Identification and estimation of dynamic random coefficient models*

Wooyong Lee†

November 14, 2019
(click here to view the latest version)

Abstract

This paper studies dynamic panel data linear models that allow for multiplicative and additive heterogeneity in a short panel setting, by allowing both the coefficients and the intercept to be individual-specific. I show that the model is not point-identified and yet partially identified, and I characterize the sharp identified sets of the mean, variance and distribution itself of the partial effect distribution. The characterization applies to both discrete and continuous data. A computationally feasible estimation and inference procedure is proposed, which is based on a fast and exact global polynomial optimization algorithm. The method is applied to study life-cycle earnings and consumption dynamics of U.S. households in the Panel Study of Income Dynamics (PSID) dataset. The estimation results suggest that there is large heterogeneity in earnings persistence and the earnings elasticity of consumption and that there is a strong correlation between the two. Calibration of a life-cycle model suggests that heterogeneity in asset-related factors such as interest rate or discount rate is required to accurately describe real-world consumption and savings behavior.

*I am deeply indebted to Stéphane Bonhomme, Alexander Torgovitsky and Guillaume Pouliot for their invaluable guidance and support. I thank Manuel Arellano, Timothy Armstrong, Antonio Galvao, Greg Kaplan, Roger Koenker, Zhipeng Liao, Jack Light, Azeem Shaikh, Shuyang Sheng, Panagiotis Toulis and Ying Zhu for their helpful discussions and comments. I also thank seminar participants of Econometrics Workshop and Econometrics Working Group at University of Chicago.

†Department of Economics, University of Chicago. Email: wooyong@uchicago.edu
1 Introduction

A widely used approach in dynamic panel data linear models is to allow for fixed effects (Arellano and Bond, 1991; Blundell and Bond, 1998). The fixed effects are individual-specific intercepts that allow for heterogeneity in the levels of outcome among individuals of similar observable characteristics. The dynamic fixed effect model offers a flexible form of additive unobserved heterogeneity, which helps a researcher to carefully explore research questions such as effectiveness of a policy. The model is well-understood for short panel data, i.e. the panel data with small number of waves.

In addition to the unobserved heterogeneity in levels, there is ample evidence on individuals having unobserved heterogeneity that interacts with observable characteristics. For example, firms may have different levels of efficiently in using labor and capital, households may have different levels of persistence in their earnings with respect to their past earnings, and individuals may have different levels of return to education. Such multiplicative heterogeneity is a key mechanism for heterogeneous response to exogenous shocks and policies, such as employment subsidy, income tax reform and tuition subsidy. In addition, taking account of multiplicative heterogeneity has a first order impact on more complicated models. For example, heterogeneity in the earnings persistence governs heterogeneity in the earnings risk faced by households, which is a fundamental motive for precautionary savings in the life-cycle model of consumption and savings behavior.

This paper studies the dynamic panel data linear model that allows for both multiplicative and additive unobserved heterogeneity, i.e. the dynamic random coefficient model, in a short panel setting. To be concrete, consider a stylized example

\[Y_{it} = \beta_{i0} + \beta_{i1} Y_{i,t-1} + \varepsilon_{it}, \]

where all variables are scalars and \(\varepsilon_{it} \) is uncorrelated to the current history of \(Y_{it} \) (up to \(t-1 \)) but correlated to its future values. In this model, both the coefficient \((\beta_{i1}) \) and the intercept \((\beta_{i0}) \) are individual-specific, reflecting multiplicative and additive unobserved heterogeneity. In addition, the model allows the lagged outcome \(Y_{i,t-1} \) to be a regressor, reflecting dynamics. Analysis of this model is challenging in short panels, since it is not possible to learn about individual values of the \(\beta \)'s with small number of waves. This paper is the first to propose general methods for identifying and estimating moments and distributions of the \(\beta \)'s.

Most of research on random coefficient models with short panels focus on non-dynamic settings (Chamberlain, 1992; Wooldridge, 2005; Arellano and Bonhomme, 2012; Graham and Powell, 2012), requiring that \(\varepsilon_{it} \) is uncorrelated to the entire history of regressors. This implies
that future values of regressors are not correlated to current outcome, which can be hard to justify. For example, a firm’s labor purchase decision next year may be correlated with this year’s output since the firm may learn about its own efficiency of labor from the output. Moreover, a researcher may also be interested in the dynamics itself. For example, earnings persistence of a household is an important parameter since high earnings persistence makes earnings shocks to be lasting, which reduces household’s consumption smoothing ability and hence household welfare.

For random coefficient models with short panels in a dynamic setting, there are only a limited set of results. In an important paper, Chamberlain (1993) showed that the mean of \(\beta \)'s in dynamic random coefficient models is not point-identified, which implies that the mean of \(\beta \)'s is not consistently estimable. Arellano and Bonhomme (2012) showed that, when the regressors are binary, mean of \(\beta \)'s for some subpopulation is identifiable and hence consistently estimable, but they did not provide a general identification result that allow consistent estimation and inference.

This paper is the first to present a general identification result for dynamic random coefficient models that allow consistent estimation and inference. Identification results for various features of \(\beta \)'s are presented, including the mean, variance and CDF of \(\beta \)'s. Moreover, this paper proposes a computationally feasible method for estimation and inference about the features of \(\beta \)'s, a key step of which is to use a fast and exact algorithm for solving global polynomial optimization problems. Then the estimation method is applied to learn about heterogeneity in life-cycle earnings and consumption dynamics across U.S. households in the Panel Study of Income Dynamics (PSID) dataset. The results of this paper are presented in three steps, which are described in what follows.

First, this paper shows that dynamic random coefficient models are partially identified, which implies that there are finite bounds that can be placed on the parameters of interest. The results are general in the sense that they allow the regressors and the coefficients to be discrete or continuous. A key idea for the results is to recast the identification problem into a linear programming problem (Honoré and Tamer, 2006; Mogstad, Santos, and Torgovitsky, 2018; Torgovitsky, 2019), which becomes an infinite-dimensional problem when the regressors or the coefficients are continuous. Then I use the dual representation of infinite-dimensional linear programming (Galichon and Henry, 2009; Schennach, 2014) to obtain sharp bounds for the parameters of interest.

Second, I show that the sharp bounds can be computed fast and reliably by exploiting the linear structure of the model. Computing the sharp bounds obtained from the dual representation involve solving a nested optimization problem where a researcher maximizes an ob-
jective function which contains another minimization problem. An important computational issue faced here is that the inner minimization problem is a global minimization problem of a non-convex function, for which standard global optimization procedures are infeasible as the problem is nested and hence must be solved many times with precision. I show that, for random coefficient models, the inner objective function is a polynomial. Then I use a fast and exact algorithm for solving global polynomial optimization problem, namely the semidefinite relaxation approach (Lasserre, 2010, 2015). Thanks to this algorithm, sharp bounds for parameters of interests can be computed in a reasonable time. Moreover, inference about the bounds based on testing moment inequalities (Chernozhukov, Lee, and Rosen, 2013; Romano, Shaikh, and Wolf, 2014; Chernozhukov, Chetverikov, and Kato, 2019; Bai, Santos, and Shaikh, 2019) can also be performed in a computationally tractable way. For researchers interested in using the semidefinite relaxation approach for global polynomial optimization, I offer a general-purpose R package optpoly that implements the approach\(^1\).

Third, I estimate a reduced-form life-cycle model of earnings and consumption dynamics and find large heterogeneity in the dynamics. The model is estimated using the Panel Study of Income Dynamics (PSID) dataset, which contains earnings, consumption and asset holdings data of U.S. households. Heterogeneity and dynamics are essential features of these data. Households may have different earnings and consumption behavior due to difference in their structural parameters such as earnings persistence or discount rate. In addition, there is dynamics in the data since past and future values of earnings, consumption and asset holdings are interrelated through the intertemporal budget constraint.

Empirical research on life-cycle earnings and consumption behavior usually assumes no heterogeneity or observable heterogeneity in the earnings persistence (Hall and Mishkin, 1982; Blundell, Pistaferri, and Preston, 2008; Blundell, Pistaferri, and Saporta-Eksten, 2016; Arellano, Blundell, and Bonhomme, 2017). This paper investigates unobserved heterogeneity in household earnings and consumption behavior as in Alan, Browning, and Ejrnæs (2018). I find that there is large heterogeneity in the earnings elasticity of consumption, i.e. household’s consumption response to exogenous changes in earnings, and that the elasticity is higher when the household has higher earnings persistence. A structural model is calibrated to assess importance of unobserved heterogeneity (Kaplan and Violante, 2010; Blundell, Low, and Preston, 2013), and it is shown that heterogeneity in the earnings persistence is essential for accurately reflecting large heterogeneity in the earnings elasticity in the PSID dataset. Moreover, the calibration results suggest that heterogeneity in asset-related factors such as interest rate or discount rate is also required to accurately reflect real-world household consumption

\(^1\)Available at https://github.com/wooyong/optpoly.
behavior.

The results of this paper extend to generalized method of moments (GMM) with unobservable quantities, which can be used to answer wide range of economic questions. For example, it can be applied to the analysis of heterogeneous relationship between earnings and labor supply (Abowd and Card, 1989), or to production function estimation with firm-specific efficiency in labor and capital (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015).

The rest of the paper is structured as follows. From Section 2 to Section 4, a dynamic random coefficient model is formally introduced and theoretical results about the model are presented. From Section 5 to Section 6, estimation and computation method for the parameters of interest is introduced, and statistical properties of the estimator are studied. In Section 7, the method is applied to life-cycle earnings and consumption dynamics. Section 8 concludes.

2 Model and motivating examples

The dynamic random coefficient model is specified as

$$Y_{it} = Z_{it}'\gamma_i + X_{it}'\beta_i + \epsilon_{it}, \quad t = 1, \ldots, T,$$

where i is an index of individuals, T is the length of panel data, (Y_{it}, Z_{it}, X_{it}) are observed real vectors with dimensions 1, q and p, respectively, and $\epsilon_{it} \in \mathbb{R}$ is an idiosyncratic error term. For simplicity of notation, let $Y_i = (Y_{i1}, \ldots, Y_{iT})$ be the full history of $\{Y_{it}\}$ and $Y_{it}' = (Y_{i1}, \ldots, Y_{it})$ be the history of $\{Y_{it}\}$ up to time t. Define $X_i, X_{it}', Z_i, Z_{it}'$ similarly. Assume that

$$\mathbb{E}(\epsilon_{it}|\gamma_i, \beta_i, Z_{it}, X_{it}') = 0. \tag{2}$$

In particular, it assumes that the error term is mean independent of full history of $\{Z_{is}\}_{s=1}^T$ but of current history $\{X_{is}\}_{s=1}^t$. In other words, Z_{it} is strictly exogenous and X_{it} is sequentially exogenous. The presence of a sequentially exogenous regressor makes (1) a dynamic model.

The model is studied in a short panel setting, which corresponds to the asymptotics that the number of individuals $N \rightarrow \infty$ but T is fixed. The random variables (γ_i, β_i), the random coefficients, have same dimensions as (Z_{it}, X_{it}), and they can be freely correlated among themselves and to the observed data. The random coefficients are viewed as unobserved random variables that are i.i.d. across i with a common nonparametric distribution, which is the sense that a random coefficient model extends a fixed effects model.

The following simplifying notation is used throughout the paper. Let $W_i = (Y_{it}', Z_{it}', X_{it}')' \in \mathbb{R}^{3q}$.
Let \mathcal{W} be the vector of observables and $V_i = (\gamma_i', \beta_i')' \in V$ be the vector of unobservables. Then ϵ_{it} is understood as a deterministic function of (W_i, V_i) by the relation $\epsilon_{it} = Y_{it} - Z_{it}' \gamma_i - X_{it}' \beta_i$.

This paper considers a parameter of interest θ that has the form

$$\theta = E(m(Y_{it}, Z_{it}, X_{it}, \gamma_i, \beta_i)) = E(m(W_i, V_i))$$

for some known function m. For theoretical results, m can be a generic Borel measurable function, but in the computation I will focus on the case where m is either a polynomial or an indicator function of V_i and propose a computationally feasible procedure for estimation and inference. Such choice of m includes many important parameters of interest. For example, θ can be an element of the mean vector $E(\beta_i)$ or an element of $E(\beta_i \beta_i')$. θ may also be the error variance $E(\epsilon_{it}^2)$ since

$$\epsilon_{it}^2 = (Y_{it} - Z_{it}' \gamma_i - X_{it}' \beta_i)^2$$

is a quadratic polynomial in (γ_i, β_i). Alternatively, m can be the indicator function $1(\beta_i \leq b)$ for some b, in which case the parameter of interest θ is

$$\theta = E(1(\beta_i \leq b)) = P(\beta_i \leq b)$$

which is a CDF of β_i evaluated at b.

Example 1 (Household earnings). One of the simplest examples of (1) is the AR(1) model with heterogeneous coefficient:

$$Y_{it} = \gamma_i + \beta_i Y_{i,t-1} + \epsilon_{it}, \quad (3)$$

where all variables are scalars. This is a special case of (1) with $Z_{it} = 1$ and $X_{it} = Y_{i,t-1}$.

The AR(1) process is a popular choice for empirical specification of life-cycle earnings process, with Y_{it} being the log-earnings net of demographic variables, which is a key input for the life-cycle model of consumption and savings behavior2. Specification of the earnings process has a first order impact on the model outcome. Persistence of the earnings (β_i) govern earnings risk faced by households, which is a fundamental motive for precautionary savings.

The literature usually modeled it as an AR(1) process with no coefficient heterogeneity or more simply as a unit root process which is an AR(1) process with $\gamma_i = 0$ and $\beta_i = 1$. Notable studies that allow for coefficient heterogeneity are Browning, Ejrnæs, and Alvarez (2010) and Alan, Browning, and Ejrnæs (2018).

2In the literature, it is standard to also add a transitory shock to (3).
Example 2 (Household consumption behavior). Consider the following model of life-cycle consumption behavior:

\[C_{it} = \gamma_{i0} + \gamma_{i1} Y_{it} + \beta_i A_{it} + \nu_{it}, \]

(4)

where all variables are scalar, \(C_{it} \) is non-durable consumption, \(Y_{it} \) is earnings and \(A_{it} \) is asset holdings at time \(t \), all measured in logs and net of demographic variables. In this model, \(Y_{it} \) may be taken as strictly exogenous, meaning that the future earnings stream is not affected by current consumption choice. However, \(A_{it} \) must be taken as sequentially exogenous since the past and future assets and consumptions are interrelated through the intertemporal budget constraint.

(4) can be considered as an approximation to the consumption rule derived from a structural model (Blundell, Pistaferri, and Saporta-Eksten, 2016). One of the key parameters of interest in (4) is \(\gamma_{i1} \), which is the elasticity of consumption to the earnings. This quantity measures household’s ability to smooth consumption against exogenous changes in earnings such as exogenous earnings shocks, which is a key determinant of household’s consumption smoothing ability and hence household welfare. Similar to the case of Example 1, the literature focused on models with no coefficient heterogeneity.

Another parameter of interest is \(\beta_i \), the elasticity of consumption to asset holdings. This quantity measures household’s ability to smooth consumption against exogenous changes on assets. (4) allows a researcher to estimate this quantity while being agnostic about the evolution of assets over time, i.e. under nonparametric evolution of the assets.

In the application, using data on U.S. households from Panel Study of Income Dynamics (PSID) dataset, I find that there is large heterogeneity in the elasticity of consumption to earnings (\(\gamma_{i1} \)) and asset holdings (\(\beta_i \)).

Results of this paper also extend to multivariate version of (1), the multivariate random coefficient model:

\[Y_{it} = Z_{it}^\prime \gamma_i + X_{it}^\prime \beta_i + e_{it}, \]

where \(Y_{it} \) is a \(D \times 1 \) vector of response variables, \(Z_{it} \) is a \(D \times q \) matrix of strictly exogenous regressors, \(X_{it} \) is a \(D \times p \) matrix of sequentially exogenous regressors and \(e_{it} \) is a \(D \times 1 \) vector of idiosyncratic error terms. Assume that

\[\mathbb{E}(e_{it} | \gamma_i, \beta_i, Z_{it}, X_{it}) = 0, \]

which is a multivariate extension of (2).

\[\text{See e.g. Jappelli and Pistaferri (2010) for a survey.} \]
Example 3 (Joint model of household earnings and consumption behavior). One may combine (3) and (4) in Examples 1 and 2 and consider a joint life-cycle model of earnings and consumption behavior. If we combine the time t consumption equation and the time $t + 1$ earnings equation, then we obtain the following multivariate random coefficient model:

$$C_{it} = \gamma_1 + \gamma_2 Y_{it} + \beta_1 A_{it} + v_{it},$$
$$Y_{i,t+1} = \gamma_3 + \beta_2 Y_{it} + \varepsilon_{it}.$$

This can be written in the following matrix form:

$$
\begin{pmatrix}
C_{it} \\
Y_{i,t+1}
\end{pmatrix} =
\begin{pmatrix}
1 & Y_{it} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\gamma_1 \\
\gamma_2 \\
\gamma_3
\end{pmatrix} +
\begin{pmatrix}
A_{it} & 0 \\
0 & Y_{it}
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2
\end{pmatrix} +
\begin{pmatrix}
v_{it} \\
\varepsilon_{it}
\end{pmatrix}.
$$

In the application, I estimate this model and study correlation between earnings persistence and the elasticities of consumption using the PSID dataset. I find that earnings persistence is strongly correlated to the earnings elasticity of consumption but not correlated to the assets elasticity of consumption. This suggests that heterogeneity in the assets elasticity of consumption stems from factors other than earnings persistence, such as heterogeneity in discount rate or interest rate.

3 Identification of means

In this and the next sections, I present theoretical results about identification of the dynamic random coefficient model defined in (1) and (2). This section focuses on identification of the means of random coefficients, and the next section presents a general identification result. Focusing on the mean allows to explain intuition of the results using simple algebra.

In this section, I consider identification of the parameter that has the form

$$\mu_e = \mathbb{E}(e_\gamma' \gamma_i + e_\beta' \beta_i) = \mathbb{E}(e' V_i)$$

where e_γ and e_β are real vectors that the researcher chooses and $e = (e_\gamma', e_\beta')'$. For example, one may take $e_\gamma = 0$ and $e_\beta = (1, 0, \ldots, 0)'$, in which case μ_e is the expectation of the first entry of β_i.

Identification results about μ_e are presented in three subsections. In the first subsection, μ_e is shown to be not point-identified in general. Then the following subsection shows that μ_e is
partially identified. The third subsection shows that conditioning on \((\gamma_i, \beta_i)\) in (2) is essential for partial identification.

3.1 Failure of point-identification

This subsection shows that \(\mu_e\) is not point-identified in general. This is done by considering a specific example of (1) and showing that \(\mu_e\) is not point-identified in that example.

The example considered is the AR(1) model with heterogeneous coefficients in which two waves are observed:

\[
Y_{it} = \gamma_i + \beta_i Y_{i,t-1} + \epsilon_{it}, \quad \mathbb{E}(\epsilon_{it} | \gamma_i, \beta_i, Y_{i,t-1}) = 0, \tag{5}
\]

for \(t = 1, 2\), where all variables are scalar.

The following proposition shows that \(\mathbb{E}(\beta_i)\) is not point-identified in this model.

Proposition 1. Consider the model defined in (5). Assume that \((Y_{i0}, Y_{i1}, Y_{i2}, \gamma_i, \beta_i) \in C\) where \(C\) is a compact subset of \(\mathbb{R}^5\). Assume also that they are absolutely continuous with respect to the Lebesgue measure and that their joint density is strictly positive on \(C\) with a lower bound \(b > 0\). Then \(\mathbb{E}(\beta_i)\) is not point-identified.

Proof. See Appendix A.1. \(\square\)

The same result holds when \((Y_{i0}, Y_{i1}, Y_{i2}, \gamma_i, \beta_i)\) is discrete and the number of support points of \((\gamma_i, \beta_i)\) is sufficiently large relative to that of \((Y_{i0}, Y_{i1}, Y_{i2})\). The proof suggests that the result holds for any finite \(T \geq 2\). Note that the failure of point-identification in Proposition 1 implies that there is no consistent estimator for \(\mathbb{E}(\beta_i)\).

The proof for Proposition 1 consists of two steps. First, I show that \(\mathbb{E}(\beta_i)\) is point-identified if and only if there exists an estimator \(S(Y_{i0}, Y_{i1}, Y_{i2})\) from the individual time series that is unbiased for \(\beta_i\). Then it is shown that there is no unbiased estimator for \(\beta_i\). The intuition for the first step is that, since the distribution of \(\beta_i\) is unrestricted and hence \(\beta_i\) can take any value within \(C\), information on \(\beta_i\) for a given \(i\) can only be obtained from individual \(i\)'s data \((Y_{i0}, Y_{i1}, Y_{i2})\). If the individual data provides an “exact” information about \(\beta_i\) in the sense of unbiasedness, then we obtain point-identification of \(\mathbb{E}(\beta_i)\). However, if there is no unbiased information, we do not achieve point-identification.

