w) . (10)
Hence, for any h' € H, ,,
h'é(d,z,u) = ho2(d1(d, z),u)
= (52(h*(h/)61(d7 2)711,)
= 501 (h*(W)d, 2),u)
= &(h*(h)d, z,u) , (11)

where the first and fourth equalities follow from the definition of §, the second equality follows from (10),

and the third equality follows from Assumption 3.3. Finally, for any A C {0, 1}/’I, note that

P{hé(D,Z,U) € A|Z,U} P{6(h*(h)D,Z,U) € A|Z,U}

P{§(D,Z,U) € A|Z,U} ,

where the first equality follows from (11) and the second follows from (9).

Part (iii) follows immediately from parts (i) and (ii), which completes the proof. B

11



4.2 Testing a Single (Joint) Null Hypothesis

In order to describe our test of the single (joint) null hypothesis (3) for L C K, we first require a test statistic.
To this end, define
X.=((Ya:keL),D,2)

and let
T, =T1(X1)

be a test statistic for testing (3). Note that we impose the mild requirement that Ty, only depends on Xr.
In particular, we assume that it does not depend on Y} with k£ ¢ L. We assume further that large values of

Ty, provide evidence against the null hypothesis.

We now describe the construction of a critical value for our test. For this purpose, the following lemma

is useful:

Lemma 4.2. If P € wy, and Assumption 3.1 holds, then
(Yy:ke L) L D|IZ,U
under P.
PRrROOF: Consider P € wy,. Assumption 3.1 implies that
(Yi(d) : d € supp(D),k € L) lL D|Z,U

under P. Since P € wy,, we have further that Yy (d) = Y} for all £ € L. The desired result thus follows. B

In order to describe an important implication of Lemma 4.2, it is useful to define
hgXy, = (Y : k€ L),hgD, Z)
for g € Gz, and h € Hz,,. If Assumptions 3.1-3.4 hold, then Lemmas 4.1-4.2 together imply that
(X2, U)|2,U = (hgX1,U)|Z,U (12)

whenever P € wy,, g € Gz and h € Hz ;. This symmetry suggests that we can construct a critical value
with which to compare our test statistic by re-evaluating it at hg Xy, for each g € Gz and h € Hz . Since
U is unknown, we carry this out for each possible value of U and take the largest such critical value. The
possible values for U can be limited by Assumptions 3.4-3.5 to the set U(D, MW), where

U(d, mw) = {u € {0,1}"! : u; = 0 whenever d; = 1 or mw; = 0} .
In other words, we may use as our critical value

(X, 1—a) :UEUr(ngijw)cL(XL,u,lfa) , (13)

12



where

1

cr(Xp,u,l—a)=infcteR: ————— E KTr(hgXp) <t} >1—-a, ,
G zul[Hzul

9€Gz w,heHz 4

where I{-} is the indicator function. It is worth noting that in our setting |U(D, MW)| = 218, This idea is

formalized in the following theorem:

Theorem 4.1. Under Assumptions 3.1-3.5, the test that rejects Hy, whenever
T (X)) >en(Xp,1—a)

where ¢, (X, 1 — «) is defined by (13) controls the usual probability of a Type I error at level «, i.e.,

P{T(Xy)>cn(Xp,1—a)} <«
for all P € wy.
ProoF: Consider P € wy,. Define

Oo(Xp,u) = H{TL(XL) > cr(Xp,u, 1 —a)} .

