An Axiomatic Approach to Bitcoin

Jacob Leshno and Philipp Strack

Chicago and Yale

December 9, 2019
Can we do more than building variations of Bitcoin? how?
What We Do:

- We propose a mechanism design approach to study decentralized protocols.

- **Basic idea:**
 ① Explicitly model the constraints imposed by decentralization and incentive compatibility requirements.
 ② Characterize all mechanisms compatible with these requirements.
 ③ Study the implications for the design of decentralized systems.

- **Main insight:**
 - Any decentralized proof-of-work protocol is “reward equivalent” to Bitcoin.
 - Results shown for Bitcoin and many others shown for Bitcoin apply to a wide range of protocols.
 - Potentially, promising approach for other situations.
Selection Rules

- There are \(n \geq 2 \) miners.
- Each miner contributes computational power \(x_i \geq 0 \) to the system.
- A selection rule \(p^n : \mathbb{R}_+^n \rightarrow \Delta^n \) specifies how miners are selected.
- \(p^n_i(x_1, \ldots, x_n) \) is the probability with which miner \(i \) mines the next block.
- Determines the miners incentives, to perform computations, join the network, etc.
- We assume that \(p^n_i(x_1, \ldots, x_n) \) is non-decreasing in \(x_i \).
Examples: Proportional Selection

- **Proportional selection** rule \(p^n_i(x) = \frac{x_i}{\sum_{j=1}^{n} x_j} \).

- Used in Bitcoin.

- Implementation:
 - The first miner who solves a “computational riddle”.
 - Apply SHA-256 hash function twice solution valid if small enough.
 - Best strategy try values at random.

- Many other potential implementations (e.g. min hash).

- Essentially systems engineering problem which we do not model.
Examples: Winner-Take-All Rule

- **Winner-Take All (WTA) rule**

\[
p^n_i(x) = \begin{cases}
\frac{1}{|\arg\max_j x_j|} & \text{if } x_i \in \arg\max_j x_j \\
0 & \text{else}
\end{cases}
\]

- **Implementation:**
 - Abstracting away from network frictions.
 - Fix a time interval (10 minutes).
 - Miner who computed the most hashes mines the next block.
Comparison of Miner Behavior

- Different selection rules induce different miner behavior.
- Suppose miner i has cost $c \cdot x_i$.
- Every miner values a block 1.
- Consider the game where miners chose x_i to maximize

$$p_i^n(x) - c x_i.$$

- WTA \equiv complete information All-Pay auction

$$P[x_i \leq s] = n^{-1/2}s.$$

- Proportional selection \equiv Tullock contest.

$$x_i = \frac{n - 1}{n^2}.$$
A Mechanism Design Perspective

- Given that the selection rule determines miner behavior a natural agenda is:
 1. Find all \((p, x)\) that are “feasible” & “incentive compatible”.
 2. Find the best one according to some criterion.

- Parallel to the single good allocation/procurement problem:
 1. \(p\) is the allocation probability.
 2. \(x_i\) is the transfer of agent \(i\).

- **Main Difference:**
 Decentralization imposes additional non-standard IC constraints.

- We focus on step 1.

- Propose three requirements/axioms:
 1. Symmetry/Anonymity.
 2. Decentralization.
 3. Robustness to Sybil attacks.

- These axioms correspond to desirable properties discussed in the literature.
Axioms
Axiom (Anonymity)

A selection rule is anonymous if it is invariant under permutations, i.e. for every \(n \) and every permutation \(\pi : \mathbb{R}_+^n \rightarrow \mathbb{R}_+^n \) it satisfies \(\pi(p^n(x)) = p^n(\pi(x)) \).

- Captures the idea that the mechanism treats every participant the same.
- As analysis is on the block level this implicitly encodes history independence.
- Proof-of-Stake does not satisfy this requirement.
Axiom (Robustness to Sybil Attacks)

An selection rule is robust to Sybil attacks if for every \(x \in \mathbb{R}^n_+ \), \(i \in \mathbb{N} \) and every \(\Delta \in [0, x_i] \)

\[
p^n_i(x) \geq p^{n+1}_i(y) + p^{n+1}_{n+1}(y),
\]

where \(y = (x_1, \ldots, x_{i-1}, x_i - \Delta, x_{i+1}, \ldots, x_n, \Delta) \).

- Formalized an incentive constraint present in an environment with free entry an without verifyable identities.
- No particpant \(i \) wants to mimic a new entrant \(n + 1 \).
- Implicitly encodes a free entry condition.
- This axiom relates situations with \(n \) and \(n + 1 \) miners.
An random selection rule is robust to merging if for every $x \in \mathbb{R}_+^n$ and every $i,j \in N$

$$p^n_i(x) + p^n_j(x) \geq p^n_i(y) + p^n_j(y),$$

where $y = (x_1, \ldots, x_{i-1}, x_i + x_j, x_{i+1}, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n)$.