Chamberlain (1993) showed that \(\mathbb{E}(\beta_i)\) is not point-identified in (5) when the \(Y_{it}\)'s are discrete and \(\epsilon_{it}\) is mean independent of \(Y_{i,t-1}\) only. Proposition 1 generalizes his result and

\[\text{This result also holds for a general case considered in the next section.}\]
shows that point-identification is also not possible with stronger assumption and continuous
data. Failure of point-identification in both discrete and continuous cases in the AR(1) model suggests that it is a general feature of dynamic random coefficient models.

Then a natural question following Proposition 1 is whether the data contain any information about $\mathbb{E}(\beta_i)$ or there is no information at all. The next subsection shows that the data are actually informative about $\mathbb{E}(\beta_i)$. More precisely, it is shown that μ_e is partially identified for any fixed e in (1).

3.2 Partial identification

In what follows, I show that μ_e is partially identified under suitable conditions. In particular, I show that there are finite bounds L and U such that

$$L \leq \mu_e \leq U$$

where L and U are estimable with data. This implies that there exist consistent estimators for lower and upper bounds of μ_e. The quantities L and U depend on e, but the dependence is suppressed in the notation.

Using the notation defined in Section 2 and letting $R_{it} = (Z_{it}', X_{it}')'$ be the vector of regressors at time t, let’s concisely write (1) and (2) as

$$Y_{it} = R_{it}' V_i + \varepsilon_{it}, \quad t = 1, \ldots, T,$$

and

$$\mathbb{E}(\varepsilon_{it} | V_i, Z_i, X_i') = 0. \quad (7)$$

Recall that the parameter of interest μ_e is

$$\mu_e = \mathbb{E}(e'V_i).$$

In this section and throughout the paper, I use unconditional moment restrictions that are implications of (7) and characterize the sharp identified set under those restrictions. It is known that the set of unconditional moment restrictions of the form

$$\mathbb{E}(g(V_i, Z_i, X_i')\varepsilon_{it}) = 0, \quad (8)$$

indexed by a suitable class of functions g, is equivalent to the conditional moment restriction.
in (7) (Bierens, 1990; Stinchcombe and White, 1998; Andrews and Shi, 2013). In this paper, I choose the class of \(g \) to be the set of polynomials in its arguments and use a finite subset of them for estimation and inference. The finite subset of unconditional moment restrictions contains less information than (7), but it yields a computationally feasible estimation and inference procedure for the parameters of interest. Partial identification results based on (7) can be derived using Theorem 3 in Appendix B.

In this section, I consider the following assumptions.

Assumption 1. The random variables \((W_i, V_i)_{t=1}^T\) and \((\varepsilon_{it})_{t=1}^T\) satisfy (6).

Assumption 2. \(\sum_{t=1}^T R_{it} R_{it}' \) is positive definite with probability 1.

Assumption 3. The random variables \((W_i, V_i)_{t=1}^T\) and \((\varepsilon_{it})_{t=1}^T\) satisfy, for all \(t = 1, \ldots, T, \)

\[
E((R_{it}' V_i) \varepsilon_{it}) = 0,
\]

\[
E((Z_i', X_{it}')' \varepsilon_{it}) = 0.
\]

Assumption 1 states that the dynamic random coefficient model is correctly specified. Assumption 2 is a no-multicollinearity assumption imposed on individual time-series, which states that there is variation in the regressors over time for every individual. Note that the dynamic fixed effect model only requires that the expectation \(E(\sum_{t=1}^T R_{it} R_{it}') \) is positive definite in order for the data to be informative about the model. Here I require the assumption for each individual since \(V_i \) is individual-specific and I require information for all \(i \). Without Assumption 2, there may be individuals with no information about \(V_i \) in the data, and their \(V_i \) values may be arbitrarily large or small so that we cannot learn about \(E(\varepsilon' V_i) \). Although it is necessary, it can be a strong assumption in empirical settings, and in the application I trim observations with small eigenvalues of \(\sum_{t=1}^T R_{it} R_{it}' \) and check sensitivity of my results against Assumption 2.

Equations in Assumption 3 are implications of (7). The first equation in Assumption 3 states that the “explained part” \((R_{it}' V_i) \) and the “error term” \((\varepsilon_{it}) \) are orthogonal. The second equation states that \(\varepsilon_{it} \) is orthogonal to full history of \(Z_{it} \) and current history of \(X_{it} \).

The following theorem shows that \(\mu_e \) is partially identified under Assumptions 1 to 3.

Theorem 1. Suppose that Assumptions 1 to 3 hold. Let \(\lambda_t \in \mathbb{R} \) and \(\mu_t \) be a real vector whose dimension is the same as \(S_{it} = (Z_i', X_{it}')' \) for \(t = 1, \ldots, T \). Let \(\lambda \equiv (\lambda_1, \ldots, \lambda_T) \) and \(\mu \equiv (\mu_1, \ldots, \mu_T) \). Then \(L \leq \mu_e \leq U \) where

\[
L = \max_{\lambda < 0, \mu} \mathbb{E} \left[\sum_{i=1}^T \mu_i S_{it} Y_{it} + \frac{1}{4} B_i(\lambda, \mu)' \left(\sum_{i=1}^T \lambda_i R_{it} R_{it}' \right)^{-1} B_i(\lambda, \mu) \right]
\]
and

\[U = \min_{\lambda > 0, \mu} \mathbb{E} \left[\sum_{t=1}^{T} \mu_t S_{it} Y_{it} + \frac{1}{4} B_i(\lambda, \mu)' \left(\sum_{t=1}^{T} \lambda_t R_{it} R_{it}' \right)^{-1} B_i(\lambda, \mu) \right] \]

where

\[B_i(\lambda, \mu) = e + \sum_{t=1}^{T} \lambda_t R_{it} Y_{it} - \sum_{t=1}^{T} R_{it} S_{it}' \mu_t. \]

Moreover, these are the sharp bounds of \(\mu_e \) under Assumptions 1 and 3.

Proof. See Appendix A.2.

Note that, since Assumption 3 is an implication of (7), \(L \) and \(U \) in Theorem 1 are non-sharp bounds of \(\mu_e \) under Assumptions 1 and 2 and (7). However, as mentioned earlier, \(L \) and \(U \) in Theorem 1 imply computationally feasible estimators, which I exactly compute in the application.

Theorem 1 characterizes the lower and upper bounds of \(\mu_e \) as solutions to optimization problems over the Euclidean space. Dimension of this space can be potentially large. However, it will be shown that the optimization can be performed fast and reliably.

\(L \) and \(U \) have closed-form expressions, but I do not display them here since (i) they are very complicated and (ii) they can be computationally more demanding than solving the optimization problems as they involve inversion of a big matrix. Instead, I present the following proposition which gives simple closed-form expressions for a non-sharp bound.

Proposition 2. Suppose that Assumptions 1 to 3 hold, and let \(L \) and \(U \) be defined as in Theorem 1. For brevity of notation, define

\[R_i = \frac{1}{T} \sum_{t=1}^{T} R_{it} R_{it}' \quad \text{and} \quad Y_i = \frac{1}{T} \sum_{t=1}^{T} R_{it} Y_{it}. \]

Then \([L, U] \subseteq [\bar{L}, \bar{U}]\) where

\[[\bar{L}, \bar{U}] = \left[\bar{V} - \frac{1}{2} \sqrt{\mathcal{E} \mathcal{D}}, \bar{V} + \frac{1}{2} \sqrt{\mathcal{E} \mathcal{D}} \right] \]

and

\[\bar{V} = \frac{1}{2} \mathbb{E}(R_i^{-1} Y_i) + \frac{1}{2} \mathbb{E}(R_i^{-1})^{-1} \mathbb{E}(Y_i), \]
\[\mathcal{E} = e' \mathbb{E}(R_i^{-1}) e - e' \mathbb{E}(R_i)^{-1} e, \]
\[\mathcal{D} = \mathbb{E}(Y_i' R_i^{-1} Y_i) - \mathbb{E}(Y_i)' \mathbb{E}(R_i)^{-1} \mathbb{E}(Y_i). \]
where \(E \geq 0 \) and \(D \geq 0 \) and they are zero if and only if \(\mathcal{R}_i \) and \(\mathcal{R}_i^{-1} \mathcal{Y}_i \) are degenerate across individuals, respectively. In addition, \([L, U]\) are sharp bounds of \(\mu_e \) under Assumptions 1 and 2 and the following implication of Assumption 3:

\[
\sum_{t=1}^{T} \mathbb{E}((R_{it}' V_i) \varepsilon_{it}) = 0,
\]

\[
\sum_{t=1}^{T} \mathbb{E}(R_{it} \varepsilon_{it}) = 0.
\]

Proof. See Appendix A.3. \(\square \)

The closed-form expressions in Proposition 2 give intuition for when \(L \) and \(U \) are finite. The expressions imply that the bounds are finite as long as the moments about \(\mathcal{R}_i \) and \(\mathcal{Y}_i \) are finite, namely \(\mathbb{E}(\mathcal{R}_i) \), \(\mathbb{E}(\mathcal{Y}_i) \), \(\mathbb{E}(\mathcal{R}_i^{-1} \mathcal{Y}_i) \) and \(\mathbb{E}(\mathcal{Y}_i' \mathcal{R}_i^{-1} \mathcal{Y}_i) \). Note that \(\mathcal{R}_i \) is the design matrix for individual \(i \) and \(\mathcal{R}_i^{-1} \mathcal{Y}_i \) is the OLS estimator of \(\mathcal{V}_i \) from individual time-series.

Now I explain the intuition behind Theorem 1. Let’s focus on the upper bound \(U \). For any given \((\lambda, \mu)\), consider the quantity

\[
Q(\lambda, \mu, W_i, V_i) = e' V_i + \sum_{t=1}^{T} \lambda_t (R_{it}' V_i) \varepsilon_{it} + \sum_{t=1}^{T} \mu_t S_{it} \varepsilon_{it}.
\]

Dependence of \(Q \) on \(e \) is suppressed in the notation. One may interpret \(Q \) as “Lagrangian”: it is a linear combination of \(e' V_i \) and the moment functions with Lagrange multipliers \(\{\lambda_t\} \) and \(\{\mu_t\} \). Note that \(\mathbb{E}(Q) = \mathbb{E}(e' V_i) \) since the second and the third terms have zero expectation by Assumption 3.

If we substitute \(\varepsilon_{it} = Y_{it} - R_{it} V_i \) into \(Q \), we obtain the following expression:

\[
Q(\lambda, \mu, W_i, V_i) = \sum_{t=1}^{T} \mu_t S_{it} Y_{it} + \left[e + \sum_{t=1}^{T} \lambda_t R_{it} Y_{it} - \sum_{t=1}^{T} R_{it} S_{it} \mu_t \right]' V_i - V_i' \left(\sum_{t=1}^{T} \lambda_t R_{it} R_{it}' \right) V_i.
\]

This is a quadratic polynomial in \(V_i \) whose first and second derivatives are

\[
\frac{dQ}{dV_i} = \left[e + \sum_{t=1}^{T} \lambda_t R_{it} Y_{it} - \sum_{t=1}^{T} R_{it} S_{it} \mu_t \right] - 2 \left(\sum_{t=1}^{T} \lambda_t R_{it} R_{it}' \right) V_i
\]

and

\[
\frac{d^2Q}{dV_i dV_i'} = -2 \left(\sum_{t=1}^{T} \lambda_t R_{it} R_{it}' \right) .
\]
If $\lambda_1, \ldots, \lambda_T > 0$, then the second derivative is a negative definite matrix, in which case Q has a global maximum at the solution to the first order condition $dQ/dV_i = 0$. Let $P = \max_{v \in V} Q(\lambda, \mu, W_i, v)$ be the resulting maximum, which is only a function of (λ, μ, W_i) since V_i is “maximized out”. Then

$$P(\lambda, \mu, W_i) \geq Q(\lambda, \mu, W_i, V_i).$$

Taking expectation on both sides yields

$$\mathbb{E}(P(\lambda, \mu, W_i)) \geq \mathbb{E}(Q) = \mu_e$$

which shows that $\mathbb{E}(P)$ is an upper bound for μ_e for any (λ, μ) such that $\lambda > 0$. Moreover, since the above equation holds for any (λ, μ) such that $\lambda > 0$, it follows that

$$\min_{\lambda > 0, \mu} \mathbb{E}(P(\lambda, \mu, W_i)) \geq \mu_e$$

which is shown to be the sharp upper bound in the proof of Theorem 1. The sharp lower bound can be obtained by repeating the same argument with $\lambda < 0$.

3.3 Identifying power of the standard assumption in fixed effect models

In dynamic fixed effect models, a frequently used condition is that the error term is mean independent of (Z_i, X_{ti}) but not necessarily V_i. In other words, the following assumption is often made:

Assumption 4. The random variables $(W_i, V_i)_{t=1}^T$ and $(\epsilon_{it})_{t=1}^T$ satisfy

$$\mathbb{E}(\epsilon_{it} | Z_i, X_{ti}) = 0.$$

Note that V_i is not included as a conditioning variable in Assumption 4. In standard fixed effects models with no coefficient heterogeneity, Assumption 4 is sufficient for identifying and estimating the coefficients.

It can be shown that Assumption 4 alone provides no information at all about the coefficients, which is stated as the following proposition.

Proposition 3. Suppose Assumptions 1 and 4 hold. Suppose that $e \neq 0$. Consider a sequence of distributions P_M, indexed by $M \in \mathbb{N}$, such that the support of (W_i, V_i) is $[-M, M]^{(1+q+p)T+(q+p)}$.

Let \([L_M, U_M]\) be the sharp bound of \(\mu_e\). Then, under regularity conditions on \(\{P_M\}\),

\[
\lim_{M \to \infty} L_M = -\infty \quad \text{and} \quad \lim_{M \to \infty} U_M = \infty.
\]

That is, as \(M \to \infty\), the identified set tends to a trivial set.

Proof. See Appendix A.4. \(\square\)

Note that Chamberlain (1993) showed failure of point-identification under Assumptions 1 and 4. Proposition 3 shows the size of the identified set under the assumption.

This result is related to the result of Ahn and Schmidt (1995) where they point out that additional moment conditions other than Assumption 4 can provide additional information about the model. Proposition 3 is an extreme case where Assumption 4 provides no information at all without additional moment conditions.

The intuition for Proposition 3 is similar to that of Theorem 1. For any given function \(g_t : \mathbb{R}^{q + pt} \mapsto \mathbb{R}\), consider the quantity

\[
\tilde{Q}(g_1, \ldots, g_T, W_i, V_i) = e' V_i + \sum_{t=1}^{T} g_t(Z_i, X_{it}^t) \epsilon_{it}.
\]

Note that \(\mathbb{E}(\tilde{Q}) = \mathbb{E}(e' V_i)\) since the second term has zero expectation by Assumption 4.

If we substitute \(\epsilon_{it} = Y_{it} - R_{it} V_i\) into \(\tilde{Q}\), we can see that \(\tilde{Q}\) is a linear function of \(V_i\):

\[
\tilde{Q}(g_1, \ldots, g_T, W_i, V_i) = \sum_{t=1}^{T} g_t(Z_i, X_{it}^t) Y_{it} + \left[e - \sum_{t=1}^{T} g_t(Z_i, X_{it}^t) R_{it} \right]' V_i.
\]

Since a linear function is unbounded and \(e \neq 0\), the maximum of \(\tilde{Q}\) with respect to \(V_i\) is infinite for any \(g_t\), except for a probability-zero set of \(W_i\). Then it follows that the upper bound of \(\mu_e\), given by the expectation of the maximum of \(\tilde{Q}\) with respect to \(V_i\), is infinite. The proof of Proposition 3 establishes a formal argument of this intuition.

4 Identification of higher order moments and the CDFs

This section formalizes the intuition of Section 3 and presents a general partial identification result for dynamic random coefficient models. Consider a parameter of interest of the form

\[
\theta = \mathbb{E}(m(W_i, V_i))
\]
for some known function \(m : \mathcal{W} \times \mathcal{V} \mapsto \mathbb{R} \). I assume the following unconditional moment restrictions.

Assumption 5. The random vectors \((W_i, V_i)\) satisfy

\[
\mathbb{E}(\phi_k(W_i, V_i)) = 0, \quad k = 1, \ldots, K,
\]

where the \(\phi_k \)'s are real-valued moment functions and \(K \) is the number of moment restrictions.

Example 4. Consider identification of \(\mathbb{E}(e'V_i) \) discussed in the previous section. Assumptions 1 and 3 imply \(K = T + qT^2 + pT(T + 1)/2 \) moment conditions where the \(\phi_k \)'s for \(k = 1, \ldots, T \) are

\[
\phi_k(W_i, V_i) = (R_{ik}'V_i)(Y_{ik} - R_{ik}'V_i)
\]

and the \(\phi_k \)'s for \(k > T \) are entries of the vectors

\[
(Z_i', X_i'^t)'(Y_i - R_{it}'V_i), \quad t = 1, \ldots, T
\]

which is a \((qT + pt)\)-dimensional vector for each \(t \).

Note that the error term \(\varepsilon_{it} \) does not appear in Assumption 5 since \(\varepsilon_{it} \) is understood as a deterministic function of \((W_i, V_i)\) by the relation \(\varepsilon_{it} = Y_{it} - R_{it}'V_i \).

Now I characterize the identified set of \(\theta \) under Assumptions 1 and 5. The approach is to directly write down the definition of the identified set and then characterize it. Let \(P_{W,V} \in \mathcal{M}_{W \times V} \) be a bounded and finitely additive signed Borel measure on \(\mathcal{W} \times \mathcal{V} \) and \(\mathcal{M}_{W \times V} \) be the linear space of such measures equipped with the total variation norm. Also, let \(P_W \) be the marginal distribution of \(W_i \) that the econometrician observes.

Given the notation, the sharp identified set \(I \) of \(\theta \) is defined by

\[
I \equiv \left\{ \int m(w, v) dP \, \bigg| \, P \in \mathcal{M}_{W \times V}, \quad P \geq 0, \quad \int dP = 1, \quad \int \phi_k(w, v) dP = 0, \quad k = 1, \ldots, K, \quad \int P(w, dv) = P_W(w) \text{ for all } w \in \mathcal{W} \right\}.
\]

Dependence of \(I \) on \(m, P_W, \phi_k \)'s and \(\mathcal{M}_{W \times V} \) are suppressed in the notation.

In words, \(I \) is the collection of all \(\int m(W_i, V_i) dP \) values that are implied from \(P \) such that
(i) \(P \) is a probability distribution of \((W_i, V_i) \), (ii) \(P \) satisfies moment restrictions, and (iii) the marginal distribution of \(W_i \) implied from \(P \) equals to the observed distribution \(P_W \).

Note that all the defining properties of \(I \) are linear in \(P \). This means that \(I \) is a convex set in \(\mathbb{R} \), i.e. an interval in \(\mathbb{R} \), which means that \(I \) can be characterized by its lower and upper bounds. The sharp lower bound \(L \) of \(I \) is defined by

\[
\min_{P \in \mathcal{M}_{W \times V}, \, P \geq 0} \int m(w, v) dP \quad \text{subject to} \quad \int \phi_k(w, v) dP = 0, \quad k = 1, \ldots, K, \tag{9}
\]

where the constraint \(\int dP = 1 \) is omitted since it is redundant given the last line of (9). Note that \(\int dP_W(w) = 1 \) since it is a probability distribution.

Equation (9) is a linear program (LP) in \(P \), with a caveat that \(P \) is an infinite-dimensional object. (9) is not a tractable characterization of \(L \) in the sense that the estimation methods that (9) imply is computationally infeasible due to the curse of dimensionality. For example, Honoré and Tamer (2006) and Gunsilius (2019) discretized the space of \((W_i, V_i) \) and solved the discretized problem, which is computationally infeasible for random coefficient models since the dimension of \((W_i, V_i) \) is often large. Note that \(W_i \) contains full history of all observables (regressors and response variables) and that \(V_i \) contains all random coefficients. For the random coefficient model with \(R \) regressors and \(T \) waves, \(P \) is a distribution on a \((RT + R + T)\)-dimensional space.

The approach employed here is to use the dual representation of (9). The standard duality theorem for finite-dimensional LP extends to the infinite-dimensional case, and we can use the dual representation of (9) to obtain a tractable characterization of \(I \).

The following theorem characterizes \(I \) using the dual representation of (9).

Theorem 2. Suppose Assumption 5 hold. Let \(\lambda_k \in \mathbb{R} \) for \(k = 1, \ldots, K \). Then, under suitable regularity conditions including that \(W \times V \) is compact and that \((m, \phi_1, \ldots, \phi_K)\) are bounded Borel measurable functions, \(I = [L, U] \) where

\[
L = \max_{\lambda_1, \ldots, \lambda_K} \mathbb{E} \left[\min_{v \in V} \left\{ m(W_i, v) + \sum_{k=1}^{K} \lambda_k \phi_k(W_i, v) \right\} \right], \tag{10}
\]

and

\[
U = \min_{\lambda_1, \ldots, \lambda_K} \mathbb{E} \left[\max_{v \in V} \left\{ m(W_i, v) + \sum_{k=1}^{K} \lambda_k \phi_k(W_i, v) \right\} \right]. \tag{11}
\]
Proof. See Appendix A.5.

Note that Assumption 1 is not included in Theorem 2. The result of Theorem 2 applies more generally to models of generalized method of moments (GMM) where the moment functions contain both observables and unobservables (Galichon and Henry, 2009; Schennach, 2014).

