The decisions of judges, lenders, journal editors, and other gatekeepers often lead to significant disparities across affected groups. An important question is whether, and to what extent, these group-level disparities are driven by relevant differences in underlying individual characteristics, or by biased decision makers. Becker (1957, 1993) proposed an outcome test of bias based on differences in post-decision outcomes across groups, inspiring a large and growing empirical literature. The goal of our paper is to offer a methodological blueprint for empirical work that seeks to use outcome tests to detect bias. We show that models of decision making underpinning outcome tests can be usefully recast as Roy models, since heterogeneous potential outcomes enter directly into the decision maker’s choice equation. Different members of the Roy model family, however, are distinguished by the tightness of the link between potential outcomes and decisions. We show that these distinctions have important implications for defining bias, deriving logically valid outcome tests of such bias, and identifying the marginal outcomes that the test requires.

More on this topic

BFI Working Paper·Sep 18, 2025

The Impact of Language on Decision-Making: Auction Winners are Less Cursed in a Foreign Language

Fang Fu, Leigh H. Grant, Ali Hortaçsu, Boaz Keysar, Jidong Yang, and Karen J. Ye
Topics: Uncategorized
BFI Working Paper·Aug 20, 2025

Partial Language Acquisition: The Impact of Conformity

William A. Brock, Bo Chen, Steven Durlauf, and Shlomo Weber
Topics: Uncategorized
BFI Working Paper·Aug 12, 2025

Seemingly Virtuous Complexity in Return Prediction

Stefan Nagel
Topics: Uncategorized