From Assumptions 3.4 and 3.5, we have that U € U(D, MW). Hence,

er(Xp,1—a) > e (X, U, 1 — @) . (14)

It therefore suffices to show that
Ep[¢(XL,U)] < a. (15)

To this end, first note under Assumptions 3.1-3.4 that it follows from Lemmas 4.1-4.2 for any g € Gz and
h € Hz y that (12) holds under any such P. Next, note that

Ep > blhgXL,U)Z,U| = > Bplé(hgX.,U)|Z,U]
9€Gz u,h€Hz v 9eGz u,heHzu

= Z Epl¢(X1,U)|Z, U]
9€Gz u,h€eHz U

= |GzulHzulEplp(XL,U)|Z, U], (16)

On the other hand, since
CL(h’gXL7 U7 1- CY) = CL(XL7 U7 1- O[)

for any g € Gz and h € Hz y, we also have that

Ep > o(hgX1,U)|Z,U| <|Gzul|Hzula. (17)
9€Gz u,h€eHz U
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It follows from (16) and (17) that
EP[¢(XL7 U)|Z7 U] S o,

from which the desired conclusion (15) follows immediately. ®

Remark 4.1. Once (12) is established, the proof of Theorem 4.1 follows the usual arguments that underlie
the validity of randomization tests. See, e.g., Chapter 15 of Lehmann and Romano (2005) for a textbook

discussion of such methods. Nevertheless, we include the details of the argument for completeness. B

Remark 4.2. Note that ¢z, (X1, u,1 — «) defined in (4.2) requires computing 17, (hgX ) for every g € Gz,
and h € Hz,. In our setting, the sets Gz, and Hy, are sufficiently small that the construction of the
critical value is computationally feasible. In other settings, this may not be the case and one may need to
resort to a stochastic approximation to the critical value. This can be done without affecting the finite-sample

validity of the resulting test. See Section 15.2 of Lehmann and Romano (2005) for details. W

Remark 4.3. It is straightforward to include additional “exogenous” variation in the way that treatment
status was reassigned. Here, by “exogenous” variation we mean variation unrelated to outcomes, but used in
determining treatment status. Such variation could be useful, for instance, if in Step 3 of the randomization
procedure there was more than one way to exchange participants across the two groups in order to “balance”
gender and socio-economic status scores. For example, we could allow § to depend on an additional random
variable V' that enters 7 if

gVI|Z,ULV|zZ,U

for any g € G, Assumption 3.2 were strengthened so that

61 (gd7 9z, g’l)) = 961 (d7 2, U)

for any g € G, and Assumption 3.3 were strengthened so that hd,(d, z,v) = d1(hd, z,v) for any h € H,.
Under these conditions, it follows by arguing as in the proof of Lemma 4.1 that (6) holds, from which the
rest of our arguments would follow. In particular, our testing procedures would remain unchanged even if

we were to allow for this type of additional variation. B

Remark 4.4. An inspection of the proof of Theorem 4.1 reveals that the validity of our test hinges crucially

on part (iii) of Lemma 4.1. On the other hand, there is no reason to suspect that
90(D, 2,U)|2,U £ §(D, 2,0)|2,U

for g € G. For this reason, a test of (3) based simply off of permutations from G does not necessarily control
the usual probability of a Type I error. Nevertheless, because such a test has been applied in earlier analyses

of the HighScope Perry Preschool program, we include it in our comparisons below. B

Remark 4.5. In addition to the “nalve” permutation test described in Remark 4.4, Heckman et al. (2010a)
consider a test of (3) based on permutations from G, where, by analogy with the definition of G, given

earlier, G, is the subgroup of G that contains only g € G such that
9(G) =7 = zj =2 .
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It is possible to justify such an approach using Lemma 4.1 provided that one assumes that the way in which
treatment status was reassigned in Step 5 of the randomization procedure depended only on whether the
participant had a single mother who was working. If one were willing to make such an assumption, then one
could simply expand Z so as to include MW and ignore the effect of 02 on treatment status (e.g., by setting
all elements of U equal to zero). Under Assumptions 3.2 and 3.4, it then follows from part (i) of Lemma 4.1
that

gD|Z L D|Z

for ¢ € Gz. On the other hand, because MW was used in an asymmetric fashion to reassign treatment
status, Assumption 3.3 is no longer plausible, so it is not reasonable to expect parts (i) and (iii) of Lemma
4.1 to apply. Unfortunately, the number of permutations in Gz alone is too small to be useful. Heckman
et al. (2010a) therefore impose additional assumptions, such as parametric restrictions about the way in
which certain observed characteristics affect outcomes, to make use of this limited number of permutations.
Note further that the resulting approach does not have the finite-sample validity of the approach developed
here. m