Although Theorem 2 applies to models of GMM, the estimators that Theorem 2 imply are not obvious to compute for general models of GMM. In the next section, I show that, for dynamic random coefficient models, the linear structure of the model can be exploited to obtain a computationally tractable estimation procedure.

5 Computation

Theorem 2 characterizes the lower and upper bounds of θ in the population. In practice, a researcher does not observe the population distribution P_W but instead observes a finite sample (W_1, \ldots, W_N) of size N which are i.i.d. P_W. A natural approach for estimating L and U given the sample is to replace the expectations in (10) and (11) with the sample means. Define \hat{L} as an estimator for L where

$$\hat{L} = \max_{\lambda_1, \ldots, \lambda_K} \frac{1}{N} \sum_{i=1}^{N} \min_{v \in V} \left\{ m(W_i, v) + \sum_{k=1}^{K} \lambda_k \phi_k(W_i, v) \right\},$$

and \hat{U} as an estimator for U where

$$\hat{U} = \min_{\lambda_1, \ldots, \lambda_K} \frac{1}{N} \sum_{i=1}^{N} \max_{v \in V} \left\{ m(W_i, v) + \sum_{k=1}^{K} \lambda_k \phi_k(W_i, v) \right\}.$$ (13)

Statistical properties of (12) and (13) are studied in the next section. This section discusses computational issues in the estimators that are not obvious to deal with and how to resolve those issues. The discussion focuses on (12), and the same discussion applies to (13) as well.

Note first that computation of (12) requires solving two types of optimization problems, namely the inner minimization problem (for each i) and the outer maximization problem. Each problem has its own difficulties:

- the inner minimization problem in (12) must be solved globally but its objective function is not necessarily convex. Moreover, it must be solved very fast: it needs to be solved for each i and for each step of the outer maximization problem.
• the outer maximization problem in (12) must also be solved globally, and it may be an optimization over a large dimensional space.

In particular, the inner problem is computationally hard to deal with. It will be shown that, for computational tractability of the outer problem, the inner problem must be solved not only very fast but also exactly. For this reason, general-purpose minimization methods for the inner problem are not computationally feasible except for low-dimensional cases such as \(\mathcal{V} \) is a discrete set or \(\mathcal{V} \) is a convex subset of \(\mathbb{R} \) or \(\mathbb{R}^2 \).

The results about computation are presented in two subsections. The first subsection shows that, for random coefficient models, the inner problem can be solved fast and exactly by using a fast and exact algorithm for global polynomial optimization. Then the second subsection shows that the outer problem is a convex optimization problem and hence easy to solve given that the inner problems are solved fast and exactly.

5.1 The inner problem

The inner optimization problem of (12) is to evaluate the function

\[
G(\lambda_1, \ldots, \lambda_K, w) = \min_{v \in \mathcal{V}} \left\{ m(w, v) + \sum_{k=1}^{K} \lambda_k \phi_k(w, v) \right\}
\]

(14)

for each fixed \(w = W_i \), where \(i = 1, \ldots, N \), given the value of \((\lambda_1, \ldots, \lambda_K) \).

A difficulty in evaluating \(G \) is that the minimization problem must be solved globally. In the simple case that \(\mathcal{V} \) is discrete or is a low-dimensional space such as \(\mathbb{R} \) or \(\mathbb{R}^2 \), the inner problem can be solved by enumerating all points in \(\mathcal{V} \) or the grid points of \(\mathcal{V} \). However, for random coefficient models, the assumption that the random coefficients are discrete is often hard to justify, and the dimension of \(\mathcal{V} \) is often larger than two. Note that the dimension of \(\mathcal{V} \) equals to the number of regressors in dynamic random coefficient models, including a constant.

This subsection shows that \(G \) can be computed fast and exactly when \(m \) and \(\phi_k \)'s are polynomials in \(v \). This is because, when \(m \) and the \(\phi_k \)'s are polynomials, evaluation of \(G \) is equivalent to solving global minimization problem of a polynomial, for which a fast and exact algorithm exists. Note that we can choose \(\phi_k \)'s to be polynomials since \(\xi_{it} \) is a linear function of \(V_i \) and we can choose \(g \) to be polynomials in \(V_i \) in (8).

The polynomial case is useful for computing bounds for many interesting parameters such as the moments and CDFs of random coefficients. The following examples describe some of them.
Example 5. Consider identification of the mean parameter $E(e'V_i)$ discussed in Section 3. Theorem 1 characterized the identified set of $\mu_e = E(e'V_i)$ under Assumptions 1 and 3. In this setup, the m function is given by

$$m(W_i, V_i) = e'V_i$$

which is a linear function of V_i and hence a first-order polynomial. Moreover, the ϕ_k's under Assumption 3 consist of the functions

$$(R_{iit}'V_i)(Y_{it} - R_{iit}'V_i), \quad t = 1, \ldots, T,$$ \hspace{1cm} (15)

and the entries of the vectors

$$(Z_{it}'X_{it}')(Y_i - R_{iit}'V_i), \quad t = 1, \ldots, T,$$ \hspace{1cm} (16)

which are at most second-order polynomials of V_i. These moment restrictions are exactly what I use in the application for estimating identified sets of the means of random coefficients.

Example 6. Suppose a researcher is interested in identifying an element of $E(V_iV_i')$. In this case, the researcher sets m to be an element of V_iV_i', which is a second-order polynomial of V_i. Suppose that the researcher assumes the moment condition $E((R_{iit}'V_i)^3\varepsilon_{iit}) = 0$, in which case the ϕ_k's consist of the functions

$$(R_{iit}'V_i)^3(Y_{it} - R_{iit}'V_i), \quad t = 1, \ldots, T,$$

which are fourth-order polynomials of V_i. The researcher may also assume that Assumption 3 holds, in which case one sets the additional ϕ_k's to be (15) and (16). These moment restrictions are exactly what I use in the application for estimating identified sets of the variances and correlations of random coefficients.

In Examples 5 and 6, the moment functions are chosen so that they yield finite lower and upper bounds for the parameters of interest. As a practical strategy for ensuring finite bounds, a researcher can choose ϕ_k's so that the inner objective function has even order that is strictly larger than the order of the parameter of interest. In Examples 5 and 6, I chose ϕ_k's to be the second order for $E(V_i)$ and to be the fourth order for $E(V_iV_i')$. Then the inner objective function has its leading coefficient positive or negative depending on the signs of λ, which yields finite inner solutions in (12) and (13).

The polynomial case can be extended to allow either m or ϕ_k's to be indicator functions of V_i. The idea is that an indicator function partitions \mathcal{V} into two exclusive sets and that the
indicator function is constant within each set. Then the researcher can compute the global optimum within each partition and then compute the optimum of the two.

This extension is useful for computing bounds for CDFs of random coefficients, which is described as the following example.

Example 7. Let V_{i1} be the first entry of $V_i \in \mathbb{R}^{q+p}$ and let $v^0 \in \mathbb{R}$. Suppose a researcher is interested in identifying the CDF of V_{i1} evaluated at v^0. Then the researcher sets m to be

$$m(W_i, V_i) = 1(V_{i1} \leq v^0),$$

which is an indicator function of V_i. Let’s assume that Assumption 3 holds, in which case the ϕ_k’s are at most second-order polynomials in V_i stated in (16) and (15). Then the m function partitions the V space into two exclusive sets $V_1 = \{(v_1, \ldots, v_{q+p}) \mid v_1 \leq v\}$ and $V_2 = \{(v_1, \ldots, v_{q+p}) \mid v_1 > v\}$. In addition, $m = 1$ on V_1 and $m = 0$ on V_2. Then the objective function in (14) is a second-order polynomial within each of V_1 and V_2 for which one can compute the minimum. Then the researcher can evaluate G by taking the smaller optimum between those in V_1 and V_2.

The following two subsections discuss a fast and exact computation method for global optimization of polynomials. The first subsection considers a simple case of quadratic polynomials for which the global solution is obtained in a closed-form. Then the second subsection considers generic polynomials for which the global optimization problem is solved numerically.

5.1.1 Global optimization of quadratic polynomials

We first consider a simple case of global optimization of quadratic polynomials. We can express a quadratic polynomial in the following standard form:

$$Q(v) = v'Av + b'v + c$$

where A is a $\dim(v) \times \dim(v)$ symmetric matrix, b is a $\dim(v)$-dimensional vector and $c \in \mathbb{R}$. Note that, if (14) is expressed in this standard form, (A, b, c) are functions of w.

The first and the second derivatives of $Q(v)$ are

$$\frac{dQ}{dv} = 2Av + b, \quad \frac{d^2Q}{dvdv'} = 2A.$$

The global optimum of Q can be computed using simple algebra. First, if A is positive definite,
Q is globally convex and it has a global finite minimum at the solution to the first order condition

\[\frac{dQ}{dv} = 2Av + b = 0 \]

whose unique solution is \(v^* = -(1/2)A^{-1}b \). Thus the global minimum of \(Q \) is given by

\[\min_{v \in V} Q(v) = c - \frac{1}{4} b' A^{-1} b. \] (17)

If \(A \) is not positive definite, then \(A \) has a non-positive eigenvalue. If \(A \) has a negative eigenvalue, then the minimum of \(Q \) is negative infinity. If \(A \) does not possess a negative eigenvalue, which means that \(A \) possesses a zero eigenvalue, then \(A \) is singular and the only case that \(Q \) has a finite minimum is when the first order condition

\[2Av + b = 0 \]

has an infinite number of solutions. If it is the case and the value of \(Q \) is constant over the solutions, then \(Q \) has a finite minimum at any of the solutions. Otherwise, \(Q \) does not have a finite global minimum.

In practice, when we solve (14) for each \(w = W_i \) and if \(W_i \) follows a continuous distribution, \(A \) possesses a zero eigenvalue with probability zero. Therefore, we may simply use (17) to express (14) in a closed-form if and only if \(A \) is positive definite; otherwise we assign negative infinity.

5.1.2 Global optimization of generic polynomials

When \(m \) and \(\phi_k \)'s are polynomials of generic order, a closed-form solution is not available, but it can be solved numerically. The idea is to transform the problem into a convex optimization problem (Lasserre, 2010, 2015). The resulting algorithm is fast, and moreover it computes an exact solution. This subsection discusses main idea of the algorithm. A formal discussion can be found in Appendix C.

Suppose a researcher wants to compute the global minimum of a fourth-order polynomial in two variables \((v_1, v_2)\). Let \(u(v) = (1, v_1, v_2, v_1^2, v_1v_2, v_2^2)' \) be the vector of monomials up to the second order and \(u_j(v) \) be the \(j \)-th entry of \(u(v) \). Let \(\{p_j(v)\} \) be the collection of all monomials up to the fourth order, which are unique entries of \(\text{vec}(u(v)u(v)') \). Let \(J \) be the cardinality of \(\{p_j(v)\} \).

Let \(a_j \) be the coefficient on the monomial \(p_j(v) \). We can express a fourth-order polynomial
in the following standard form:

\[\pi(v) = \sum_{j=1}^{I} a_j p_j(v). \]

Consider minimization of \(\pi(v) \) with respect to \(v \in \mathcal{V} \). Note first that the minimum of \(\pi(v) \) over \(\mathcal{V} \) equals to the solution of the following minimization problem:

\[
\min_{P_V \in \mathcal{M}_V, \int dP_V = 1} \int \pi(v) dP_V
\]

where \(P_V \) is a probability distribution on \(\mathcal{V} \). (18) is minimized at the point-mass distribution concentrated at the minimizer of \(\pi(v) \).

Then, since \(\pi(v) \) is a linear combination of \(p_j(v) \), we can rewrite (18) as

\[
\min_{P_V \in \mathcal{M}_V, \int dP_V = 1} \sum_{j=1}^{I} a_j \int p_j(v) dP_V,
\]

which can be rewritten further as

\[
\min_{M_1, \ldots, M_I \in \mathbb{R}, M_1 = 1} \sum_{j=1}^{I} a_j M_j \quad \text{subject to} \quad M_j = \int p_j(v) dP_V \text{ for some } P_V \in \mathcal{M}_V.
\]

Except for the fact that the constraint is complicated, (19) is a minimization over \(\mathbb{R}^I \) and the objective is linear (and hence convex) in the choice variables.

Now the idea is to replace the constraint in (19) with a convex constraint that only involves \((M_1, \ldots, M_I) \). The constraint in (19) tells that \((M_1, \ldots, M_I) \) must be moments of some underlying distribution. Checking this constraint is related to the following problem called the moment problem in mathematics: “Given the sequence of real numbers \((M_1, \ldots, M_I) \), can they be justified as moments of some distribution?”.

A sequence of real numbers must satisfy some relations between them in order for them to be justified as moments. For example, for a generic real random variable \(X \), it must be that \(\text{Var}(X) \) is positive, i.e.

\[\mathbb{E}(X^2) - \mathbb{E}(X)^2 \geq 0. \]

This is equivalent to the following condition:

\[
\begin{pmatrix}
1 & \mathbb{E}(X) \\
\mathbb{E}(X) & \mathbb{E}(X^2)
\end{pmatrix}
\]

is positive semidefinite.
This simple example can be generalized. Define a linear operator L that maps a polynomial to \mathbb{R} by the relation

$$L \left(\sum_j a_j p_j(v) \right) = \sum_j a_j M_j.$$

It can be shown that, if (M_1, \ldots, M_J) are moments, then

$$L(u(v)u(v)')$$

is positive semidefinite

where the operator L is applied to each element of $u(v)u(v)'.$ Note that $L(u(v)u(v)')$ is a matrix that involves (M_1, \ldots, M_J) only.

We can show that (20) is a convex constraint. It is based on the fact that the set of positive semidefinite matrices is a convex set in the space of vectorized matrix entries. Therefore, if we replace the constraint in (19) with (20), we obtain the following convex optimization problem:

$$\min_{M_1, \ldots, M_J \in \mathbb{R}} \sum_{j=1}^J a_j M_j \text{ subject to } L(u(v)u(v)') \text{ is positive semidefinite.} \tag{21}$$

Moreover, the constraint can be handled more efficiently than a generic convex constraint so that the optimization problem has its own name: semidefinite program (SDP). It is an optimization problem where a matrix involving the choice variables is constrained to be positive semidefinite.

The SDP approach of polynomial optimization solves (21), the semidefinite relaxation, which can be solved fast and reliably using SDP solvers available in the industry. The algorithm offers certificate of optimality, a sufficient condition in terms of the optimal value of (M_1, \ldots, M_J) which ensures that the solution to (21) equals to the exact global optimum. For researchers interested in using the semidefinite relaxation approach for global polynomial optimization, I offer a general-purpose R package optpoly which implements the approach\(^5\). Alternatively, another general-purpose package Gloptipoly (Henrion, Lasserre, and Löfberg, 2008) is available for Matlab users.

Since a necessary condition is weaker than the original condition, the solution to (21), i.e. the SDP solution, is less than or equal to the solution to (19). The semidefinite relaxation approach solves a hierarchy of the SDP programs, or a sequence of the SDP programs, until one obtains the certificate of optimality which is known to be obtained in finite number of steps under suitable conditions. Moreover, even if one does not solve the hierarchy of the

\(^5\)Available at https://github.com/wooyong/optpoly.
SDPs, one can take an SDP solution as a lower bound for (19) and the resulting value of (12) is a conservative and yet a valid lower bound for θ.

5.2 The outer problem

Now I turn to the outer optimization problem of (12). A researcher needs to solve the optimization problem

$$\max_{\lambda_1, \ldots, \lambda_K} \frac{1}{N} \sum_{i=1}^{N} G(\lambda_1, \ldots, \lambda_K, W_i).$$

Assume that the researcher can evaluate G exactly using the algorithm in the previous subsection. Then the remaining difficulty is how to solve the optimization problem given that K is potentially large.

The following proposition shows that the outer optimization problem is a convex optimization problem.

Proposition 4. Let $\lambda = (\lambda_1, \ldots, \lambda_K)$ and define

$$\hat{L}(\lambda) = \frac{1}{N} \sum_{i=1}^{N} G(\lambda, W_i)$$

where G is defined in (14). Then $\hat{L}(\lambda)$ is globally concave in λ.

Proof. See Appendix A.6.

Proposition 4 tells that there is only one local maximum of $\hat{L}(\lambda)$, which is also the global maximum. This suggests that the researcher can maximize $\hat{L}(\lambda)$ using fast convex optimization algorithms such as gradient descent methods. Milgrom and Segal (2002, Theorem 3) provides conditions under which G is differentiable when $K = 1$, which can be used to provide conditions under which G is directionally differentiable. In practice, if one is concerned with differentiability, one may apply gradient descent methods based on finite differences.

Note that Proposition 4 comes from the concavity of G and that solving the inner problem exactly by the polynomial optimization algorithm is crucial for computational tractability of the outer problem when K is large. This is a key distinction from the general-purpose approach of Schennach (2014) where I specifically focus on random coefficient models and exploit the structure of the model to gain computational tractability for the models with large dimensions. If a researcher uses general-purpose global optimization methods such as simulated annealing to solve the inner problem, then G is no longer concave and the researcher cannot use fast convex optimization algorithms for the outer problem. This is problematic
when K is large, which is often the case in random coefficient models. For example, in the application in Section 7, K ranges from 55 to 166 depending on the model.

6 Estimation and inference

This section studies statistical properties of \hat{L} defined in (12). The results are presented in three subsections. The first subsection shows consistency of \hat{L} to L. The second subsection notes that \hat{L} may not be well-defined depending on the sample, and it discusses how to modify \hat{L} to be well-defined in that case. The third subsection discusses inference about L using the results in the second subsection as an input.

6.1 Consistency

Using the notation defined in (14) and Proposition 4, we can concisely write the lower bound estimator \hat{L} defined in (12) as

$$\hat{L} = \max_{\lambda} \hat{L}(\lambda) = \max_{\lambda} \frac{1}{N} \sum_{i=1}^{N} G(\lambda, W_i).$$

Note that the inner solution function

$$G(\lambda, w) = \min_{v \in \mathcal{V}} \left\{ m(w, v) + \sum_{k=1}^{K} \lambda_k \phi_k(w, v) \right\}$$

does not involve any statistical object. Given the model, i.e. given m and ϕ_k’s, the function G is a deterministic object. Therefore, what is studied here is the property of the statistical object

$$\hat{L} = \max_{\lambda} \hat{L}(\lambda) = \max_{\lambda} \frac{1}{N} \sum_{i=1}^{N} G(\lambda, W_i) \quad (22)$$

as an estimator for

$$L = \max_{\lambda} L(\lambda) = \max_{\lambda} \mathbb{E} \left(G(\lambda, W_i) \right). \quad (23)$$

Note that $\hat{L}(\lambda)$ is the objective function of an M-estimation problem where $L(\lambda)$ is the population objective and λ is the parameter that is M-estimated. Then the consistency follows by replicating the analysis of M-estimation. Most of the regularity conditions in M-estimation are satisfied by the fact that G is concave in λ.

26
Proposition 5. Suppose that L exists and is finite and that $\arg\max_{\lambda} L(\lambda)$ is in the interior of \mathbb{R}^K. Then \hat{L} converges to L in probability.

Proof. See Appendix A.7.

6.2 Relaxation of moment conditions

In contrast to standard M-estimation, \hat{L} may not always be well-defined. The intuition for why can be gained by comparing the estimation to the standard GMM estimation. In the standard GMM estimation, the minimum GMM objective may be strictly positive in the sample because the moment conditions based on the empirical distribution may not be exactly satisfied due to sample variation. This also happens to random coefficient models. That is, there may be no distribution of the random coefficients that satisfy all the moment conditions given the empirical distribution of data. In this case, the researcher obtains an empty identified set, and the maximization problem of \hat{L} diverges to $+\infty$ and the corresponding problem for the upper bound diverges to $-\infty$.

In standard GMM estimation, when the moment conditions are not exactly satisfied, a researcher minimizes the GMM criterion and choose the parameter value that minimizes the criterion. A similar approach can be taken here, which can be implemented in two steps. In the first step, one finds the smallest $\delta \geq 0$ that satisfies the following criterion:

$$|E(\phi_k(W_i, V_i))| \leq \delta, \quad k = 1, \ldots, K. \quad (24)$$

This can be thought of as an absolute-value GMM criterion. The following proposition explains how to compute the smallest δ.

Proposition 6. Given the sample (W_1, \ldots, W_N), consider the linear programming problem

$$\min_{P \in M_{W \times V}, P \geq 0, \delta \geq 0} \delta \quad \text{subject to} \quad \left| \int \phi_k(W_i, V_i)dP \right| \leq \delta, \quad k = 1, \ldots, K,$$

$$\int P(w,dV_i) = \hat{P}_W(w) \text{ for all } w \in \mathcal{W}, \quad (25)$$

where \hat{P}_W is the empirical distribution of W_i constructed from (W_1, \ldots, W_N). Then its solution equals

\footnotetext{Andrews and Kwon (2019) study and formalize this approach in standard GMM estimation based on moments without unobservables.}
to the solution of the following optimization problem:

\[
\max_{\lambda_1, \ldots, \lambda_K} \frac{1}{N} \sum_{i=1}^{N} \left\{ \sum_{k=1}^{K} \lambda_k \phi_k(W_i, v) \right\}
\text{subject to } \sum_{k=1}^{K} |\lambda_k| \leq 1. \tag{26}
\]

Proof. See Appendix A.8.

