This study investigates how to use regression adjustment to reduce variance in experimental data. We show that the estimators recommended in the literature satisfy an orthogonality property with respect to the parameters of the adjustment. This observation greatly simplifies the derivation of the asymptotic variance of these estimators and allows us to solve for the efficient regression adjustment in a large class of adjustments. Our efficiency results generalize a number of previous results known in the literature. We then discuss how this efficient regression adjustment can be feasibly implemented. We show the practical relevance of our theory in two ways. First, we use our efficiency results to improve common practices currently employed in field experiments. Second, we show how our theory allows researchers to robustly incorporate machine learning techniques into their experimental estimators to minimize variance.

More on this topic

BFI Working Paper·Jan 6, 2025

AI, Investment Decisions, and Inequality

Alex G. Kim, David S. Kim, Maximilian Muhn, Valeri Nikolaev, and Eric C. So
Topics: Technology & Innovation
BFI Working Paper·Dec 10, 2024

Learning Fundamentals from Text

Alex G. Kim, Maximilian Muhn, Valeri Nikolaev, and Yijing Zhang
Topics: Technology & Innovation
BFI Working Paper·Oct 7, 2024

12 Best Practices for Leveraging Generative AI in Experimental Research

Samuel Chang, Andrew Kennedy, Aaron Leonard, and John List
Topics: Technology & Innovation