4.3 Testing Multiple Null Hypotheses

We now return to the problem of testing the family of null hypotheses (1) in a way that satisfies (2). Under
Assumptions 3.2-3.5, it is straightforward to calculate a p-value py, for each Hj using Theorem 4.1 by simply
applying the theorem with L = {k} and computing the smallest value of « for which the null hypothesis is

rejected. The resulting p-values will satisfy
P{pr <u} <wu

for all w € (0,1) and P € wg. A crude solution to the multiplicity problem would therefore be to apply a
Bonferroni or Holm-type correction. Such an approach would indeed satisfy (2), as desired, but implicitly
relies upon a “least favorable” dependence structure among the p-values. To the extent that the true
dependence structure differs from this “least favorable” one, improvements may be possible. For that reason,
we apply a stepwise multiple testing procedure developed by Romano and Wolf (2005) for control of the
familywise error rate that implicitly incorporates information about the dependence structure when deciding
which null hypotheses to reject. Our discussion follows that in Romano and Shaikh (2010), wherein the

algorithm is generalized to allow for possibly uncountably many null hypotheses.

In order to describe our testing procedure, we first require a test statistic for each null hypothesis such
that large values of the test statistic provide evidence against the null hypothesis. As before, we impose the
requirement that the test statistic for Hj depends only on X{;;. Denote such a test statistic by Tx(Xzy).
Next, for L C K, define

To(Xp) = maxTio(Xy) -
Finally, for L C K, denote by ¢, (X1,1 — ) the critical value defined in (13) with this choice of Tp(Xp).

Our testing procedure is summarized in the following algorithm:

Algorithm 4.1.

15



Step 1: Set L; = K. If

<z _
max Ty (Xxy) < €, (1 -0

then stop and reject no null hypotheses; otherwise, reject any Hjy with
Tk(X{k}) >cCr, (AXL17 1-— a)

and go to Step 2.

Step j: Let L; denote the indices of remaining null hypotheses. If
<eér. 1 —
max Tp(Xy) <, (Xp;,1—a)
then stop and reject no further null hypotheses; otherwise, reject any Hj with
Tk(X{k}) > EL]. (XL]., 1-— a)

and go to Step j + 1.

Theorem 4.2. Under Assumptions 3.1-3.5, Algorithm 4.1 satisfies (2).

PROOF: The claim follows from Theorem 4.1 and arguments given in Romano and Wolf (2005) or Romano

and Shaikh (2010). Since the argument is brief, we include it here for completeness.

Suppose that a false rejection occurs. Let j be the smallest step at which a false rejection occurs. By the
minimality of J, we must have that

L; D Ko(P) . (18)

It follows that
e, (Xr,,1 —a) 2 Cry(p)(XKo(p), 1 — ) (19)

Since a false rejection occurred, we must also have that

Th(Xgy) >c. (X, 1 —a) .
ke%lc%?P) k(X)) > e, (X, @)

Hence,

T(X c X 1-—
(e Te(X i) > Sy (Xieo(r)s 1= )

and the probability of this event is bounded above by « by Theorem 4.1. ®

Remark 4.6. It is straightforward to calculate a multiplicity-adjusted p-value ﬁzdj for each Hj, using Theo-
rem 4.2 by simply computing the smallest value of « for which each null hypothesis is rejected. The resulting

p-values have the property that the procedure that rejects any Hjy with ﬁzdj < « satisfies (2). &
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Remark 4.7. The choice of Ty (X{y) in Algorithm 4.1 is arbitrary, but we apply it to the HighScope Perry
Preschool data with Ty (X{z3) given by a Studentized difference in means between the treatment and control
groups for all outcomes except cognitive outcomes, in which case we use a Mann-Whitney U-statistic. Of

course, one could just as well use a more omnibus statistic, such as a Kolmogorov-Smirnov statistic. B