Proposition 6 tells that a researcher can find the minimum \(\delta \) by solving the problem that is similar to (12). In particular, one can use the same computation methods described in the previous section to solve the inner and outer optimization problems in (26). A difference is that (26) is a constrained optimization problem, but the constraint has a very simple structure and its Jacobian can be derived in a closed-form as well.

Let \(\delta^* \) be the solution to (26). Then the second step computes the bounds for the parameter of interest. I compute the lower bound with the \(L^1 \) penalty on the \(\lambda \)'s with \(\delta^* \) being the penalty multiplier:

\[
\hat{L}_{pen} = \max_{\lambda_1, \ldots, \lambda_K} \left[\frac{1}{N} \sum_{i=1}^{N} \min_{v \in V} \left\{ m(W_i, v) + \sum_{k=1}^{K} \lambda_k \phi_k(W_i, v) \right\} - \delta^* \sum_{k=1}^{K} |\lambda_k| \right]. \tag{27}
\]

The following proposition justifies the use of the \(L^1 \) penalty.

Proposition 7. Given the sample \((W_1, \ldots, W_N)\) and given \(\delta^* \in \mathbb{R} \), consider the linear programming problem

\[
\min_{p \in \mathcal{M}_{W \times V}, p \geq 0} \int m(W_i, V_i) dp \quad \text{subject to } \left| \int \phi_k(W_i, V_i) dp \right| \leq \delta^*, \quad k = 1, \ldots, K,
\]

\[
\int p(w, dv) = \hat{P}_W(w) \text{ for all } w \in W.
\]

where \(\hat{P}_W \) is the empirical distribution of \(W_i \) constructed from \((W_1, \ldots, W_N)\). Then its solution equals to \(\hat{L}_{pen} \) defined in (27).

Proof. See Appendix A.9.

Proposition 7 tells that (27) equals to the smallest value of \(\theta \) for the distributions that minimize the absolute-value GMM criterion defined in (24). In principle, such distribution is not necessarily unique. If it is unique, then the resulting estimate of the identified set from the two-step procedure becomes a point.

In practice, because of either machine precision or stopping criterion of numerical optimization methods, the numerical solution to (26) may be strictly smaller than the analytical
solution δ^*. In that case, (27) will diverge to infinity since the penalty multiplier is not large enough. To resolve this problem, one may inflate the value of numerical solution a little bit, in which case (27) picks up the smallest value of θ for the distributions that attain the near-minimum of the absolute-value GMM criterion. In the special case that the minimizer distribution is unique, the resulting estimate of the identified set with inflated numerical solution will be a very small interval instead of a point.

Although (27) allows the lower bound estimate to be always well-defined, there are two issues with it. First, it is an ad-hoc approach and there is no formal justification for why relaxation of moment conditions is a good idea. Second, picking up the distributions that minimize the criterion may produce a point even if the model is partially identified. The literature dealt with the second problem by supplying a value that is larger than δ^* in (27) (Mogstad, Santos, and Torgovitsky, 2018), but how much larger it should be remains a question. The next subsection discusses a more principled approach of estimating the bounds, which is directly computing a confidence interval for the identified set.

6.3 Inference

This subsection discusses construction of a confidence interval for the identified set $[L, U]$. The objective is, given one-sided significance level α, to compute L_α and U_α such that

$$\liminf_{N \to \infty} \inf_{\mathcal{P}} P([L, U] \subseteq [L_\alpha, U_\alpha]) \geq 1 - 2\alpha.$$

To compute a confidence interval, I leverage results from the literature on moment inequalities. Recall the notation in (22) and (23). The idea is to consider the lower bound L as a parameter of interest in the moment inequalities model. Define L to be the smallest number such that

$$L(\lambda) - L = \mathbb{E}(G(\lambda, W_i) - L) \leq 0 \quad \text{for all } \lambda \in \mathbb{R}^K. \quad (29)$$

This is a standard moment inequalities model albeit the number of inequalities is infinite (which is indexed by $\lambda \in \mathbb{R}^K$). To make it computationally tractable, let Λ_F be a finite subset of \mathbb{R}^K and consider the following moment inequalities model with parameter L_F:

$$\mathbb{E}(G(\lambda, W_i) - L_F) \leq 0 \quad \text{for all } \lambda \in \Lambda_F. \quad (30)$$

Now the idea is that, since (30) uses smaller number of moment inequalities than (29), one can use (30) to make a conservative inference about L.

How much conservative it is depends on how much information is contained in (30) rel-
ative to (29). Analysis of comparison between (29) and (30) is a topic of future research. However, there are two conjectures that can be made. First, since G is concave in λ and hence continuous in λ, one may conjecture that setting Λ_F to be a grid of \mathbb{R}^K yields an arbitrary good approximation to (29). Second, concavity of G implies that there is only one moment that is binding in (29), which is the moment with the index $\lambda^* = \arg\max_\lambda \mathbb{E}(G(\lambda, W_i))$, and so one can conjecture that it is sufficient to consider a grid around λ^* and there is not much information outside of its neighborhood. Then the sample counterpart of λ^* can be obtained by using the estimation methods described in the previous subsections.

The rest of this subsection discusses a practical approach resulting from this idea. The approach relies on the hypothesis testing method proposed by Romano, Shaikh, and Wolf (2014), which is shown to have a good performance when the size of Λ_F is large in Bai, Santos, and Shaikh (2019).

Let α be one-sided significance level and ξ be an additional tuning parameter such that $0 < \xi < \alpha$. Romano, Shaikh, and Wolf (2014) find that $\xi = 0.1 \alpha$ shows a good performance in their simulation. Consider a finite grid Λ_F around λ_N^*, where λ_N^* is obtained from either the lower bound estimate in (12) or its moment-relaxation version in (27). The size of the grid can be taken to be large. For each $\lambda \in \Lambda_F$, compute

$$\hat{L}(\lambda) = \frac{1}{N} \sum_{i=1}^{N} G(\lambda, W_i)$$

and

$$\hat{S}(\lambda) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (G(\lambda, W_i) - \hat{L}(\lambda))^2}.$$

Note that these quantities do not involve L_F. Next, compute a critical value $c^*(\alpha, \xi)$ which also do not depend on L_F. Details about computation of the critical value is described in Appendix D. Then the confidence region for L_F proposed in Romano, Shaikh, and Wolf (2014) is the set of l’s such that

$$\max_{\lambda \in \Lambda_F} \frac{\sqrt{N}(\hat{L}(\lambda) - l)}{\hat{S}(\lambda)} \leq c^*(\alpha, \xi).$$

7Galichon and Henry (2011) studied reduction of the number of model restrictions without losing information. Their approach applies to the case where the model outcomes, which are sample moments in moment inequalities models, has discrete support.

8This is related to a step in the inference procedure of Chernozhukov, Lee, and Rosen (2013) where they compute a set of moment restrictions that is likely to bind.
This equation can be solved for \(l\). In particular, the confidence interval for \(L\) is \([L_\alpha, \infty)\) where

\[
L_\alpha = \max_{\lambda \in \Lambda_F} \left[\hat{L}(\lambda) - c_{\alpha, \beta} \times \frac{\hat{S}(\lambda)}{\sqrt{N}} \right].
\]

Romano, Shaikh, and Wolf (2014) showed that, under suitable conditions, the confidence interval \([L_\alpha, \infty)\) is uniformly consistent in level pointwisely in the identified set:

\[
\liminf_{N \to \infty} \inf_{P \in \mathcal{P}} P(L_\alpha \leq L_F) \geq 1 - \alpha,
\]

where \(\mathcal{P}\) is the set of distributions such that \(\max_{\lambda \in \Lambda_F} E_P(G(\lambda, W_i)) = L_F\). Using this result, we can show that, using \([L, U] \subseteq [L_F, U_F]\),

\[
\liminf_{N \to \infty} \inf_{P \in \mathcal{P}} P([L, U] \subseteq [L_\alpha, U_\alpha]) \geq 1 - 2\alpha,
\]

where \(U_\alpha\) is the upper bound of the confidence interval for \(U\) obtained by the symmetric procedure. Note that the inequality may be strictly positive, meaning that the inference may be conservative.

7 Application to life-cycle earnings and consumption dynamics (in progress)

In this section, I apply my method to the panel data of life-cycle earnings and consumption dynamics. I use the data on U.S. households from Panel Study of Income Dynamics (PSID) dataset, which is sampled every two years from 1999 to 2015. Details about construction of the dataset can be found in Appendix E. The dataset construction procedure gives \(N = 684\) individuals and \(T = 8\) waves.

The application is presented in two subsections. The first subsection estimates a reduced-form model of life-cycle earnings and consumption dynamics. The second subsection calibrates a structural life-cycle model to enhance understanding of the reduced-form estimates.
7.1 Reduced-form estimation

Consider the reduced-form model of life-cycle earnings and consumption dynamics

\[
\begin{align*}
C_{it} &= \gamma_{i0} + \gamma_{iY} Y_{it} + \gamma_{iA} A_{it} + \nu_{it}, \\
Y_{i,t+1} &= \beta_{i0} + \beta_{iY} Y_{it} + \epsilon_{it},
\end{align*}
\]

(31)

where \(C_{it}\) is non-durable consumption, \(Y_{it}\) is earnings and \(A_{it}\) is asset holdings, which are all measured in logs and net of demographic variables such as education level, year-of-birth, race, etc. The full set of demographic variables are listed in Appendix E.

Let \(\gamma_i = (\gamma_{i0}, \gamma_{iY}, \gamma_{iA})\) and \(\beta_i = (\beta_{i0}, \beta_{iY})\), and let \(Y_i = (Y_{i0}, \ldots, Y_{iT})\) be the full history of \(Y_{it}\) and \(Y_i^t = (Y_{i0}, \ldots, Y_{it})\) be the current history of \(Y_{it}\) up to \(t\). Define similar notation for \(C_{it}\) and \(A_{it}\). The error terms \(v_{it}\) and \(\epsilon_{it}\) in (31) satisfy the mean independence assumptions

\[
\begin{align*}
E(v_{it} | \gamma_i, \beta_i, Y_{it}, A_{it}) &= 0, \\
E(\epsilon_{it} | \gamma_i, \beta_i, Y_{it}) &= 0.
\end{align*}
\]

(32)

In particular, \(Y_{it}\) is strictly exogenous and \(A_{it}\) is sequentially exogenous in the consumption equation, and \(Y_{it}\) is sequentially exogenous in the earnings equation.

For the earnings process, it is standard in the literature to allow for two types of earnings shocks, namely permanent and transitory shocks. In (31), these earnings shocks are summarized into \(\beta_{iY}\). If \(\beta_{iY}\) is close to 1, then the earnings process is very persistent, meaning that permanent shock dominates transitory shock. If \(\beta_{iY}\) is close to 0, then the earnings process is not persistent, meaning that transitory shock is a major source of earnings shock. Estimation of the model that explicitly allows for a separate transitory shock is in progress.

The consumption process in (31) is specified to be a linear function of earnings and asset holdings. While the model is reduced-form, it can be considered as an approximation to the structural decision rule. For example, Blundell, Pistaferri, and Preston (2008) log-linearized the Euler equation of a dynamic life-cycle model and obtained a linear model of household consumption decision.

\(\gamma_{iY}\) is a key parameter of interest in the consumption process. It measures consumption response to exogenous changes in earnings, namely the earnings elasticity of consumption, and it is closely related to the partial insurance which is household’s ability to smooth consumption against earnings shocks (Blundell, Pistaferri, and Preston, 2008; Blundell, Pistaferri, and Saporta-Eksten, 2016). The literature has focused on the case of no heterogeneity or observed heterogeneity in the partial insurance. (31) studies unobserved heterogeneity in house-
hold’s ability to insure as in Alan, Browning, and Ejrnæs (2018). The earnings elasticity of a household can be determined by various factors such as earnings persistence, initial level of earnings, or initial level of asset holdings. (31) allows to estimate correlation between the earnings elasticity and these factors. With (31) being a random coefficient model, I impose no restriction on dependence between the earnings elasticity and the initial value Y_{i1} of earnings.

γ_{iA} is another key parameter of interest, which is the asset holdings elasticity of consumption. It is the partial effect of asset holdings on consumption keeping earnings fixed, which measures consumption response to exogenous change in asset holdings. γ_{iA} speaks about household’s consumption response to fiscal policies such as fiscal stimulus payments. (31) allows to estimate the correlation between γ_{iA} and the factors such as earnings persistence, the earnings elasticity of consumption, initial level of earnings or initial level of assets. An attractive feature of (31) is that it does not make any assumption about evolution of the assets, which means that it allows the law of motion for assets to be nonparametric and stochastic as in Arellano, Blundell, and Bonhomme (2017).

In what follows, I estimate the first and the second order moments of the random coefficients. The first and the second order moments are estimated using moment conditions stated in Example 5 and Example 6, respectively. The second moments between the earnings and the consumption equations are estimated using a multivariate version of Example 6.

Then these moment estimates are used to compute variances and correlations. Since I use the marginal bounds on the moments to compute variances and correlations, the bounds on variances and correlations are non-sharp bounds. In all estimation procedures, the moment relaxation approach discussed in Section 6 is used to compute the bounds for the distributions that near-minimize the GMM criterion.

The moment estimates are presented in Table 1. Sensitivity and robustness checks about the estimates, including the fixed effect and Bayesian random effect estimates, can be found in Appendix F. Computation of the confidence interval using the procedure described in the previous section is in progress.

The reduced-form estimates suggest that there is large heterogeneity in the earnings elasticity of consumption (γ_{iY}) and that its correlation to earnings persistence (β_{iY}) can be as large as 0.846. In addition, the assets elasticity of consumption (γ_{iA}) shows weak negative correlation to the earnings elasticity of consumption (γ_{iY}) and the earnings persistence (β_{iY}), which suggests that heterogeneity in household’s consumption smoothing ability against exogenous earnings and assets shocks can be driven by different mechanisms.

To examine relations between the elasticities and the observable factors, I estimate correlation between the elasticities and the initial values of Y_{it}, A_{it} and the age (h_{it}) in the dataset.
<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>LB</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>$E(\gamma_{iY})$</td>
<td>0.191</td>
<td>0.322</td>
</tr>
<tr>
<td></td>
<td>$E(\gamma_{iA})$</td>
<td>0.153</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\gamma_{iY})$</td>
<td>0.790</td>
<td>1.572</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\gamma_{iA})$</td>
<td>0.155</td>
<td>0.308</td>
</tr>
<tr>
<td></td>
<td>$\text{Corr}(\gamma_{iY}, \gamma_{iA})$</td>
<td>-0.267</td>
<td>-0.008</td>
</tr>
<tr>
<td>Earnings</td>
<td>$E(\beta_{iY})$</td>
<td>0.287</td>
<td>0.425</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\beta_{iY})$</td>
<td>0.349</td>
<td>0.838</td>
</tr>
<tr>
<td>Consumption and Earnings</td>
<td>$\text{Corr}(\gamma_{iY}, \beta_{iY})$</td>
<td>0.042</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>$\text{Corr}(\gamma_{iA}, \beta_{iY})$</td>
<td>-0.233</td>
<td>0.080</td>
</tr>
</tbody>
</table>

Table 1: Estimates of the parameters of interest. The lower bound (“LB”) and the upper bound (“UB”) are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$. Computation of the confidence intervals is in progress.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>γ_{iY}</th>
<th>γ_{iA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{i1}</td>
<td>[-0.242, -0.066]</td>
<td>[-0.024, 0.185]</td>
</tr>
<tr>
<td>A_{i1}</td>
<td>[-0.216, 0.011]</td>
<td>[-0.433, -0.163]</td>
</tr>
<tr>
<td>h_{i1}</td>
<td>[-1, 0.574]</td>
<td>[-1, 0.444]</td>
</tr>
</tbody>
</table>

Table 2: Correlations between the elasticities and the initial values. Each entry represents lower and upper bounds for the correlation between the elasticity in the column and the initial value in the row. The bounds are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$. Computation of the confidence intervals is in progress.

To do so, I first estimate cross-moments of the elasticities and the initial values (Y_{i1}, A_{i1}, h_{i1}) and then plug them into the correlation formula. Table 2 presents the estimation results.

The earnings elasticity (γ_{iY}) shows negative correlation to the initial value of earnings (Y_{i1}), suggesting that households with higher earnings have higher degree of consumption smoothing against earnings shocks. Its correlations to initial assets (A_{i1}) and age (h_{i1}) have indeterminate signs. The assets elasticity (γ_{iA}) shows negative correlation to the initial value of assets (A_{i1}), suggesting that households with higher amount of assets have higher degree of consumption smoothing against assets shocks. Its correlations to initial earnings (Y_{i1}) and age (h_{i1}) have indeterminate signs. In summary, Table 2 suggests that households with higher earnings or assets have higher degree of consumption smoothing ability.

The method of this paper also allows to estimate pointwise bounds of the CDFs of the elasticities. I used moment conditions listed in Example 5 for estimation of the CDFs. Table 3 presents the results, which suggest existence of households with very large (>1) earnings elasticities of consumption. Households with large earnings elasticities will respond dramatically to policies that induce exogenous changes in earnings.
In the next subsection, I calibrate a structural life-cycle model to enhance understanding of these reduced-form results.

7.2 Coefficient heterogeneity and consumption dynamics

This subsection calibrates a structural model to enhance understanding of the reduced-form results of the previous subsection. The calibration result will show that heterogeneity in the earnings persistence is essential for a structural model to generate large heterogeneity in the elasticities of consumption. This suggests that earnings persistence heterogeneity should be considered in life-cycle models in order to reflect real-world consumption behavior accurately. Moreover, the results will also show that heterogeneity in the assets elasticity is zero with heterogeneity in the earnings persistence only, which suggests heterogeneity in asset-related factors such as interest rate or discount rate across U.S. households in the PSID dataset.

The structural model that I calibrate is similar to the ones used in the simulation exercises of Kaplan and Violante (2010) and Blundell, Low, and Preston (2013). The value function of a household at time t is defined by

$$ V_t(A_t, Y_t) = \max_{C_t, A_{t+1}} \left[\frac{C_t^{1-\gamma}}{1-\gamma} + \beta \mathbb{E}_t(V_{t+1}(A_{t+1}, Y_{t+1})) \right], $$

subject to

- $0 \leq C_t \leq A_t + Z(t, Y_t)$,
- $A_{t+1} \geq -m(t, Y_t)$,

where $t \in \{t_0, \ldots, T\}$ is age (with $V_{T+1} = 0$), γ is relative risk-aversion, β is discount factor, C_t is consumption, A_t and A_{t+1} are current and next period asset holdings, Y_t is residual earnings, $Z(t, Y_t)$ is gross earnings, and $m(t, Y_t)$ is borrowing limit. The gross earnings function

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Evaluation Points</th>
<th>-1</th>
<th>-0.5</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{iY}</td>
<td>LB</td>
<td>0.060</td>
<td>0.149</td>
<td>0.390</td>
<td>0.650</td>
<td>0.815</td>
<td>0.899</td>
<td>0.929</td>
</tr>
<tr>
<td></td>
<td>UB</td>
<td>0.093</td>
<td>0.187</td>
<td>0.449</td>
<td>0.705</td>
<td>0.845</td>
<td>0.993</td>
<td>0.997</td>
</tr>
<tr>
<td>γ_{iA}</td>
<td>LB</td>
<td>0.000</td>
<td>0.002</td>
<td>0.278</td>
<td>0.784</td>
<td>0.948</td>
<td>0.984</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>UB</td>
<td>0.016</td>
<td>0.065</td>
<td>0.367</td>
<td>0.815</td>
<td>0.998</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 3: Lower bound (“LB”) and upper bound (“UB”) of the CDFs of the elasticities at evaluation points. The bounds are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$. Computation of the confidence intervals is in progress.
$Z(t, Y_t)$ is defined by

$$Z(t, Y_t) = \begin{cases}
\exp\{\Gamma(t) + Y_t\} & \text{if } t \leq H, \\
\tau_s \times \exp\{\Gamma(H) + Y^*_H\} & \text{if } t > H,
\end{cases}$$

where H is retirement age, $\Gamma(t)$ is deterministic trend of earnings which is quadratic in t, and $\tau_s \in [0, 1]$ is a parameter that determines social security benefit payments as a proportion of the last working period’s earnings.

I define the borrowing limit $m_A(t, Y_t)$ to be

$$m(t, Y_t) = \begin{cases}
\tau_b \times Z(t, Y_t) & \text{if } t \leq H, \\
0 & \text{if } t > H,
\end{cases}$$

That is, the borrowing limit of a household is a τ_b-proportion of current period earnings.

The law of motions of (A_t, Y_t) are given by

$$Y_{t+1}^* = \alpha + \rho Y_t + \epsilon_t,$$

$$A_{t+1} = q \times (A_t + Z(t, Y_t) - C_t),$$

where α and ρ are scalar, ϵ_t follows discrete distribution with zero mean, and q is the gross interest rate on the asset.

