We utilize a connection between compositional kernels and branching processes via Mehler’s formula to study deep neural networks. This new probabilistic insight provides us a novel perspective on the mathematical role of activation functions in compositional neural networks. We study the unscaled and rescaled limits of the compositional kernels and explore the different phases of the limiting behavior, as the compositional depth increases. We investigate the memorization capacity of the compositional kernels and neural networks by characterizing the interplay among compositional depth, sample size, dimensionality, and non-linearity of the activation. Explicit formulas on the eigenvalues of the compositional kernel are provided, which quantify the complexity of the corresponding reproducing kernel Hilbert space. On the methodological front, we propose a new random features algorithm, which compresses the compositional layers by devising a new activation function.

More on this topic

BFI Working Paper·Sep 16, 2025

The Promise of Digital Technology and Generative AI for Supporting Parenting Interventions in Latin America

Ariel Kalil, Michelle Michelini, and Pablo Ramos
Topics: Early Childhood Education, Technology & Innovation
BFI Working Paper·Sep 8, 2025

Chat2Learn: A Proof-of-Concept Evaluation of a Technology-Based Tool to Enhance Parent-Child Language Interaction

Linxi Lu and Ariel Kalil
Topics: Early Childhood Education, Technology & Innovation
BFI Working Paper·Sep 2, 2025

Artificial Writing and Automated Detection

Brian Jabarian and Alex Imas
Topics: Technology & Innovation