5 Results

We now apply the methodology developed in the preceding section to the HighScope Perry Preschool data.
We find that the program has statistically significant effects on a wide range of outcomes even after con-
trolling for (i) the imperfectness of the randomization and (ii) the multiplicity of the null hypotheses under
consideration. Recall that (i) involves (a) the way in which treatment status was reassigned to “balance”
certain observed characteristics as well as (b) the way in which some participants were removed from the
treatment group and placed in the control group on the basis of unobserved characteristics. We address (i)
by exploiting symmetries in the distribution of treatment status that remain valid in the presence of both
(a) and (b) together with information limiting the extent of (b). We address (ii) by demanding control of
the familywise error rate, thereby eliminating concerns about selectively reporting results for only a subset

of these null hypotheses.

When applying Theorem 4.1 and Theorem 4.2 in this empirical setting, we discretize SES; as an indicator
denoting whether SES; exceeds the median value among all families in the same wave. There is no loss of
generality with this approach if we assume that the goal of Step 3 of the randomization procedure was to
“balance” the two groups so that their respective median SES; values were the same. We note, however,
that because we exploit Hyz, as well as G ,, our inferences would remain nontrivial even if we were to
adopt a much finer discretization of SES;. Indeed, they would remain valid even if the discretization were

so fine that Gz, became a singleton consisting of only the identity permutation for all w € U(D, MW).

We analyze seven conceptually distinct “blocks” of outcomes, each of which is of independent interest: one
related to IQ measures, a second related to achievement measures, a third related to educational attainment,
a fourth related to criminal activity, and three related to employment at ages 19, 27 and 40. We divide the
data further by gender. We correct for the multiplicity of outcomes within each of these fourteen blocks of
outcomes. See Heckman et al. (2010a) for a discussion of why it is sensible to “block” outcomes in this way.
Because of our limited sample size, we adopt the convention that null hypotheses with p-values less than or

equal to .10 are statistically significant.

The results of our analysis are presented in Tables 1 and 2 for males and females, respectively. The
first column of each table displays the outcome analyzed. The second column gives the age at which the
outcome is measured. The third and fourth columns contain, respectively, the mean value of the outcome
for the control group and the difference in means between the treatment group and the control group. The

remaining columns present p-values from various testing procedures:

e The column under the heading “Asymp.” presents (multiplicity) unadjusted p-values from a one-sided
test based on comparing a Studentized difference of means with a critical value computed from a

normal approximation.
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e The two columns under the heading “Naive” display, respectively, the unadjusted and adjusted p-values
based on the naive application of a permutation test in this setting. In other words, these p-values are

based on the unrestricted set of permutations G rather than Gz, and Hz,,.

e The two columns under the heading “U = 0” display, respectively, the unadjusted and adjusted p-
values derived from applying Theorem 4.1 and Theorem 4.2 assuming that U(D, MW) = {{0}//1},

i.e., ignoring the effect of Step 5 of the randomization procedure.

e The two columns under the heading “Max-U” display, respectively, the unadjusted and adjusted p-

values derived from applying Theorems 4.1 and 4.2.

Note that the “Naive” p-values do not account for the imperfectness in the randomization stemming from
either (a) or (b) above. For that reason, as discussed in Remark 4.4, there is no reason to suspect that these
p-values are valid, but they are included here for comparison. Note further that by construction the “Max-
U” (un)adjusted p-values are smaller than the “U = 0” (un)adjusted p-values. The “Naive” (un)adjusted

p-values, however, may be either larger or smaller than the “U = 0” (un)adjusted p-values.