Except for the earnings process parameters, the structural parameters are assumed to be homogeneous across households. Their calibrated values are summarized in Table 4, which are based on Kaplan and Violante (2010). For the earnings process, I consider two different specifications, namely with and without earnings persistence heterogeneity. Without earnings persistence heterogeneity, households take a common value of $\rho = 0.587$ (which are based on the estimates from PSID; recall that PSID data is measured every two years). With earnings persistence heterogeneity, households take one of the values of $\rho \in \{0.1, 0.85, 0.9\}$. In both cases, households take one of the values of $\alpha \in \{0.2(1-\rho), 0, 0.2(1-\rho)\}$. Note that the α’s are scaled by $1 - \rho$ in order to ensure the same stationary mean for every household. In addition, the variance of ϵ_{it} is set to be $0.041(1 - \rho^2)$ which is set to match the error variance estimates of the PSID dataset. The scaling $1 - \rho^2$ is applied to ensure the same stationary variance for every household.

All households begin with $A_{t0} = 0$ and Y_{t0} at the stationary mean. I solve the model by computing the value functions recursively from the termination period. Details about numerical solution method can be found in Appendix G.

For each specification of the earnings process, I simulate 900 households whose earnings
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.95</td>
<td>discount factor</td>
</tr>
<tr>
<td>γ</td>
<td>2</td>
<td>relative risk-aversion</td>
</tr>
<tr>
<td>t_0</td>
<td>25</td>
<td>beginning age</td>
</tr>
<tr>
<td>T</td>
<td>75</td>
<td>termination age</td>
</tr>
<tr>
<td>H</td>
<td>60</td>
<td>retirement age</td>
</tr>
<tr>
<td>Γ</td>
<td>2nd order polynomial in age</td>
<td>deterministic trend of earnings</td>
</tr>
<tr>
<td>τ_s</td>
<td>0.45</td>
<td>social security benefit parameter</td>
</tr>
<tr>
<td>τ_b</td>
<td>0.185</td>
<td>borrowing limit parameter</td>
</tr>
<tr>
<td>q</td>
<td>1.03</td>
<td>gross interest rate</td>
</tr>
</tbody>
</table>

Table 4: Description of parameters for the dynamic life-cycle model and their calibrated values which are based on Kaplan and Violante (2010).

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Heterogeneous ρ</th>
<th>Homogeneous ρ</th>
<th>PSID estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>$\mathbb{E}(\gamma_{iY})$</td>
<td>[0.342, 0.408]</td>
<td>[0.299, 0.360]</td>
<td>[0.191, 0.322]</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{E}(\gamma_{iA})$</td>
<td>[-0.017, -0.013]</td>
<td>[-0.019, -0.010]</td>
<td>[0.153, 0.212]</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\gamma_{iY})$</td>
<td>[0.323, 0.541]</td>
<td>[0.218, 0.313]</td>
<td>[0.790, 1.572]</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\gamma_{iA})$</td>
<td>[0.001, 0.003]</td>
<td>[0.002, 0.008]</td>
<td>[0.155, 0.308]</td>
</tr>
<tr>
<td></td>
<td>$\text{Corr}(\gamma_{iY}, \gamma_{iA})$</td>
<td>[0.001, 0.045]</td>
<td>[0.010, 0.076]</td>
<td>[-0.267, -0.008]</td>
</tr>
<tr>
<td>Earnings</td>
<td>$\mathbb{E}(\beta_{iY})$</td>
<td>[0.166, 0.441]</td>
<td>[0.251, 0.455]</td>
<td>[0.287, 0.425]</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\beta_{iY})$</td>
<td>[0.002, 0.642]</td>
<td>[0, 0.302]</td>
<td>[0.349, 0.838]</td>
</tr>
</tbody>
</table>

Table 5: Estimates of the parameters of interest based on the datasets simulated from the structural models. The bounds are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$. The estimates from the PSID dataset are also provided for comparison.

processes are uniformly distributed over the grid of (α, ρ). Then I construct a dataset by collecting data for ages 30, 32, …, 54, which reflects PSID’s biennial sampling. Then the reduced-form estimation is performed for the dataset. The results are presented in Table 5.

Table 5 suggests that earnings persistence heterogeneity is essential to yield a large variance estimate of earnings elasticity. Without earnings persistence heterogeneity, the earnings elasticity shows small variance. In addition, even with earnings persistence heterogeneity, the variance estimates are significantly less than the estimates from the PSID dataset, suggesting additional sources of unobserved heterogeneity. In particular, variance estimate of assets elasticity from the simulated dataset is almost zero even with earnings persistence heterogeneity. This suggests that an asset-specific source of heterogeneity, such as heterogeneity in interest rates or discount rates, is required to generate heterogeneity in the assets elasticity. Investigating these additional sources of heterogeneity is a topic of future research.
8 Conclusion

This paper studied identification and estimation of dynamic random coefficient models. I showed that the model is not point-identified, and I characterized a sharp identified set using the duality representation of infinite-dimensional linear programming. A computationally feasible estimation and inference procedure for the identified set is proposed, which uses a fast and exact algorithm for global polynomial optimization, namely the semidefinite relaxations approach. It is shown that the estimator for the identified set is consistent and that one can make inference about the identified set using results from the literature on moment inequalities models.

I estimate unobserved heterogeneity in earnings persistence and the earnings and asset elasticities of consumption across U.S. households using the PSID dataset. I find that there is large heterogeneity in earnings persistence and the elasticities, and I also find that the earnings persistence and the earnings elasticity of consumption are strongly correlated. However, they show weak correlation to the assets elasticity of consumption. To enhance understanding of these results, I calibrate a structural life-cycle model and estimate reduced-form estimates from the simulated data. It is shown that earnings persistence heterogeneity is essential to generate large heterogeneity observed in the PSID dataset. However, earnings persistence heterogeneity alone is not enough to generate all the features of the PSID estimates, which suggests additional source of unobserved heterogeneity such as interest rate or discount rate. Investigation of such additional sources of heterogeneity is a topic of future research.

References

Andrews, Donald WK and Soonwoo Kwon. 2019. “Inference in moment inequality models that is robust to spurious precision under model misspecification.”

39

Appendices

A Proofs

A.1 Proof of Proposition 1

For simplicity of notation, let’s assume that $C = C_0^5$ where C_0 is a compact subset of \mathbb{R}. The proof can be easily modified for a general compact set C.

Let $f : C_0^5 \mapsto \mathbb{R}$, $g_1 : C_0^3 \mapsto \mathbb{R}$ and $g_2 : C_0^2 \mapsto \mathbb{R}$ be bounded functions with respect to the Lebesgue measure almost everywhere. From the proof of Theorem 3 in the Appendix, the sharp lower bound of $\mathbb{E}(\beta_i)$ equals to

$$\max_{f,g_1,g_2} \mathbb{E}(f(Y_{i0}, Y_{i1}, Y_{i2})) \quad \text{subject to}$$

$$f(Y_{i0}, Y_{i1}, Y_{i2}) + g_1(\gamma_i, \beta_i, Y_{i0})\epsilon_{i1} + g_2(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\epsilon_{i2} \leq \beta_i$$

and the sharp upper bound of $\mathbb{E}(\beta_i)$ equals to

$$\min_{f,g_1,g_2} \mathbb{E}(f(Y_{i0}, Y_{i1}, Y_{i2})) \quad \text{subject to}$$

$$f(Y_{i0}, Y_{i1}, Y_{i2}) + g_1(\gamma_i, \beta_i, Y_{i0})\epsilon_{i1} + g_2(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\epsilon_{i2} \geq \beta_i.$$

Now suppose that $\mathbb{E}(\beta_i)$ is point-identified and derive a contradiction. The argument relies on the following proposition.

Proposition 8. Suppose that $\mathbb{E}(\beta_i)$ is point-identified. Then there exists (f^*, g_1^*, g_2^*) such that

$$f^*(Y_{i0}, Y_{i1}, Y_{i2}) + g_1^*(\gamma_i, \beta_i, Y_{i0})\epsilon_{i1} + g_2^*(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\epsilon_{i2} = \beta_i$$

almost surely on C_0^5.

Proof. Suppose such functions do not exist. Then the solution to (33), which is denoted by (f^l, g_1^l, g_2^l), satisfy

$$f^l(Y_{i0}, Y_{i1}, Y_{i2}) + g_1^l(\gamma_i, \beta_i, Y_{i0})\epsilon_{i1} + g_2^l(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\epsilon_{i2} \leq \beta_i$$

with positive Lebesgue measure on C_0^5. Similarly, the solution to (34), which is denoted by
\((f^u, g_1^u, g_2^u)\), satisfy

\[
f^u(Y_{i0}, Y_{i1}, Y_{i2}) + g_1^u(\gamma_i, \beta_i, Y_{i0})\varepsilon_{i1} + g_2^u(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\varepsilon_{i2} \geq \beta_i
\]

with positive Lebesgue measure on \(C_0^5\). At least one inequality is strict by assumption. Then it follows that

\[
\mathbb{E}(f^l(Y_{i0}, Y_{i1}, Y_{i2})) = \mathbb{E}\left(f^l(Y_{i0}, Y_{i1}, Y_{i2}) + g_1^l(\gamma_i, \beta_i, Y_{i0})\varepsilon_{i1} + g_2^l(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\varepsilon_{i2}\right)
\]

\[
\leq \mathbb{E}(\beta_i)
\]

\[
\leq \mathbb{E}(f^u(Y_{i0}, Y_{i1}, Y_{i2}) + g_1^u(\gamma_i, \beta_i, Y_{i0})\varepsilon_{i1} + g_2^u(\gamma_i, \beta_i, Y_{i0}, Y_{i1})\varepsilon_{i2})
\]

\[
= \mathbb{E}(f^u(Y_{i0}, Y_{i1}, Y_{i2}))
\]

where at least one inequality is strict since the density of \((\gamma_i, \beta_i, Y_{i0}, Y_{i1}, Y_{i2})\) has a lower bound \(b > 0\). This implies that the sharp lower bound \(\mathbb{E}(f^l(Y_{i0}, Y_{i1}, Y_{i2}))\) is strictly less than the sharp upper bound \(\mathbb{E}(f^u(Y_{i0}, Y_{i1}, Y_{i2}))\). This is a contradiction since \(\mathbb{E}(\beta_i)\) is assumed to be point-identified.

Now, substitute \(\varepsilon_{it} = Y_{it} - \gamma_i - \beta_i Y_{i,t-1}\) in (35) and obtain

\[
f^*(Y_{i0}, Y_{i1}, Y_{i2}) + g_1^*(\gamma_i, \beta_i, Y_{i0})(Y_{i1} - \gamma_i - \beta_i Y_{i0}) + g_2^*(\gamma_i, \beta_i, Y_{i0}, Y_{i1})(Y_{i2} - \gamma_i - \beta_i Y_{i1}) = \beta_i.
\]

(36)

Take any \(\gamma, \tilde{\gamma}, \tilde{\beta}, y_0, y_1, y_2 \in C_0\) such that \(\gamma \neq \tilde{\gamma}\). Evaluating (36) at \((\gamma, \beta, y_0, y_1, y_2)\) and \((\tilde{\gamma}, \tilde{\beta}, y_0, y_1, y_2)\) and taking difference yields

\[
(y_1 - \tilde{\gamma} - \beta y_0) \Delta_{\gamma, \gamma} g_1^* - (\tilde{\gamma} - \gamma) g_1^*(\gamma, \beta, y_0) + (y_2 - \tilde{\gamma} - \beta y_1) \Delta_{\gamma, \gamma} g_2^* - (\tilde{\gamma} - \gamma) g_2^*(\gamma, \beta, y_0, y_1) = 0
\]

(37)

where \(\Delta_{\gamma, \gamma} g_1^* = g_1^*(\tilde{\gamma}, \beta, y_0) - g_1^*(\gamma, \beta, y_0)\) and \(\Delta_{\gamma, \gamma} g_2^*\) is defined similarly.

Note that \(y_2\) only appears in the third term of (37). Since (37) must hold almost surely for all \(\gamma, \tilde{\gamma}, \tilde{\beta}, y_0, y_1, y_2 \in C_0\) such that \(\gamma \neq \tilde{\gamma}\), it must be that

\[
\Delta_{\gamma, \gamma} g_2^* = 0
\]

(38)

almost surely. If not, there exists a subset of \(C_0^5\) with positive Lebesgue measure in which \(\Delta_{\gamma, \gamma} g_2^* \neq 0\), and one can increase the value of \(y_2\) for each element in this set to violate (37) with positive measure.
Now (38) implies that g^*_2 is almost surely a constant function over γ, i.e.

$$g^*_2(\gamma, \beta, y_0, y_1) = g^*_2(\beta, y_0, y_1).$$

Next, take any $\gamma, \beta, \tilde{\beta}, y_0, y_1, y_2 \in C$ such that $\beta \neq \tilde{\beta}$, evaluate (36) at $(\gamma, \beta, y_0, y_1, y_2)$ and $(\gamma, \tilde{\beta}, y_0, y_1, y_2)$ and take difference. Then we obtain

$$(y_1 - \gamma - \tilde{\beta}y_0)\Delta_{\tilde{\beta}, \beta}^*g^*_1 - (\tilde{\beta} - \beta)y_0g^*_1(\gamma, \beta, y_0) + (y_2 - \gamma - \tilde{\beta}y_1)\Delta_{\tilde{\beta}, \beta}^*g^*_2 - (\tilde{\beta} - \beta)y_1g^*_2(\gamma, \beta, y_0, y_1) = \tilde{\beta} - \beta$$

where $\Delta_{\tilde{\beta}, \beta}^*g^*_1 = g^*_1(\gamma, \tilde{\beta}, y_0) - g^*_1(\gamma, \beta, y_0)$ and $\Delta_{\tilde{\beta}, \beta}^*g^*_2$ is defined similarly. Again, y_2 only appears in the third term, and it follows that

$$g^*_2(\beta, y_0, y_1) = g^*_2(y_0, y_1).$$

Now (37) simplifies to

$$(y_1 - \hat{\gamma} - \beta y_0)\Delta_{\hat{\gamma}, \gamma}^*g^*_1 - (\hat{\gamma} - \gamma)g^*_1(\gamma, \beta, y_0) - (\hat{\gamma} - \gamma)g^*_2(y_0, y_1) = 0.$$ (40)

Let $\hat{\gamma} \in C$ such that $\hat{\gamma} - \hat{\gamma} = \hat{\gamma} - \gamma$. Evaluating (40) at $(\gamma, \hat{\gamma}, \beta, y_0, y_1)$ and $(\hat{\gamma}, \hat{\gamma}, \beta, y_0, y_1)$ and taking difference yield

$$(y_1 - \hat{\gamma} - \beta y_0)\left(\Delta_{\hat{\gamma}, \gamma}^*g^*_1 - \Delta_{\hat{\gamma}, \gamma}^*g^*_1\right) - (\hat{\gamma} - \gamma)\Delta_{\hat{\gamma}, \gamma}^*g^*_1 - (\hat{\gamma} - \gamma)\Delta_{\hat{\gamma}, \gamma}^*g^*_1 = 0.$$ (41)

Since y_1 only appears in the first term, we conclude that

$$\Delta_{\hat{\gamma}, \gamma}^*g^*_1 - \Delta_{\hat{\gamma}, \gamma}^*g^*_1 = 0$$

almost surely. Then (41) reduces to

$$(\hat{\gamma} - \gamma)\Delta_{\hat{\gamma}, \gamma}^*g^*_1 + (\hat{\gamma} - \gamma)\Delta_{\hat{\gamma}, \gamma}^*g^*_1 = 0.$$

Since $\hat{\gamma} - \hat{\gamma} = \hat{\gamma} - \gamma \neq 0$, this implies that

$$\Delta_{\hat{\gamma}, \gamma}^*g^*_1 = 0,$$
which means that g_1^* is a almost surely a constant over γ, i.e.

$$g_1^*(\gamma, \beta, y_0) = g_1^*(\beta, y_0).$$

Applying similar argument to (39) yields

$$g_1^*(\beta, y_0) = g_1^*(y_0).$$

Then (36) simplifies to

$$f^*(y_0, y_1, y_2) + g_1^*(y_0)(y_1 - \gamma - \beta y_0) + g_2^*(y_0, y_1)(y_2 - \gamma - \beta y_1) = \beta$$

almost surely for all $(\gamma, \beta, y_0, y_1, y_2)$. This is a linear identity in (γ, β) in which their coefficients must coincide. In other words, it must be that

$$g_1^* + g_2^* = 0,$$

$$y_0 g_1^* + y_1 g_2^* = 1.$$

If we solve this for (g_1^*, g_2^*), we obtain

$$g_1^* = \frac{1}{y_0 - y_1}, \quad g_2^* = \frac{1}{y_1 - y_0}.$$

However, g_1^* cannot be a function of y_1, which is contradiction. □

A.2 Proof of Theorem 1

This is a special case of Theorem 2 and hence an immediate consequence of it. Note that, as discussed in Section 5.1.1, it suffices to consider $\lambda > 0$ for the upper bound and $\lambda < 0$ for the lower bound. □

A.3 Proof of Proposition 2

For the proof, it suffices to show the “in addition” part of the proposition, namely that $[\tilde{L}, \tilde{U}]$ is the sharp identified set of μ_e under the assumptions stated in the proposition. Then the inclusion $[L, U] \subseteq [\tilde{L}, \tilde{U}]$ follows from inclusion of the assumptions.

In what follows, we show that \tilde{U} equals to the expression in the proposition. Similar argument applies to L.

46
By Theorem 2, the sharp upper bound \tilde{U} is given by

$$\tilde{U} = \min_{\lambda, \mu} \mathbb{E} \left(\max_v \left[e'v + \mu' \sum_{t=1}^{T} R_{it}(Y_{it} - R_{it}'v) + \lambda \sum_{t=1}^{T} (R_{it}'v)(Y_{it} - R_{it}'v) \right] \right)$$

where μ has the same dimension as R_{it} and λ is scalar. To simplify notation, we abuse notation and let $R_i = \sum_{t=1}^{T} R_{it}R_{it}'$ and $\gamma_i = \sum_{t=1}^{T} R_{it}Y_{it}$, which is without the $1/T$ scaling. The scaling will be applied at the end of the proof.

With the notation, write \tilde{U} concisely as

$$\tilde{U} = \min_{\mu, \lambda} \mathbb{E} \left(\max_v \left[e'v + \mu' \gamma_i - \mu' R_i v + \lambda \gamma_i'v - v'R_i v \right] \right).$$

Note that the objective function of the inner maximization problem is a quadratic polynomial in v. As discussed in Section 5.1.1, it suffices to consider $\lambda > 0$, in which case the inner maximization problem has a closed-form solution and \tilde{U} simplifies to

$$\tilde{U} = \min_{\lambda > 0, \mu} \mathbb{E} \left(\mu' \gamma_i + \frac{1}{4\lambda} [e + \lambda \gamma_i - R_i \mu]' R_i^{-1} [e + \lambda \gamma_i - R_i \mu] \right).$$

Expanding the terms gives

$$\tilde{U} = \min_{\lambda > 0, \mu} \left[\mu' \mathbb{E}(\gamma_i) + \frac{1}{4\lambda} e' \mathbb{E}(R_i^{-1}) e + \frac{\lambda}{4} \mathbb{E}(\gamma_i' R_i^{-1} \gamma_i) + \frac{1}{4\lambda} \mu' \mathbb{E}(R_i) \mu \right. \\
\left. + \frac{1}{2} e' \mathbb{E}(R_i^{-1} \gamma_i) - \frac{1}{2\lambda} e' \mu - \frac{1}{2} \mu' \mathbb{E}(\gamma_i) \right]. \tag{42}$$

We first solve for optimal μ given λ. The first order condition with respect to μ is

$$\mathbb{E}(\gamma_i) + \frac{1}{2\lambda} \mathbb{E}(R_i) \mu - \frac{1}{2\lambda} e - \frac{1}{2} \mathbb{E}(\gamma_i) = 0.$$

Then the optimal μ that satisfies the first order condition is

$$\mu = \mathbb{E}(R_i)^{-1} [e - \lambda \mathbb{E}(\gamma_i)].$$
Substitutes this into (42) yields

\[
\bar{U} = \min_{\lambda} \left\{ [e - \lambda \mathbf{E}(\mathcal{Y}_i)]' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{E}(\mathcal{Y}_i) + \frac{1}{4\lambda} e' \mathbf{E}(\mathcal{R}_i)^{-1} e + \frac{\lambda}{4} \mathbf{E}(\mathcal{Y}_i)' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{Y}_i \right\}
+ \frac{1}{4} \left[\frac{1}{\lambda} e' \mathbf{E}(\mathcal{R}_i)^{-1} e - 2e' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{E}(\mathcal{Y}_i) + \lambda \mathbf{E}(\mathcal{Y}_i)' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{E}(\mathcal{Y}_i) \right]
+ \frac{1}{2} e' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{Y}_i - \frac{1}{2} e' \mathbf{E}(\mathcal{R}_i)^{-1} \left[\frac{1}{\lambda} e - \mathbf{E}(\mathcal{Y}_i) \right] - \frac{1}{2} [e - \lambda \mathbf{E}(\mathcal{Y}_i)]' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{E}(\mathcal{Y}_i) \right\}.
\]

The first order condition with respect to \(\lambda \) is

\[
\frac{1}{\lambda^2} \left[e' \mathbf{E}(\mathcal{R}_i)^{-1} e - e' \mathbf{E}(\mathcal{R}_i)^{-1} e \right] = \mathbf{E}(\mathcal{Y}_i)' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{E}(\mathcal{Y}_i) - \mathbf{E}(\mathcal{Y}_i)' \mathbf{R}_i^{-1} \mathbf{Y}_i.
\]

Since \(\lambda > 0 \), the optimal \(\lambda \) is given by

\[
\lambda = \sqrt{\frac{e' \mathbf{E}(\mathcal{R}_i)^{-1} e - e' \mathbf{E}(\mathcal{R}_i)^{-1} e}{\mathbf{E}(\mathcal{Y}_i)' \mathbf{R}_i^{-1} \mathbf{Y}_i - \mathbf{E}(\mathcal{Y}_i)' \mathbf{E}(\mathcal{R}_i)^{-1} \mathbf{E}(\mathcal{Y}_i)}}. \quad \text{(43)}
\]

The numerator and the denominator inside the square root are all weakly positive. In addition, they are zero if and only if \(\mathcal{R}_i \) and \(\mathcal{R}_i^{-1} \mathcal{Y}_i \) are non-degenerate across individuals, respectively. To see why, for matrices \(\mathcal{R} \) and \(\mathcal{Y} \) that have the same dimensions as \(\mathcal{R}_i \) and \(\mathcal{Y}_i \), define the functions

\[
\mathcal{E}(\mathcal{R}) = e' \mathbf{R}^{-1} e \quad \text{and} \quad \mathcal{D}(\mathcal{Y}, \mathcal{R}) = \mathcal{Y}' \mathbf{R}^{-1} \mathcal{Y}.
\]

Similar to the scalar case where the inverse function \(f(x) = 1/x \) is convex, one can show that these functions are convex. In particular, the following result is known9:

Lemma 1 (Kiefer, 1959, Lemma 3.2). *For an integer \(l > 0 \), let \(A_1, \ldots, A_l \) be \(n \times m \) matrices and \(B_1, \ldots, B_l \) be nonsingular positive definite and symmetric \(n \times n \) matrices. Let \(a_1, \ldots, a_l \) be positive real numbers such that \(\sum_k a_k = 1 \). Then

\[
\sum_{k=1}^l a_k A_k B_k^{-1} A_k - \left[\sum_{k=1}^l a_k A_k \right]' \left[\sum_{k=1}^l a_k B_k \right]^{-1} \left[\sum_{k=1}^l a_k A_k \right] \geq 0
\]

where ‘\(\geq \)’ is the partial ordering defined in terms of positive semidefinite and positive definite matrices. In addition, the equality holds if and only if

\[
B_1^{-1} A_1 = \ldots = B_l^{-1} A_l.
\]

9See Nordström (2011) for its extension to complex field and generalized inverse.
Then we can apply Jensen’s inequality to \(E(R)\) and \(\mathcal{D}(Y, R)\) and show that the numerator and the denominator in (43) are weakly positive.

