Marginal outcome tests compare the expected effects of a decision on individuals who are of different races but at the same indifference point of the decision-maker. I present a simple formalization of how such tests can detect racial bias, defined as a deviation from accurate statistical discrimination. Namely, the tests can reject that the decision-maker ranks individuals according to some accurate prediction of a mandated outcome, given some unspecified race-inclusive information set. The frontier of marginal effects can furthermore rule out canonical taste-based discrimination. I relate this analysis to other interpretations of marginal outcome tests, other notions of racial discrimination, and recent identification strategies.

More on this topic

BFI Working Paper·Sep 18, 2025

The Impact of Language on Decision-Making: Auction Winners are Less Cursed in a Foreign Language

Fang Fu, Leigh H. Grant, Ali Hortaçsu, Boaz Keysar, Jidong Yang, and Karen J. Ye
Topics: Uncategorized
BFI Working Paper·Aug 20, 2025

Partial Language Acquisition: The Impact of Conformity

William A. Brock, Bo Chen, Steven Durlauf, and Shlomo Weber
Topics: Uncategorized
BFI Working Paper·Aug 12, 2025

Seemingly Virtuous Complexity in Return Prediction

Stefan Nagel
Topics: Uncategorized