Our findings are broadly consistent with those in Heckman et al. (2010a). They are summarized as

follows:

Cognition: The top panels of Tables 1 and 2 present our evidence on cognitive abilities as measured
by Stanford-Binet 1Q score at different ages and various California Achievement Test (CAT) scores at
age 14. The “Naive” adjusted p-values suggest a statistically significant effect on Stanford-Binet 1Q
scores for both males and females at young ages. These findings survive the more stringent “Max-U”
adjusted p-values for the youngest age. The “Naive” adjusted p-values also suggest a significant effect
on various CAT scores at age 14 for both males and females. These inferences weaken for females in the
“Max-U” adjusted p-values, but for males are generally stronger using the “Max-U” adjusted p-values

than the “Naive” adjusted p-values.

Schooling: The third block in Tables 1 and 2 present our findings for four educational attainment
measures. None of the adjusted p-values show any significant effect of the program on schooling for
males. For females, the “Naive” and “U = 0” adjusted p-values show significant effects for all schooling
outcomes, and two of these null hypotheses are rejected even in the “Max-U” adjusted p-values. We
find that the effects of the program on High School Graduation and GPA for females remain statistically
significant even after accounting for both the imperfectness of the randomization and the multiplicity

of null hypotheses.

Crime: The fourth block in Tables 1 and 2 present our findings for four outcomes related to criminal
activity. These outcomes are of special importance since reductions in crime are important contrib-
utors to the significant rate of return estimates reported in Heckman et al. (2010b). “Total crime
cost” includes victimization, police/court, and incarceration costs. See Heckman et al. (2010b) for a
more detailed discussion of this variable and its contribution to the rate of return of the program.
“Non-victimless charges” refer to felony crimes associated with substantial costs to crime victims. Vic-
timless charges, on the other hand, refer to illegal activities, such as illegal gambling, drug possession,

prostitution, and driving without a license plate, that do not produce victims.
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The “Naive” adjusted p-values suggest a statistically significant effect of the program on all outcomes
for females and for two outcomes for males. Only one of the significant findings for females survives in
the “U = 0” and “Max-U” adjusted p-values — “Total charges.” On the other hand, we find statistically
significant effects on all four outcomes for males in the “U = 0” adjusted p-values. Only one of these

survives in the “Max-U” adjusted p-values — “Total non-victimless crimes.”

Employment: The final three panels in Tables 1 and 2 present our findings for three outcomes
related to employment measured at different ages. The “Naive” adjusted p-values show a statistically
significant effect on only one outcome related to employment for males — current employment measured
at age 40. The “U = 0” adjusted p-values show a statistically significant effect on the “number of jobless
months in the past two years measured at age 27.” This effect survives even in the “Max-U” adjusted
p-values. The “Naive” adjusted p-values show a significant effect on almost all outcomes for females.
The number of statistically significant effects decreases substantially using the “U = 0” adjusted p-
values, and disappears entirely for outcomes measured at age 27. Only effects on outcomes measured

at age 19 persist in the “Max-U” adjusted p-values.

6 Conclusion

This paper develops and applies a framework for inference about the effects of a program on multiple
outcomes when the assignment of treatment status is imperfectly randomized. The key idea that underlies
our approach is to make use of information limiting the extent to which randomization is imperfect. Using this
approach, we have constructed under weak assumptions a procedure for testing the family of null hypotheses
in which each null hypothesis specifies that the program had no effect on one of several outcomes of interest
that controls the familywise error rate in finite samples. We use our methodology to reanalyze data from
the HighScope Perry Preschool program. The reported beneficial long-term effects for the HighScope Perry
Preschool program are a cornerstone in the argument for early childhood intervention in the United States.
We find statistically significant effects of the program for both males and females, thereby showing that
some of the criticisms regarding the reliability of this evidence are not justified. We believe our framework
will be useful in analyzing other studies where randomization is imperfect, provided that the information
limiting the extent to which randomization is imperfect is available, as it is in the case of the HighScope

Perry Preschool program.
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