This finishes derivation of optimal \(\mu\) and \(\lambda\) of (42). Then we can plug in the optimal \(\mu\) and \(\lambda\) into (42) and scale the terms by \(1/T\) to obtain the expression for \(\tilde{\mathcal{U}}\) in Proposition 2. □

A.4 Proof of Proposition 3

The proof focuses on proving that \(L_M \to -\infty\) as \(M \to \infty\). The argument can be applied symmetrically to \(U_M\).

For a given \(M\), let \(g_t(Z_i, X^t_i)\) be a function from \([-M, M]^{qT+pt}\) to \(\mathbb{R}\). By Theorem 3, \(L_M\) is given by

\[
L_M = \max_{g_1, \ldots, g_T} \mathbb{E} \left(\min_v \left[e'v + \sum_{t=1}^T g_t(Z_i, X^t_i)(Y_{it} - R_{it}'v) \right] \right)
\]

where the expectation is with respect to \(P_M\). One can show that

\[
\min_v \left[e - \sum_{t=1}^T g_t(Z_i, X^t_i)R_{it} \right]'v \leq -M1' \left| e - \sum_{t=1}^T g_t(Z_i, X^t_i)R_{it} \right|
\]

where the absolute value operator \(|\cdot|\) is applied element-wise and \(1\) is the vector of ones. The reason why is that the minimum of a function is less than a function value evaluated at a point

\[
v = -M \times \text{sgn} \left(e - \sum_{t=1}^T g_t(Z_i, X^t_i)R_{it} \right)
\]

where \(\text{sgn}(\cdot)\) is a sign function applied element-wise to a vector. Then it follows that

\[
L_M \leq \bar{L}_M \equiv \max_{g_1, \ldots, g_T} \left\{ \mathbb{E} \left(\sum_{t=1}^T g_t(Z_i, X^t_i)Y_{it} \right) - M\mathbb{E} \left(1' \left| e - \sum_{t=1}^T g_t(Z_i, X^t_i)R_{it} \right| \right) \right\}
\]

Note that the argument \((Z_i, X^t_i)\) of \(g_t\) contains \(R_{it} = (Z_{it}, X_{it})\), which means that \(g_t\) can be chosen to be \(R_{it}\)-specific. Note also that, when \(M\) is large, the choice of \(\{g_t\}\) affects \(\bar{L}_M\) mainly through the second term of \(\bar{L}_M\). This means that the optimal \(\{g^*_t\}\), denoted by \(\{g^*_t\}\), for each
given \((R_{i1}, \ldots, R_{iT})\) is given approximately by (for large \(M\))

\[
(g_1^*, \ldots, g_T^*) \approx \arg\min_{g_1, \ldots, g_T} ||e - \sum_{t=1}^{T} g_t(Z_{it}, X_{it}^{t})R_{it}|| = \arg\min_{g} ||e - R_{i}g||_{2}
\]

where \(||\cdot||_2\) is the \(L^2\) norm, \(g = (g_1, \ldots, g_T)\) and \(R_{i} = (R_{i1}, \ldots, R_{iT})\). Therefore, \(g^* = (g_1^*, \ldots, g_T^*)\) is given approximately by (for large \(M\))

\[
g^* \approx (R_{i}R_{i}^{'})^{-1} R_{i}e.
\]

Then we have, for large \(M\),

\[
L_M \approx E\left(\sum_{t=1}^{T} e' R_{it} Y_{it}\right) - M \times 1' E(\{|I - R_{i}^{'}(R_{i}R_{i}^{'})^{-1} R_{i}|e\}).
\]

where \(I\) is an identity matrix. Now assume the following regularity conditions:

Assumption 6. The sequence of distributions \(\{P_M\}\) satisfies the following conditions.

- \(E\left(\sum_{t=1}^{T} e' R_{it} Y_{it}\right)\) converges to a finite number as \(M \to \infty\).
- \(E(|I - R_{i}^{'}(R_{i}R_{i}^{'})^{-1} R_{i}|e)\) converges to a nonzero finite vector as \(M \to \infty\).

Under Assumption 6, the right-hand side of (44) tends to \(-\infty\) as \(M \to \infty\), which implies that \(L_M \to -\infty\). \(\Box\)

A.5 Proof of Theorem 2

This proof focuses on showing (10). The same argument applies to (11).

In summary, (10) can be obtained by taking the dual of (9). The main part of this proof is to show that the conditions for the duality theorem hold, which requires additional regularity conditions. This is different from finite-dimensional linear programming (LP) where the regularity conditions for the duality theorem always hold.

Assume the following regularity conditions.

Assumption 7. The following conditions hold.

- \(\mathcal{W} \times \mathcal{V}\) is compact.
- \((m, \phi_1, \ldots, \phi_K)\) are bounded Borel measurable functions on \(\mathcal{W} \times \mathcal{V}\).
There exists $P \in \mathcal{M}_{W \times V}$ that is a feasible point of (9) such that $\int m dP$ is finite and P has full support on $W \times V$.

The first condition is imposed for simplicity of technical argument. The second condition is mild given the compactness of $W \times V$. The third condition means that the data generating process of the model, or its observationally equivalent one, has full support. This condition is called the interior point condition required for the duality to hold in an infinite-dimensional LP. Note that the interior point condition implies that (9) is feasible and that its solution is finite.

In what follows, we show that a key condition for the duality of infinite-dimensional LP holds, for which we introduce additional notation. Recall that $\mathcal{M}_{W \times V}$ is a linear space of bounded and finitely additive signed Borel measures on $W \times V$. Let $\mathcal{F}_{W \times V}$ be the dual space of $\mathcal{M}_{W \times V}$, and let $\mathcal{F}_{W \times V}$ be the space of all bounded Borel measurable functions on $W \times V$. Then $\mathcal{F}_{W \times V}$ is a linear subspace of $\mathcal{F}_{W \times V}$ since it is the double dual of $\mathcal{F}_{W \times V}$. For $P \in \mathcal{M}_{W \times V}$ and $f \in \mathcal{F}_{W \times V}$, define the dual pairing

$$\langle P, f \rangle = \int f dP.$$

Let \mathcal{M}_W be the projection of $\mathcal{M}_{W \times V}$ onto W. Let \mathcal{F}_W to be the dual space of \mathcal{M}_W and define \mathcal{F}_W to be the space of all bounded Borel measurable functions on W. Then \mathcal{F}_W is a linear subspace of \mathcal{F}_W. In addition, define $\mathcal{G} = \mathbb{R}^K \times \mathcal{M}_W$ and $\mathcal{H} = \mathbb{R}^K \times \mathcal{F}_W$, and let $g = (g_1, \ldots, g_K, P_g)$ and $h = (h_1, \ldots, h_K, f_h)$ to denote their generic elements. Note that \mathcal{H} is a dual space of \mathcal{G}. Define the dual pairing

$$\langle g, h \rangle = \sum_{k=1}^K g_k h_k + \int f_h dP_g.$$

Now define a linear map $A : \mathcal{M}_{W \times V} \mapsto \mathcal{G}$ to be

$$A(P) = \left(\int \phi_1 dP, \ldots, \int \phi_K dP, P(\cdot, V) \right).$$

Then

$$\langle A(P), h \rangle = \sum_{k=1}^K h_k \int \phi_k dP + \int_W f_h(w) P(dw, V).$$

It is straightforward to show that

$$\int_W f_h(w) P(dw, V) = \int_{W \times V} f_h(w) dP(w, v).$$
Then it follows that
\[\langle A(P), h \rangle = \sum_{k=1}^{K} h_k \int \phi_k dP + \int f_h dP = \int \left[\sum_{k=1}^{K} h_k \phi_k + f_h \right] dP \equiv \langle P, A^*(h) \rangle, \] (45)

where \(A^*(h) : \mathcal{H} \rightarrow \mathcal{F}_{W \times V} \) is defined as
\[A^*(h) = \sum_{k=1}^{K} h_k \phi_k + f_h. \]

Equation (45) shows that \(A \) is weakly continuous with adjoint \(A^* \), which is a key condition for the duality to hold.

Now we rewrite (9) into the standard form of infinite-dimensional LP:
\[\min_{P \in \mathcal{M}_{W \times V}} \langle P, m \rangle \quad \text{subject to} \quad A(P) = c, \quad P \geq 0, \] (46)

where \(c = (0, \ldots, 0, P_W) \).

Now, with Assumption 7 and \(A \) being weakly continuous, the strong duality holds for (46)\(^{10}\), i.e. the optimal solution to (46) equals to the solution to the following problem:
\[\max_{h \in \mathcal{H}} \langle c, h \rangle \quad \text{subject to} \quad m - A^*(h) \geq 0, \quad P \geq 0, \]
which can be written more concretely as
\[\max_{h_1, \ldots, h_k \in \mathbb{R}, f_h \in \mathcal{F}_W} \int f_h dP_W \quad \text{subject to} \quad \sum_{k=1}^{K} h_k \phi_k + f_h \leq m. \] (47)

We can be solve for \(f_h \) to simplify (47). Rearrange the constraint of (47) and obtain
\[f_h(w) \leq m(w, v) - \sum_{k=1}^{K} h_k \phi_k(w, v). \]

Since the left-hand side is only a function of \(w \), it follows that
\[f_h(w) \leq \min_{v \in V} \left[m(w, v) - \sum_{k=1}^{K} h_k \phi_k(w, v) \right]. \]

See e.g. Anderson (1983) and an appendix chapter of Lasserre (2010).
on \(\mathcal{W} \). Then, since the objective of (47) is to maximize the integral of \(f_h(w) \), it must be that the solution \(f_h^* \) satisfies
\[
f_h^*(w) = \min_{v \in V} \left[m(w, v) - \sum_{k=1}^{K} h_k \phi_k(w, v) \right]
\]
(48)
almost surely on \(\mathcal{W} \). If not, i.e. if
\[
f_h^*(w) < \min_{v \in V} \left[m(w, v) - \sum_{k=1}^{K} h_k \phi_k(w, v) \right]
\]
with positive probability, then we can increase the value of \(f_h^* \) by an infinitesimal amount and increase the value of the objective, which is contradiction.

Substituting (48) into (47) yields the program
\[
\max_{h_1, \ldots, h_K \in \mathbb{R}} \int \min_{v \in V} \left[m(w, v) - \sum_{k=1}^{K} h_k \phi_k(w, v) \right] dP_W(w).
\]
Since \((h_1, \ldots, h_K)\) is a choice variable supported on \(\mathbb{R}^K \), the problem remains equivalent even if we switch the signs of \((h_1, \ldots, h_K)\). If we do so, the problem becomes
\[
\max_{h_1, \ldots, h_K \in \mathbb{R}} \int \min_{v \in V} \left[m(w, v) + \sum_{k=1}^{K} h_k \phi_k(w, v) \right] dP_W(w)
\]
which is the expression in (10). □

A.6 Proof of Proposition 4

It suffices to show that \(G \) is concave in \(\lambda \). Let \(w \in \mathcal{W} \), and let \(\lambda_1 = (\lambda_{11}, \ldots, \lambda_{1K}) \) and \(\lambda_2 = (\lambda_{21}, \ldots, \lambda_{2K}) \) be two distinct points in \(\mathbb{R}^K \). Then it follows that, for any \(t \in [0, 1] \),
\[
G(t \lambda_1 + (1 - t) \lambda_2, w) = \min_{v \in V} \left\{ t \left[m(w, v) + \sum_{k=1}^{K} \lambda_{1k} \phi_k(w, v) \right] + (1 - t) \left[m(w, v) + \sum_{k=1}^{K} \lambda_{2k} \phi_k(w, v) \right] \right\} \\
\geq t \min_{v \in V} \left\{ m(w, v) + \sum_{k=1}^{K} \lambda_{1k} \phi_k(w, v) \right\} + (1 - t) \min_{v \in V} \left\{ m(w, v) + \sum_{k=1}^{K} \lambda_{2k} \phi_k(w, v) \right\} \\
= t G(\lambda_1, w) + (1 - t) G(\lambda_2, w),
\]
which is the definition of concavity. □
A.7 Proof of Proposition 5

By the proof of Proposition 4, \(\hat{L}(\lambda) \) and \(L(\lambda) \) are concave. Then, as in the proof of Theorem 2.7 in Newey and McFadden (1994), uniform convergence of \(\hat{L} \) to \(L \) holds on any compact set \(K \subseteq \mathbb{R}^K \):

\[
\sup_{\lambda \in K} |\hat{L}(\lambda) - L(\lambda)| \xrightarrow{p} 0. \tag{49}
\]

Let \(\hat{\lambda} = \arg\max_{\lambda} \hat{L}(\lambda) \) and \(\lambda_0 = \arg\max_{\lambda} L(\lambda) \). If there are multiple argmax's, choose any of them. Then it follows that

\[
\hat{L}(\hat{\lambda}) \geq \hat{L}(\lambda_0).
\]

Then, for \(\hat{\lambda} \) that is on a compact set \(K \subseteq \mathbb{R}^K \),

\[
|L(\lambda_0) - \hat{L}(\hat{\lambda})| \leq L(\lambda_0) - L(\hat{\lambda}) + |L(\hat{\lambda}) - \hat{L}(\hat{\lambda})| \\
= \hat{L}(\lambda_0) - L(\hat{\lambda}) + |L(\hat{\lambda}) - \hat{L}(\hat{\lambda})| + o_p(1) \\
\leq \hat{L}(\hat{\lambda}) - L(\hat{\lambda}) + |L(\hat{\lambda}) - \hat{L}(\hat{\lambda})| + o_p(1) \\
\leq 2|L(\hat{\lambda}) - \hat{L}(\hat{\lambda})| + o_p(1) = o_p(1),
\]

where the last equality follows from (49).

Now, let \(\Lambda_0 \) be the set of all \(\arg\max_{\lambda} L(\lambda) \). Let \(K_0 \) be a compact set containing an open neighborhood of \(\Lambda_0 \) with radius \(\epsilon > 0 \). If such \(\epsilon \) does not exist, it means that \(L(\lambda) \) is a constant function and hence the consistency is immediate. If such \(\epsilon \) exists, then by Theorem 5.14 of Van der Vaart (2000):

\[
\mathbb{P}(d(\hat{\lambda}, \Lambda_0) \geq \epsilon \land \hat{\lambda} \in K_0) \longrightarrow 0
\]

where \(d(\hat{\lambda}, \Lambda_0) = \inf\{d(\hat{\lambda}, \lambda) \mid \lambda \in \Lambda_0\} \) and \(d \) is the Euclidean distance. This implies that \(\hat{\lambda} \in K_0 \) with probability approaching to one. □

54
A.8 Proof of Proposition 6

One can rewrite (25) as

$$\min_{p \in M, p \geq 0, \delta \geq 0} \delta \quad \text{subject to} \quad \int dP = 1,$$

$$\int \phi_k(W_i, V_i)dP \leq \delta, \quad k = 1, \ldots, K,$$

$$\int \phi_k(W_i, V_i)dP \geq -\delta, \quad k = 1, \ldots, K,$$

$$\int P(w, dV) = \hat{P}_W(w) \quad \text{for all} \quad w \in \mathcal{W}.$$

Then one can replicate the argument of Theorem 2 and show that (26) follows by taking the dual of the above and simplifying it. □

A.9 Proof of Proposition 7

One can rewrite (28) as

$$\min_{p \in M, p \geq 0} \int m(W_i, V_i)dP \quad \text{subject to} \quad \int \phi_k(W_i, V_i)dP \leq \delta^*, \quad k = 1, \ldots, K,$$

$$\int \phi_k(W_i, V_i)dP \geq -\delta^*, \quad k = 1, \ldots, K,$$

$$\int P(w, dV) = \hat{P}_W(w) \quad \text{for all} \quad w \in \mathcal{W}.$$

Then one can replicate the argument of Theorem 2 and show that (27) follows by taking the dual of the above and simplifying it. □

B Generalization of Theorem 2 with conditional moment restrictions

This subsection extends the model in Assumption 5 and also consider conditional moment restrictions. Concretely, consider the following model.

Assumption 8. The random vectors (W_i, V_i) satisfy

$$\mathbb{E}(\phi_k(W_i, V_i)) = 0, \quad k = 1, \ldots, K_U,$$

$$\mathbb{E}(\psi_k(W_i, V_i)|A_{ik}) = 0, \quad k = 1, \ldots, K_C,$$
where the ϕ_k’s and the ψ_k’s are real-valued moment functions, A_{i1}, \ldots, A_{iK_C} are subvectors of (W_i, V_i) and K_U and K_C are the number of unconditional and conditional moment restrictions, respectively.

Compared to Assumption 5, there are conditional moment restrictions represented by (ψ_k, A_k). The objective of this subsection is to obtain the counterpart of Theorem 2 under Assumption 8.

Consider the problem of characterizing the identified set I of θ which is defined by

$$\theta = \mathbb{E}(m(W_i, V_i))$$

for some known function $m : \mathcal{W} \times \mathcal{V} \mapsto \mathbb{R}$.

For each A_{ik}, which is a subvector of (W_i, V_i), let A_{ik}' be the vector that collects the remaining coordinates of (W_i, V_i). Let A_k be the support of A_{ik}, which is the projection of $\mathcal{W} \times \mathcal{V}$ onto the coordinates of A_{ik}, and let A_k' be the support of A_{ik}'. Then (A_{ik}, A_{ik}') partitions (W_i, V_i) into two sets of coordinates. We abuse notation and write any function $f(w,v)$ on $\mathcal{W} \times \mathcal{V}$ also as $f(a_k, a_k')$ on $A_k \times A_k'$ for any k.

Now we have the following result.

Theorem 3. Suppose Assumption 8 hold. Suppose also that (W_i, V_i) follows a σ-finite distribution that is absolutely continuous with respect to the Lebesgue measure. Then, under suitable additional regularity conditions, $I = [L, U]$ where, for $\lambda_k \in \mathbb{R}$ for $k = 1, \ldots, K_U$ and $\mu_k : A_k \mapsto \mathbb{R},$

$$L = \max_{\{\lambda_k\}_{k=1}^{K_U}, \{\mu_k\}_{k=1}^{K_C}} \mathbb{E}\left[\min_{v \in \mathcal{V}} \left\{ m(W_i, v) + \sum_{k=1}^{K_U} \lambda_k \phi_k(W_i, v) + \sum_{k=1}^{K_C} \mu_k(A_k(W_i, v)) \psi_k(W_i, v) \right\} \right]$$

and

$$U = \min_{\{\lambda_k\}_{k=1}^{K_U}, \{\mu_k\}_{k=1}^{K_C}} \mathbb{E}\left[\max_{v \in \mathcal{V}} \left\{ m(W_i, v) + \sum_{k=1}^{K_U} \lambda_k \phi_k(W_i, v) + \sum_{k=1}^{K_C} \mu_k(A_k(W_i, v)) \psi_k(W_i, v) \right\} \right]$$

where $A_k(w,v)$ is the value of A_{ik} given $W_i = w$ and $V_i = v$.