- Imposes a decentralization requirement.
- No two miners can merge and increase their joint winning probability.
- Avoids the system to be controlled by relatively few miners.
- Crucial for digital currencies: large miners compromise security.
Theorem (Characterization)

A random selection rule \(p \) is anonymous, robust to Sybil attacks, and robust to merging if and only if is the proportional selection rule

\[
p^n_i(x) = \frac{x_i}{\sum_{j=1}^{n} x_j}.
\]

- Monotonicity is not necessary for this result if one restricts to \(x \in \mathbb{Q}^n_+ \).
- Every protocol induces a selection rule equivalent to Bitcoin.
- **Impossibility result:** without giving up on one of the properties one can not go beyond Bitcoin’s design.
- Similar result shown in Chen, Papadimitriou, and Roughgarden (2019).
Proof Idea

1. Show that the Axioms imply that each agent is indifferent between splitting her computations between herself and a new fake arrival and not splitting herself.

2. Consider the case where \(x \in \mathbb{Q}_+^n \). Split each agent into identical copies all having the same \(x_j \) without changing agent \(i \)'s winning probability.

3. Use symmetry to infer agent \(i \)'s winning probability as the number of copies she controls.

4. Proceed inductively agent by agent.

5. Use the monotonicity of \(p \) to go from \(\mathbb{Q} \) to \(\mathbb{R} \).
Risk-Aversion

- Suppose miners are risk-averse.
- In addition suppose miners can commit to transfers between each other.
- Suppose two miners i and j share the reward from a block proportionally whenever they win in proportion to x_i, x_j.
- This leaves each miner with the same expected reward, but a less risky distribution in second-order stochastic dominance.

Corollary

For every selection rule that satisfies Axiom 1-3 any two risk averse miners have a strict incentive to merge their computational contributions and share the reward from mining a block proportional to their respective contributions.

- Commitment to the proportional sharing rule is implemented in mining pools through the address of a block.
- Shows that there is a tension between risk-aversion and robustness to merging across all decentralized protocols satisfying our axioms.
- Is this characterization sharp in the sense that all axioms are necessary?
 1. $p^n(x) = (1/2, 1/2, 0, 0, \ldots)$ is robust to merging and Sybil attacks, but not anonymous.
 2. The winner-take-all selection rule is symmetric and robust to Sybil attacks, but not robust to merging.
 3. The rule $p^n(x) = (1/n, \ldots, 1/n)$ is symmetric and robust to merging, but not robust to Sybil attacks.

- The impossibility to implement rule 3 in an environment where agents can freely join is what motivated Nakamoto’s Bitcoin protocol.
Equilibrium Computations

- Any protocol which satisfies our axiom is equivalent to a proportional selection rule.
- Suppose agent i has (potentially non-linear) cost $c(x_i)$ of performing computations.
- Resulting game is equivalent to a Tullock contest.
- Existing results imply a characterization of equilibrium behavior which characterizes winning probabilities:
- Can be used to determine how many and which miners are active in equilibrium, how unequal the winning probabilities are, etc.
- Follows similar approach previously proposed by Arnosti and Weinberg (2019) for Bitcoin.
Equilibrium Computations

1 Szidarovszky and Okuguchi (1997): Assume c is differentiable, strictly convex. Let $\rho_i(s)$ the unique solution to the equation

$$s^2 c_i'(\rho_i(s)) = s - \rho_i(s)$$

if $sc_i'(0) < 1$ and set $\rho_i(s) = 0$. Set s^* solve $s = \sum_{i=1}^{n} \rho_i(s)$. The computations performed by miner i equal $\rho_i(s^*)$.

2 Hillman and Riley (1989): Assume that $c_i(x_i) = \beta_i x_i$ and let m solve

$$m = \min \left\{ k: \beta_{k+1} \geq \frac{k}{k-1} \text{avg} (\beta_1, \ldots, \beta_k) \right\}$$

(2)

The total computational power of the system equals

$$s = \frac{m - 1}{m} \frac{1}{\text{avg} (\beta_1, \ldots, \beta_m)}$$

and the number of computations performed by miner i is given by

$$x_i = \begin{cases} 0 & \text{if } i > m \\ s(1 - \beta_is) & \text{if } i \leq m \end{cases}$$

(3)
- For example consider two miners where miner 1’s cost is γ times miner 2’s energy cost.
- Assume cost are linear (for example energy cost).
- In any protocol that is anonymous, robust to Sybil attacks and merging miner 1 wins with probability $\frac{1}{1+\gamma}$.
- Indicates that concentration of mining activity in low energy cost countries.
Conclusion

- Proposed a mechanism design approach to the design of decentralized protocols.

- We characterized all protocols that are decentralized in the sense that they are anonymous, robust to Sybil attacks and robust to merging.

- All these protocols are reward-equivalent to Bitcoin and centralize if miners are risk-averse.

- Potentially powerful approach with many open questions:
 1. Proof-of-stake, i.e. relaxing anonymity.
 2. Relaxing free entry condition to require “bonds”.
 3. Other interesting axioms, ideas?

- Only first step, potentially fruitful to identify “economically feasible” set.
Thank you!