This study investigates how to use regression adjustment to reduce variance in experimental data. We show that the estimators recommended in the literature satisfy an orthogonality property with respect to the parameters of the adjustment. This observation greatly simplifies the derivation of the asymptotic variance of these estimators and allows us to solve for the efficient regression adjustment in a large class of adjustments. Our efficiency results generalize a number of previous results known in the literature. We then discuss how this efficient regression adjustment can be feasibly implemented. We show the practical relevance of our theory in two ways. First, we use our efficiency results to improve common practices currently employed in field experiments. Second, we show how our theory allows researchers to robustly incorporate machine learning techniques into their experimental estimators to minimize variance.

More on this topic

BFI Working Paper·Sep 16, 2025

The Promise of Digital Technology and Generative AI for Supporting Parenting Interventions in Latin America

Ariel Kalil, Michelle Michelini, and Pablo Ramos
Topics: Early Childhood Education, Technology & Innovation
BFI Working Paper·Sep 8, 2025

Chat2Learn: A Proof-of-Concept Evaluation of a Technology-Based Tool to Enhance Parent-Child Language Interaction

Linxi Lu and Ariel Kalil
Topics: Early Childhood Education, Technology & Innovation
BFI Working Paper·Sep 2, 2025

Artificial Writing and Automated Detection

Brian Jabarian and Alex Imas
Topics: Technology & Innovation