Proof. The proof focuses on (50). The same argument applies to the upper bound. Also, we abuse notation and identify an element of $\mathcal{M}_{\mathcal{W} \times \mathcal{V}}$ by its density $p : \mathcal{W} \times \mathcal{V} \mapsto \mathbb{R}$. Let p_W be the density of P_W.

56
The identified set \(I \) is defined by

\[
I \equiv \left\{ \int m(w,v)p(w,v)d(w,v) \mid p \in \mathcal{M}_{W \times V}, \ p \geq 0,
\int \phi_k(w,v)p(w,v)d(w,v) = 0, \ k = 1, \ldots, K_{UL},
\int \psi_k(a_k, a_k')p(a_k, a_k')da_k' = 0 \text{ for all } a_k \in A_k, \ k = 1, \ldots, K_C,
\int p(w,v)dv = p_W(w) \text{ for all } w \in W \right\},
\]

where \(a_k \) is an element of \(A_k \) and \(a_k' \) is an element of \(A_k' \). Note that, in the third equation, we represent the conditional moment restriction using integral over \(A_k' \).

The lower bound of \(I \) is given by the program

\[
\min_{p \in \mathcal{M}_{W \times V}, \ p \geq 0} \int m(w,v)p(w,v)d(w,v) \quad \text{subject to}
\int \phi_k(w,v)p(w,v)d(w,v) = 0, \ k = 1, \ldots, K_{UL},
\int \psi_k(a_k, a_k')p(a_k, a_k')da_k' = 0 \text{ for all } a_k \in A_k, \ k = 1, \ldots, K_C,
\int p(w,v)dv = p_W(w) \text{ for all } w \in W.
\]

(52)

In what follows, as in the proof of Theorem 2, we assume additional regularity conditions and check that the conditions for the duality theorem hold. Then (50) is obtained by taking the dual of (52).

Assume the following regularity conditions.

Assumption 9. The following conditions hold.

- \(W \times V \) is compact.
- \((m, \phi_1, \ldots, \phi_{K_{UL}}, \psi_1, \ldots, \psi_{K_C})\) are \(L^\infty \) with respect to the Lebesgue measure.
- There exists \(p \in \mathcal{M}_{W \times V} \) that is a feasible point of (52) such that \(\int m(w,v)p(w,v)d(w,v) \) is finite and \(p > 0 \) on \(W \times V \).
- Every density function \(p \in \mathcal{M}_{W \times V} \) is \(L^\infty \) with respect to the Lebesgue measure.

The first three conditions of (Assumption 9) are the counterparts of Assumption 7. Note that, since \(W \times V \) is compact, the second condition implies that they are \(L^p \) with respect to the Lebesgue measure for any \(p \geq 1 \). The fourth condition is restrictive. However, we use
Theorem 3 to prove non-identification results of Propositions 1 and 3, and for this purpose it is enough to show Theorem 3 under this condition.

We define additional notation. Let $L^2(W \times V)$ be the space of all L^2 functions on $W \times V$, and let $L^2(W)$ be the space of all L^2 functions on W. We also let $L^2(A_k)$ be the space of all L^2 functions on A_k.

Define $G = H = \mathbb{R}^K \times L^2(A_1) \times \ldots \times L^2(A_{K_C}) \times L^2(W)$ and denote their generic elements as $g = (g_1, \ldots, g_{K_U}, g_1, \ldots, g_{K_C}, f_g)$ and $h = (h_1, \ldots, h_{K_U}, \overline{h}_1, \ldots, \overline{h}_{K_C}, f_h)$. Note that H is a dual space of G.

Define the linear map $A : M_{W \times V} \mapsto G$ to be

$$A(p) = \left(\int \phi_1 p \, d(w, v), \ldots, \int \phi_K p \, d(w, v), \int \psi_1 p \, da'_1, \ldots, \int \psi_K p \, da'_{K_C}, \int p \, dv \right).$$

Define the dual pairing

$$\langle A(P), h \rangle = \sum_{k=1}^{K_U} h_k \int \phi_k p \, d(w, v) + \sum_{k=1}^{K_C} \int \psi_k p \, da'_k \overline{h}_k \, da_k + \int f_h \int p \, dv \, dw.$$

It is straightforward to show that

$$\int \int \psi_k p \, da'_k \overline{h}_k \, da_k = \int \psi_k \overline{h}_k p \, d(w, v)$$

and

$$\int f_h \int p \, dv \, dw = \int f_h p \, d(w, v).$$

Then it follows that

$$\langle A(P), h \rangle = \int \left[\sum_{k=1}^{K_U} h_k \phi_k + \sum_{k=1}^{K_C} \overline{h}_k \psi_k + f_h \right] p(w, v) d(w, v). \equiv \langle p, A^*(h) \rangle,$$

where $A^*(h) : H \mapsto L^2(W \times V)$ is defined as

$$A^*(h) = \sum_{k=1}^{K_U} h_k \phi_k + \sum_{k=1}^{K_C} \overline{h}_k \psi_k + f_h.$$

Equation (53) shows that A is weakly continuous with adjoint A^*. Note that $\overline{h}_k \psi_k$ is L^2 since ψ_k is L^∞ and hence bounded almost surely.

Then, similarly to the proof of Theorem 2, the strong duality holds under Assumption 9 and the weak continuity of A, and the optimal solution to (52) equals to the solution to the
following dual problem:
\[
\max_{h_1,\ldots,h_{K_U},\bar{h}_1,\ldots,\bar{h}_{K_C}} \int f_h(w)p_w(w)dw \quad \text{subject to} \quad \sum_{k=1}^{K_U} h_k \phi_k + \sum_{k=1}^{K_C} \bar{h}_k \psi_k + f_h \leq m. \tag{54}
\]

Then, similarly to the proof of Theorem 2, the optimal solution \(f^*_h \) must satisfy
\[
f_h(w) = \min_{v \in \mathcal{V}} \left[m(w,v) - \sum_{k=1}^{K_U} h_k \phi_k(w,v) - \sum_{k=1}^{K_C} \bar{h}_k(A_k(w,v)) \psi_k(w,v) \right].
\]

Switching the signs of \(h_1,\ldots,h_{K_U},\bar{h}_1,\ldots,\bar{h}_{K_C} \) yields the expression in (50).

\[\square\]

C Global polynomial optimization

This subsection formally discuss the theory of global polynomial optimization discussed in Section 5.1.2. The theory can be extended to global optimization of semi-algebraic functions, which include polynomials and the functions created by their addition, subtraction, multiplication, division, \(\max\{\cdot, \cdot\} \), \(\min\{\cdot, \cdot\} \), absolute value, square root, cubic root, etc.

C.1 Setup and notation

Let \(v = (v_1,\ldots,v_m) \in \mathbb{R}^m \) and let \(\mathcal{V} \) be the vector space of polynomials in \(v \) over the field of real numbers. The canonical basis of \(\mathcal{V} \) is the set of all monomials in \(v \):
\[
\{ v_1^{\alpha_1}v_2^{\alpha_2}\cdots v_m^{\alpha_m} \mid \alpha_1,\ldots,\alpha_m \in \mathbb{N} \}
\]
where \(\mathbb{N} = \{0,1,2,\ldots\} \). Let \(\alpha = (\alpha_1,\ldots,\alpha_m) \in \mathbb{N}^m \) and \(v^\alpha = v_1^{\alpha_1}v_2^{\alpha_2}\cdots v_m^{\alpha_m} \). Define \(|\alpha| = \alpha_1 + \cdots + \alpha_m \) be the degree of \(v^\alpha \).

A polynomial \(f(v) \) in \(v \) can be written in the standard form
\[
f(v) = \sum_{\alpha \geq 0} c_\alpha v^\alpha
\]
where \(\{ c_\alpha \}_{\alpha \in \mathbb{N}^m} \) is a sequence of real numbers indexed by \(\alpha \).

Let \(f \) be a polynomial in \(v \) whose degree is \(d < \infty \). We are interested in minimizing \(f \) with
respect to v:

$$\min_{v \in K} f(v) = \min_{v \in K} \sum_{\alpha : |\alpha| \leq d} c_{\alpha} v^{\alpha},$$

(55)

where K is either $K = \mathbb{R}^m$ or

$$K = \{ v \in \mathbb{R}^m | g_j(v) \geq 0, j = 1, \ldots, J \}$$

(56)

where g_j's are polynomials in v. Let $d_j < \infty$ be the degree of g_j. If K is given as in (56), we assume that K is compact.

Example 8. Let $J = 1$. Let $g_1 = 1 - \sum_{k=1}^m v_k^2$. Then K is a unit sphere in \mathbb{R}^m.

Example 9. Let $J = 2m$. Let $g_k = 1 - v_k$ for $k = 1, \ldots, m$ and $g_{m+k} = v_k$ for $k = 1, \ldots, m$. Then K is a unit rectangle $[0, 1]^m$ in \mathbb{R}^m.

The semidefinite programming (SDP) approach of polynomial optimization\(^\text{11}\) transforms (55) into a convex optimization problem. Let \tilde{V} be the space of Borel measures in \mathbb{R}^m whose supports are contained in K. We can write

$$\min_{v \in K} f(v) = \min_{P \in \tilde{V}, \int dP = 1} \int f(v) dP = \min_{P \in \tilde{V}, \int dP = 1} \sum_{\alpha : |\alpha| \leq d} c_{\alpha} \int v^{\alpha} dP$$

(57)

where the optimal P is the point-mass distribution concentrated at the minimizer of $f(v)$. Let $\{y_{\alpha}\}$ be a sequence of real numbers indexed by α. We can rewrite (57) as

$$\min_{\{y_{\alpha}\}} \sum_{\alpha} c_{\alpha} y_{\alpha} \quad \text{subject to} \quad y_{\alpha} = \int v^{\alpha} dP \quad \text{for some } P \in \tilde{V}, \int dP = 1.$$

(58)

The objective function in (58) is linear in $\{y_{\alpha}\}$, which means that it is a convex objective function in $\{y_{\alpha}\}$. It remains to characterize the constraint of (58) as a convex constraint in $\{y_{\alpha}\}$.

C.2 The moment problem

The constraint in (58) is very closely related to the problem called the *moment problem* in mathematics. It asks the following question: “Given the infinite real number sequence $\{y_{\alpha}\}_{\alpha \in \mathbb{N}^m}$, does there exist a measure P supported on \mathbb{R}^m such that $y_{\alpha} = \int v^{\alpha} dP$ for all $\alpha \geq 0$?” If the answer is yes, we say that $\{y_{\alpha}\}_{\alpha \in \mathbb{N}^m}$ has a *representing measure*.

Given an infinite sequence \(y = \{ y_\alpha \}_{\alpha \in \mathbb{N}^m} \), define the linear functional \(L_y : \mathcal{V} \mapsto \mathbb{R} \) by

\[
f = \sum_{\alpha} c_\alpha v^\alpha \quad \mapsto \quad L_y(f) = \sum_{\alpha} c_\alpha y_\alpha.
\]

The following result is known.

Theorem 4 (Riesz-Haviland). Let \(y = \{ y_\alpha \}_{\alpha \in \mathbb{N}^m} \) and let \(K \subseteq \mathbb{R}^m \) be closed. There exists a finite Borel measure \(P \in \tilde{\mathcal{V}} \) such that

\[
\int v^\alpha dP = y_\alpha \quad \text{for all } \alpha \in \mathbb{N}^m
\]

if and only if \(L_y(f) \geq 0 \) for all polynomials \(f \in \mathcal{V} \) nonnegative on \(K \).

The Riesz-Haviland theorem provides a characterization of the constraint in (58) which only involves \(y = \{ y_\alpha \}_{\alpha \in \mathbb{N}^m} \). However, checking \(L_y(f) \geq 0 \) for all nonnegative \(f \) is computationally infeasible. This motivates us to find a tractable characterization that can be derived from the theorem.

Let \(\mathbb{N}_r^m = \{ \alpha \in \mathbb{N}^m, |\alpha| \leq r \} \) and let \(\mathcal{V}_r \) be the space of polynomials in \(v \) whose degree is at most \(r \). The canonical basis of \(\mathcal{V}_r \) is given by

\[
u_r(v) = (1, v_1, \ldots, v_m, v_1^2, v_1v_2, \ldots, v_2^2, \ldots, v_r^r, \ldots, v_m^r)'.
\]

Let \(s_r \) be the length of \(u_r(v) \), which equals to \((n+r)\text{-choose-}n\), i.e. \((n+r)!/n!r!\). Then a polynomial in \(v \) whose degree is at most \(r \) can be represented by a vector of length \(s_r \).

Let \(y = \{ y_\alpha \}_{\alpha \in \mathbb{N}^m} \). The moment matrix of dimension \(s_r \), denoted by \(M_r(y) \), is defined by

\[
M_r(y) = L_y(u_r(v)u_r(v)')
\]

where we apply \(L_y \) element-wise. Note that \(u_r(v)u_r(v)' \) involves polynomials of degree at most \(2r \). Alternatively, the moment matrix is a square matrix labeled by \(\alpha, \beta \in \mathbb{N}_d^m \) such that

\[
[M_r(y)]_{\alpha,\beta} = L_y(v^\alpha v^\beta) = y_{\alpha + \beta}.
\]
Example 10. If $m = r = 2$, then the moment matrix $M_2(y)$ is a 6×6 matrix given by

$$M_2(y_4) = \begin{pmatrix}
y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{pmatrix}. $$

Let $p, q \in \mathcal{V}_r$ with coefficient vectors p and q. The following result holds:

$$L_y(pq) = p'M_r(y)q.$$

Suppose y has a representing measure. Then it follows that

$$p'M_r(y)p = L_y(p^2) \geq 0$$

by the Riesz-Haviland theorem, which implies that $M_r(y)$ is positive semidefinite (PSD). Therefore, $M_r(y)$ being PSD is a necessary condition for y having a representing measure.

For $g_j \in \mathcal{V}$ whose degree is $2r_j$ or $2r_j - 1$, the **localizing matrix** of dimension s_{r-r_j} with respect to g_j and y, denoted by $M_{r-r_j}(g_jy)$, is defined by

$$M_{r-r_j}(g_jy) = L_y(g_j(v)u_r(v)u_r(v)^\prime).$$

Alternatively, the localizing matrix is a square matrix labeled by $\alpha, \beta \in \mathbb{N}_m^m$ such that

$$[M_{r-r_j}(g_jy)]_{\alpha, \beta} = L_y(g_j(v^\alpha)v^\beta).$$

Example 11. If $m = 2, r = 2$ and $g_1(v) = 1 - v_1^2 - v_2^2$, then the localizing matrix $M_1(g_1y)$ is given by

$$M_1(g_1y) = \begin{pmatrix}
y_{00} & y_{10} & y_{01} \\
y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02}
\end{pmatrix} - \begin{pmatrix}
y_{20} & y_{30} & y_{21} \\
y_{30} & y_{40} & y_{31} \\
y_{21} & y_{31} & y_{22}
\end{pmatrix} - \begin{pmatrix}
y_{02} & y_{12} & y_{03} \\
y_{12} & y_{22} & y_{13} \\
y_{03} & y_{13} & y_{04}
\end{pmatrix}. $$

Similar to the case of the moment matrix, if y has a representing measure on \mathbb{K} such that
$g_j \geq 0$ on \mathbb{K}, then it follows that

$$p' M_{r-r_j}(g_jy)p = L_y(g_jp^2) \geq 0$$

by the Riesz-Haviland theorem. Therefore, $M_{r-r_j}(g_jy)$ being PSD is a necessary condition for y having a representing measure on \mathbb{K} such that $g_j \geq 0$ on \mathbb{K}.

C.3 Constrained polynomial optimization

The necessary conditions from the previous subsection become equivalent conditions in the case that \mathbb{K} has the form (56) and is compact. Note that, if $\mathbb{K} \in \mathbb{R}^m$ is compact, there exists a real number $B > 0$ such that

$$B - ||v||^2 = B - \sum_{k=1}^{m} v_k^2 \geq 0$$

on \mathbb{K}. The following theorem provides a necessary and sufficient condition for the moment problem.

Theorem 5 (Putinar’s Positivstellensatz). Let \mathbb{K} be defined as in (56) and suppose \mathbb{K} is compact. Let $g_{J+1} = B - \sum_{k=1}^{m} v_k^2$. Then y has a finite Borel representing measure whose support is contained in \mathbb{K} if and only if the following conditions hold:

- $M_r(y)$ is PSD for all $r \geq 1$,
- $M_r(g_jy)$ is PSD for $j = 1, \ldots, J + 1$, for all $r \geq 1$.

Putinar’s Positivstellensatz implies that, when \mathbb{K} has the form (56) and is compact, the polynomial optimization problem in (58) is equivalent to the following problem:

$$V = \min_y \sum_{\alpha} c_{\alpha} y_{\alpha} \quad \text{subject to} \quad y_0 = 1,$$

$$M_r(y) \text{ is PSD for all } r,$$

$$M_r(g_jy) \text{ is PSD for } j = 1, \ldots, J + 1, \text{ for all } r.$$ \hspace{1cm} (59)

It turns out that the PSD constraints are convex constraints, which is based on the fact that the set of semidefinite matrices is a convex set (see Lemma 1 in the proof of Proposition 2). Then (59) is an optimization problem of a linear objective subject to convex constraints. Moreover, the constraints belong to a special class of convex constraints so that (59) has its own name: semidefinite program (SDP).
Unfortunately, (59) has infinite number of constraints, which means that it is not computationally feasible. To obtain a computationally feasible problem, let \(r_j = \lfloor (d_j + 1)/2 \rfloor \) and choose \(r \geq \lfloor (d + 1)/2 \rfloor \). Let \(y_{2r} = \{y_a\}_{a \in \mathbb{N}_{2r}^m} \). Consider the problem

\[
V_r = \min_{y_{2r}} \sum_{|a| \leq 2r} c_ay_a \quad \text{subject to} \quad y_0 = 1,
\]

\[
M_r(y_{2r}) \text{ is PSD,}
\]

\[
M_{r-r_j}(g_jy_{2r}) \text{ is PSD for all } j = 1, \ldots, J + 1.
\]

(60)

Note that \(M_r(y_{2r}) \) being PSD implies \(M_{r'}(y_{2r}) \) being PSD for all \(r' \leq r \). We can solve (60) using SDP solvers available in the industry.

The constraint in (60) is a finite subset of the constraint in (59). This means that \(V_r \leq V \), i.e. \(V_r \) is a lower bound for the global minimum of the polynomial. Also, \(V_r \) is monotonically increasing in \(r \) since there are more constraints as \(r \) increases, and we can show that \(V_r \not\rightarrow V \) as \(r \rightarrow \infty \) (Lasserre, 2010, Theorem 4.1).

The convergence is finite under suitable conditions (Lasserre, 2015, Theorem 6.5). That is, \(V_r = V \) for some finite \(r \). We now introduce a method for checking it, which is called the certificate of optimality. The method is closely related to the following question: “Given a finite sequence \(y_{2r} = \{y_a\}_{a \in \mathbb{N}_{2r}^m} \) such that the moment matrix \(M_r(y_{2r}) \) is PSD, can we find new numbers \(\{y_a\}_{a : 2r < |a| \leq 2r+2} \) such that \(M_{r+1}(y_{2r+2}) \) is PSD?”

If it is possible, then \(M_{r+1}(y_{2r+2}) \) is called a positive extension of \(M_r(y_{2r}) \). Moreover, if in addition \(\text{rank}(M_r(y_{2r})) = \text{rank}(M_{r+1}(y_{2r+2})) \) holds, then \(M_{r+1}(y_{2r+2}) \) is called a flat extension of \(M_r(y_{2r}) \).

A measure is called \(s \)-atomic if it is a discrete measure with \(s \) support points. The following theorem holds.

Theorem 6 (Lasserre, 2010, Theorem 3.11). Let \(y_{2r} = \{y_a\}_{a \in \mathbb{N}_{2r}^m} \). Let \(r = \max_{1 \leq j' \leq J+1} r_{j'} \). Then the sequence \(y_{2r} \) admits a \(\text{rank}(M_r(y_{2r})) \)-atomic representing measure whose support is contained in \(K \) if and only if the following conditions hold:

- \(M_r(y_{2r}) \) and \(M_{r-r_j}(g_jy_{2r}) \), \(j = 1, \ldots, J + 1 \), are PSD,

- \(\text{rank}(M_r(y_{2r})) = \text{rank}(M_{r-r_j}(y_{2r})) \).

With this theorem, we have the following algorithm for solving constrained polynomial optimization problem.

1. Set \(r = \lfloor (d + 1)/2 \rfloor \).
2. Solve (60) and compute V_r and y_{2r}.

3. Check if $\text{rank}(M_r(y_{2r})) = \text{rank}(M_{r-r}(y_{2r}))$.

4. If [3.] is true, then V_r is the exact minimum of the polynomial where the number of minimizers equals to $\text{rank}(M_r(y_{2r}))$. If [3.] is false, increase r by 1 and go to [2.].

