This study investigates how to use regression adjustment to reduce variance in experimental data. We show that the estimators recommended in the literature satisfy an orthogonality property with respect to the parameters of the adjustment. This observation greatly simplifies the derivation of the asymptotic variance of these estimators and allows us to solve for the efficient regression adjustment in a large class of adjustments. Our efficiency results generalize a number of previous results known in the literature. We then discuss how this efficient regression adjustment can be feasibly implemented. We show the practical relevance of our theory in two ways. First, we use our efficiency results to improve common practices currently employed in field experiments. Second, we show how our theory allows researchers to robustly incorporate machine learning techniques into their experimental estimators to minimize variance.

More on this topic

BFI Working Paper·Apr 15, 2025

Large Language Models, Small Labor Market Effects

Anders Humlum and Emilie Vestergaard
Topics: Technology & Innovation
BFI Working Paper·Jan 28, 2025

Drive Down the Cost: Learning by Doing and Government Policies in the Global EV Battery Industry

Panle Jia Barwick, Hyuk-soo Kwon, Shanjun Li Nahim, and Bin Zahur
Topics: Energy & Environment, Technology & Innovation
BFI Working Paper·Dec 10, 2024

Learning Fundamentals from Text

Alex G. Kim, Maximilian Muhn, Valeri Nikolaev, and Yijing Zhang
Topics: Technology & Innovation