When implementing this algorithm, we specify an upper bound r_0 on r and stop iteration when r reaches r_0. In that case, V_{r_0} is a lower bound for V.

C.4 Unconstrained polynomial optimization

If $\mathbb{K} = \mathbb{R}^m$, then Putinar’s Positivstellensatz does not apply, but we can still use the necessary conditions to derive a SDP. Consider the following program:

$$V_r^* = \min_{y_{2r}} \sum_{|\alpha| \leq 2r} c_{\alpha} y_{\alpha} \quad \text{subject to} \quad y_0 = 1, \quad M_r(y_{2r}) \text{ is PSD.} \tag{61}$$

As discussed previously, the constraint in (61) is a necessary condition for y_{2r} having a representing probability measure. This means that V_r^* is a lower bound for the minimum of the polynomial $f = \sum_{|\alpha| \leq 2r} c_{\alpha} y_{\alpha}$. Also, the following theorem states certificate of optimality for unconstrained polynomial optimization problem.

Theorem 7 (Lasserre, 2010, Theorem 3.7). Let $y_{2r} = \{y_{\alpha}\}_{\alpha \in \mathbb{N}_{2r}^m}$. Then the sequence y_{2r} admits a rank($M_r(y_{2r})$)-atomic representing measure on \mathbb{R}^m if and only if the following conditions hold:

- $M_r(y_{2r})$ is PSD,
- $M_r(y_{2r})$ admits a flat extension $M_{r+1}(y_{2r+2})$.

Now we have the following algorithm for solving unconstrained polynomial optimization problem.

1. If d is odd, then the minimum is negative infinity. If d is even, set $r = d/2$.

2. Solve (61) and compute V_r^* and y_{2r}.

3. If $r = 2$ and $\text{rank}(M_r(y_{2r})) \leq 6$ or if $r \geq 3$ and $\text{rank}(M_r(y_{2r})) \leq 3r - 3$, then V_r^* is the exact minimum of f where the number of minimizers equals to $\text{rank}(M_r(y_{2r}))$.

65
4. If \(\text{rank}(M_r(y_{2r})) = \text{rank}(M_{r-1}(y_{2r-2})) \), then \(V^*_r \) is the exact minimum of \(f \) where the number of minimizers equals to \(\text{rank}(M_r(y_{2r})) \).

5. Otherwise, \(V^*_r \) is a lower bound for the minimum of \(f \).

Step [3.] is an additional certificate of optimality based on Lasserre (2015, Theorem 2.36), which is easier to check than the flat extension condition in Step [4.].

Note that the algorithm for the unconstrained case solves only one SDP which do not guarantee the exact solution. Nie, Demmel, and Sturmfels (2006) proposed a refinement of the algorithm where we solve a sequence of the SDPs that has finite convergence to the exact solution. The idea is that the first order derivatives of a polynomial are also polynomials and hence the first order condition
\[
\frac{\partial f}{v_k} = 0, \quad k = 1, \ldots, m,
\]
is a polynomial constraint. In addition, for any polynomial \(g(v) \), the first order condition generalizes to
\[
g(v) \frac{\partial f}{v_k} = 0, \quad k = 1, \ldots, m,
\]
which is also a polynomial constraint. Nie, Demmel, and Sturmfels (2006) obtain a sequence of the SDPs, indexed by \(r \geq \lfloor (d + 1)/2 \rfloor \), by imposing (62) as an additional constraint for (61) for all monomials \(g(v) \) of degree at most \(r - \lfloor (d + 1)/2 \rfloor \). They show that the SDP sequence has finite convergence to the exact solution under suitable conditions. My R package optpoly implements this algorithm for unconstrained polynomial optimization.

C.5 Extraction of the minimizers

If the SDP satisfies certificate of optimality, we can extract minimizers of the polynomial from the optimal moment sequence \(y_{2r} \). My R package optpoly implements the algorithm for extraction of the solutions. The Gloptipoly package for Matlab also has an implementation of the algorithm. For the details about the algorithm, refer to Lasserre (2010, 2015).

The solution extraction algorithm requires knowledge of \(\text{rank}(M_r(y_{2r})) \), which equals to the number of minimizers. The rank of this matrix can be checked by numerically counting zero eigenvalues, but a prior knowledge on the number of minimizers can also be useful. For example, in dynamic random coefficient models, the polynomial coefficients are drawn from a continuous distribution, in which case the polynomial has a unique minimizer with probability one. In this case we can assume \(\text{rank}(M_r(y_{2r})) = 1 \) and execute the algorithm.
When \(\text{rank}(M_r(y_{2r})) = 1 \), i.e. when the polynomial has a unique minimizer, the extraction algorithm becomes very simple. It extracts the minimizer \(v^* = (v^*_1, \ldots, v^*_m) = \arg\min_v f(v) \) by the following rule:

\[
v^*_k = y_{e_k}
\]

where \(e_k \) is the vector with one at the \(k \)-th entry and zero elsewhere. The idea is the following. If \(\text{rank}(M_r(y_{2r})) = 1 \), then \(y_{2r} \) has a 1-atomic representing probability measure \(P^* \), which is a point-mass distribution concentrated at the minimizer of \(f \). This means that the moments with respect to \(P^* \) are deterministic functions of the minimizer, and in particular

\[
y_{e_k} = \int v^*_k dP^* = \int v_k dP^* = v^*_k,
\]

that is, the first-order moments of \(P^* \) are coordinates of the minimizer. So the vector of the first-order moments from \(y_{2r} \) is the unique minimizer of \(f \).

D Computation of the critical value

This subsection describes computation of the critical value used for the inference procedure described in Section 6.

To compute the critical value, draw bootstrap samples \((W_{1b}, \ldots, W_{Nb}) \) of \((W_1, \ldots, W_N) \) for \(b = 1, \ldots, B \), and compute

\[
\hat{L}^{(b)}(\lambda) = \frac{1}{N} \sum_{i=1}^{N} G(\lambda, W_{ib})
\]

and

\[
\hat{S}^{(b)}(\lambda) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(G(\lambda, W_{ib}) - \hat{L}^{(b)}(\lambda) \right)^2}
\]

for each bootstrap sample. Then define

\[
c^{(1)}_{\xi} = (1 - \xi)\text{-quantile of } \left\{ \max_{\lambda \in \Lambda_F} \frac{\sqrt{N}(\hat{L}(\lambda) - \hat{L}^{(b)}(\lambda))}{\hat{S}^{(b)}(\lambda)} \right\}_{b=1}^{B}.
\]

Next, compute for each \(\lambda \in \Lambda_F \)

\[
u_\lambda = \hat{L}(\lambda) + \hat{S}(\lambda) \times \frac{c^{(1)}_{\xi}}{\sqrt{N}},
\]

67
Then the critical value $c^*(\alpha, \xi)$ is given by

$$c^*(\alpha, \xi) = (1 - \alpha + \xi)\text{-quantile of } \left\{ \max_{\lambda \in \Lambda_F} \sqrt{N} (\hat{S}^{(b)}(\lambda) - \hat{L}(\lambda) + u_\lambda) \right\}_{b=1}^B$$

E Construction of the dataset

The raw data is obtained from Panel Data of Income Dynamics (PSID). In particular, I use PSID’s Main Study data from 1999 to 2015, which is sampled every two years. I use the Family Files for years 1999-2015 and the Wealth files for years 1999-2007. The wealth data after 2007 are integrated in the Family Files. These files contain information on earnings, consumption and asset holdings of U.S. households. Year-of-birth and education level of the household head is found in the Cross-year Individual file, which can be merged to Family Files using the household ID.

In order to avoid oversampling of low-income households, I drop the households from Survey of Economic Opportunity (SEO). Also, I only keep married households with male household head whose age is between 20 and 65.

The price index data is taken from the Consumer Price Index (CPI), which is downloaded from the Federal Reserve Back of St. Louis. The price index of all urban consumers is used.

Then the consumption is defined to be the sum of nondurables and services expenditure and the consumption of food stamps, divided by the price index. The earnings is defined to be sum of the earnings of the married couple divided by the price index. I directly use the Constructed wealth variable including equity entry of the PSID dataset and define the asset to be this entry divided by the price index. It is the sum of values of seven asset types, net of their debt values, plus the value of home equity.

What I use in the estimation and the calibration in Section 7 is the natural logs of them net of demographic dummies. Concretely, I compute the residuals of log-consumption, log-earnings and log-assets by regressing them on the dummies of education, year-of-birth, wife’s education, wife’s year-of-birth, state, family size, number of kids under age 18, race and the indicator of the child support not living with the household head.

Then I drop individuals with missing information on these dummies or missing information on the consumption, the earnings or the assets. This gives a balanced panel of $N = 684$ individuals with 9 waves. Since the earnings process involves earnings observations of two waves, I am left with $T = 8$ waves.
F Sensitivity and robustness of reduced-form estimates

This section performs sensitivity and robustness checks of the reduced-form estimates presented in Section 7.1. The results are presented in three subsections. The first subsection presents fixed effect and Bayesian random effect estimates for the reduced-form model. The second subsection checks sensitivity of the estimates against sample variation. The third subsection checks robustness of the estimates against small within variation.

F.1 Fixed effect and Bayesian random effect estimates

This subsection presents fixed effect (FE) and Bayesian random effect (Bayes RE) estimates of the reduced-form model in (31) and compare them to the bounds of random coefficients. The FE estimates are computed using the OLS estimates from individual times series. The Bayes RE estimates are computed using a hierarchical Bayesian model, whose specification is described as follows. Let μ_0, μ_Y, μ_A be 5×1 random vectors and Σ be a 5×5 random matrix. I assume that

$$\mu_0, \mu_Y, \mu_A \sim N(0, 1000 \times I_5), \quad \Sigma \sim \text{invWishart}(0.001 \times I_5).$$

Then, given these hyperparameters and the initial values (Y_{i1}, A_{i1}), I specify the prior distribution of the coefficients to be

$$\begin{pmatrix} \gamma_{i0} \\ \gamma_{iY} \\ \gamma_{iA} \\ \beta_{i0} \\ \beta_{iY} \end{pmatrix} | \mu_0, \mu_Y, \mu_A, \Sigma, Y_{i1}, A_{i1} \sim N (\mu_0 + \mu_Y Y_{i1} + \mu_A A_{i1}, \Phi)$$

In addition, let σ_{it}^ε and σ_{it}^ν be real random variables for $i = 1, \ldots, N$ and $t = 1, \ldots, T$. Assume that

$$\sigma_{it}^{\varepsilon 2}, \sigma_{it}^{\nu 2} \sim \text{invGamma}(7.5, 1).$$

Then the data likelihood follows the reduced-form model (31) with ε_{it} and ν_{it} being Gaussian with standard deviations σ_{it}^ε and σ_{it}^ν.

The estimation results are in Table 6, where the bound estimates from the random coefficient model (RC) are also provided for comparison. We can see that, in general, the mean parameter estimates are moderately different each other. In addition, for earnings heterogene-
Table 6: Estimates of the parameters of interest from the fixed effect (FE) and Bayesian random effect (Bayes RE) models. Bounds estimates from the random coefficient (RC) models in Table 1 are also provided for comparison.

For the variance estimates, the Bayes RE estimates are significantly less than the lower bound for RC. The FE estimates are also close to, if not strictly less than, the lower bound for RC. This suggests that FE and Bayes RE estimates for the variance can be underestimated in the data.

Another observation from Table 6 is that the correlation estimates of Bayes RE is much larger than those of FE and RC, which can be due to the small variance estimates of Bayes RE.

F.2 Sensitivity check against sample variation

In this subsection, I check sensitivity of my estimates in Table 1 against sample variation. To do so, I draw bootstrap samples, namely the datasets that have the same size as the PSID dataset which is created by sampling individuals in the PSID dataset with replacement. Then I compute the estimate for each bootstrap sample and summarize the distribution of the estimates.

Table 7 summarizes distribution of 500 bootstrap estimates. The results are presented for mean of earnings persistence $\mathbb{E}(\beta_{iY})$. Other parameters of interest stated in Table 1 showed similar level of sensitivity. We can see that the sample variation across bootstrap samples does not vary the estimate significantly.
<table>
<thead>
<tr>
<th>Parameter: $\mathbb{E}(\beta_{iY})$</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>5%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>0.259</td>
<td>0.052</td>
<td>0.032</td>
<td>0.385</td>
<td>0.258</td>
<td>0.341</td>
</tr>
<tr>
<td>UB</td>
<td>0.452</td>
<td>0.060</td>
<td>0.302</td>
<td>0.680</td>
<td>0.443</td>
<td>0.562</td>
</tr>
</tbody>
</table>

Table 7: Distribution of lower and upper bounds for $\mathbb{E}(\beta_{iY})$ across 500 bootstrap samples. The bounds are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$.

F.3 Robustness check against small within variation

This subsections checks robustness of the estimates against small within variation, that is, near-multicollinearity of individual time series. Recall that Assumption 2 for identification of the mean parameter requires that there is no multicollinearity for every individual. The exercise in this subsection checks robustness against violation of this assumption.

The exercise is described in what follows. Note that the model can be written in the matrix form

$$
\begin{pmatrix}
C_{it} \\
Y_{i,t+1}
\end{pmatrix} =
\begin{pmatrix}
1 & Y_{it}^* & A_{it} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & Y_{it}
\end{pmatrix}
\begin{pmatrix}
\gamma_{i0} \\
\gamma_{iY} \\
\gamma_{iA} \\
\beta_{i0} \\
\beta_{iY}
\end{pmatrix} +
\begin{pmatrix}
v_{it} \\
\epsilon_{it}
\end{pmatrix} \equiv R_{it} \times V_i + \begin{pmatrix} v_{it} \\ \epsilon_{it} \end{pmatrix}.
$$

For each individual, I compute time series average of the design matrix $(1/T) \sum_{t=1}^{T} R_{it}' R_{it}$ and compute its minimum eigenvalue. Then I drop 10% of individuals from the PSID dataset with smallest minimum eigenvalues and compute the reduced-form estimates with the remaining individuals.

Table 8 summarizes the result. The estimates under trimming is not very different to estimates under the full PSID dataset in Table 1, which suggests that the estimates are robust against near-multicollinearity of individuals.

G Numerical solution method for dynamic life-cycle model

The solution method follows that of Kaplan and Violante (2014). It takes as an input

- A discrete grid of (A_t, Y_t), denoted by $(a_j, y_j)^T_{j=1}$,
- A discrete grid of ϵ_{it}, denoted by $(\epsilon_s)^S_{s=1}$.
The table below presents the estimates for the parameters of interest, with dataset trimming. The bounds from RC are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$. The estimates without trimming, namely the estimates in Table 1, are also provided for comparison.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>With Trimming</th>
<th>Without Trimming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td>$E(\gamma_{iY})$</td>
<td>[0.181, 0.243]</td>
<td>[0.191, 0.322]</td>
</tr>
<tr>
<td></td>
<td>$E(\gamma_{iA})$</td>
<td>[0.140, 0.181]</td>
<td>[0.153, 0.212]</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\gamma_{iY})$</td>
<td>[0.693, 0.811]</td>
<td>[0.790, 1.572]</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\gamma_{iA})$</td>
<td>[0.157, 0.195]</td>
<td>[0.155, 0.308]</td>
</tr>
<tr>
<td></td>
<td>$\text{Corr}(\gamma_{iY}, \gamma_{iA})$</td>
<td>[-0.123, -0.050]</td>
<td>[-0.267, -0.008]</td>
</tr>
<tr>
<td>Earnings</td>
<td>$E(\beta_{iY})$</td>
<td>[0.352, 0.365]</td>
<td>[0.287, 0.425]</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(\beta_{iY})$</td>
<td>[0.458, 0.537]</td>
<td>[0.349, 0.838]</td>
</tr>
<tr>
<td>Consumption and</td>
<td>$\text{Corr}(\gamma_{iY}, \beta_{iY})$</td>
<td>[0.060, 0.471]</td>
<td>[0.042, 0.846]</td>
</tr>
<tr>
<td>Earnings</td>
<td>$\text{Corr}(\gamma_{iA}, \beta_{iY})$</td>
<td>[-0.130, 0.063]</td>
<td>[-0.233, 0.080]</td>
</tr>
</tbody>
</table>

Table 8: Estimates for the parameters of interest, with dataset trimming. The bounds from RC are obtained by solving (27) and the corresponding upper bound problem with $1.01 \times \delta^*$. The estimates without trimming, namely the estimates in Table 1, are also provided for comparison.

- A grid of values of $V_t(A_t, Y_t)$ on the discrete grid of (A_t, Y_t) for each $t = t_0, \ldots, T$.

Given discrete grid $(\varepsilon_{it})_{i=1}^S$ of ε_{it}, the value function is given by

$$V_t(A_t, Y_t) = \max_{C_t, A_{t+1}} \left[\frac{C_t^{1-\gamma}}{1-\gamma} + \beta^1 \sum_{s=1}^S V_{t+1}(A_{t+1}, \alpha + \rho Y_t + \varepsilon_s) \right].$$

To describe the method, it is convenient to write the value function equation in terms of state variables only. Concretely, rewrite the value function as

$$V_t(A_t, Y_t) = \max_{A_{t+1}} \left[\frac{(A_t + Z(t, Y_t) - q^{-1} A_{t+1})^{1-\gamma}}{1-\gamma} + \beta^1 \sum_{s=1}^S V_{t+1}(A_{t+1}, \alpha + \rho Y_t + \varepsilon_s) \right],$$ \hspace{1cm} (63)

where $C_t = A_t + Z(t, Y_t) - q^{-1} A_{t+1}$ is substituted.

Let $B_t(A_t, Y_t)$ be the argmax of (63) and $D_t(A_t, Y_t^*) = \partial V_t(A_t, Y_t)/\partial A_t$ be the derivative of V_t with respect to A_t. For each point (a, y) in the discrete grid of (A_t, Y_t), record

$$B_T(a, y) = 0,$$
$$V_T(a, y) = \frac{(a + Z(T, y))^{1-\gamma}}{1-\gamma},$$
$$D_T(a, y) = (a + Z(T, y))^{-\gamma}.$$

Then, for each $t = T - 1, T - 2, \ldots, t_0$ given the grid of $(B_{t+1}, V_{t+1}, D_{t+1})$, compute the values.
of \((B_t, V_t, D_t)\) for each point \((a, y)\) in the discrete grid of \((A_t, Y_t)\). The first step is to compute \(B_t(a, y)\) as the solution \(b^*\) to the Euler equation

\[
q^{-1}(a + Z(t, y) - q^{-1}b^*)^{-\gamma} = \beta \frac{1}{S} \sum_{s=1}^{S} D_{t+1}(b^*, \alpha + \rho y + e_s)
\]

subject to the constraint \(-m(t, y) \leq b^* \leq q^{-1}(a + Z(t, y))\), where the value of \(D_{t+1}(\cdot, \cdot)\) is obtained by bilinear interpolation. Concretely, create a grid \(\{b_u\}_{u=1}^{U}\) of values of \(b\) where

\[
b_u = -m(t, y) \times \frac{U - u}{U} + q^{-1}(a + Z(t, y)) \times \frac{u}{U}.
\]

and choose \(b^* = b_{u^*}\) where

\[
u^* = \text{argmin}_u \left| q^{-1}(a + Z(t, y) - q^{-1}b_u)^{-\gamma} - \beta \frac{1}{S} \sum_{s=1}^{S} D_{t+1}(b_u, \alpha + \rho y + e_s) \right|.
\]

In words, set \(b^*\) to be the value of \(b_u\) that minimizes difference between the LHS and the RHS of the Euler equation.

Then compute \(V_t(a, y)\) by

\[
V_t(a, y) = \frac{(a + Z(t, Y_t) - q^{-1}B_t(a, y))^{1-\gamma}}{1-\gamma} + \beta \frac{1}{S} \sum_{s=1}^{S} V_{t+1}(B_t(a, y), \alpha + \rho y + e_s)
\]

where the values of \(B_t(\cdot, \cdot)\) and \(V_{t+1}(\cdot, \cdot)\) are obtained by bilinear interpolations. Lastly, compute \(D_t(a, y)\) from the Envelope condition

\[
D_t(a, y) = (a + Z(t, Y_t) - q^{-1}B_t(a, y))^{-\gamma}.
\]

This completes computation of \((B_t, V_t, D_t)\) for a given value of \(t\).

Simulating data from the model is performed similarly. Given values of \((A_t, Y_t, t)\), create a grid \(\{b_u\}_{u=1}^{U}\) of values of \(b\) where

\[
b_u = -m(t, y) \times \frac{U - u}{U} + q^{-1}(A_t + Z(t, Y_t)) \times \frac{u}{U},
\]

and choose \(A_{t+1} = b_{u^*}\) where

\[
u^* = \text{argmin}_u \left| q^{-1}(A_t + Z(t, Y_t) - q^{-1}b_u)^{-\gamma} - \beta \frac{1}{S} \sum_{s=1}^{S} D_{t+1}(b_u, \alpha + \rho Y_t + e_s) \right|.
\]
Then generate Y_{t+1}^* by randomly sampling s^* from $\{1, \ldots, S\}$ and setting

$$Y_{t+1}^* = \alpha + \rho Y_t + e_{s^*}.$$